Question : Use the given vectors to find the indicated expression. : 2162321
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Use the given vectors to find the indicated expression.
1) v = -4i - 5j + k, w = 5i + 2j - k
Find (4v) × w.
A) 18i - 11j - 7k
B) 12i + 4j + 68k
C) -3i + 16j + 92k
D) -12i + 96j - 68k
2) v = 5i - 4j + 3k, w = 3i - 2j - 5k
Find v × (3w).
A) 78i + 102j + 6k
B) 38i + 52j + 26k
C) 66i + 84j - 18k
D) -78i - 120j - 6k
3) v = 2i + 5j - 5k, u = -4i - 3j + 4k
Find v × (2u).
A) 5i + 26j + 14k
B) 10i + 24j + 28k
C) 20i - 42j - 34k
D) -10i - 24j - 28k
4) v = 3i + 4j - 2k, w = 4i + 2j + 4k, u = -5i - 2j - 4k
Find w⋅(v × u).
A) 0
B) 76
C) 32
D) 20
5) v = 4i - 5j - 2k, w = 5i + 3j - 4k, u = -5i - 5j + 5k
Find u⋅(v × w).
A) 93
B) 75
C) 25
D) 5
6) v = -2i - 3j - 3k, w = 3i - 2j + 4k, u = -4i - 5j - 2k
Find v⋅(v × w).
A) 24
B) -24
C) 0
D) -9
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Solve the problem.
7) Find a unit vector normal to the plane containing u = -i + j + 4k and v = 2i - 3j + k.
8) Find a unit vector normal to the plane containing u = -i + 3j - 5k and v = 2i - j + 6k.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Find the requested vector.
9) v = 5i - 3j + k, w = -2i - 4j - k
Find a vector orthogonal to both v and w.
A) 20i + 29j + 37k
B) 25i - 14j + 6k
C) -7i - 3j + 3k
D) 7i + 3j - 26k
10) v = -5i - 3j + k, u = -2i + 4j - 5k
Find a vector orthogonal to both v and u.
A) -5i + 9j - 9k
B) 5i - 9j - 2k
C) -14i + 18j + 20k
D) 11i - 27j - 26k
11) v = 5i - 3j + k
Find a vector orthogonal to both v and i + j.
A) i + j + 8k
B) i - j - 6k
C) 4i - 4j - 5k
D) -i + j + 8k
12) v = 5i - 5j + k
Find a vector orthogonal to both v and i + k.
A) 3i - 6j - 3k
B) -5i - 4j + 5k
C) i - j + 4k
D) 4i - 8j - 4k
13) w = 3i - 5j - k
Find a vector orthogonal to both w and j + k.
A) -4i - 3j + 3k
B) 3i + 3j - 3k
C) 3i - 3j - 4k
D) 2i - 8j - 2k
Find the area of the parallelogram.
14) P1 (0, 0, 0), P2 (2, -4, 1), P3 (-1, 2, -1)
A) √(21)
B) √(5)
C) √(6)
D) √(41)
15) P1 (0, 0, 0), P2 (3, 4, 1), P3 (-2, 3, 1)
A) √(14)
B) 5√(14)
C) √(26)
D) 3√(35)
16) P1 (1, 2, 0), P2 (-2, 4, 2), P3 (0, -2, 3)
A) 21
B) 2√(94)
C) √(17)
D) √(26)
17) P1 (-1, 0, 2), P2 (3, 2, -2), P3 (2, -1, 3)
A) √(139)
B) 6
C) √(11)
D) 6√(10)
Find the area of the parallelogram with vertices P1, P2, P3, and P4.
18) P1 = (7, -5, 5), P2 = (1, 1, -4), P3 = (9, 2, -1), P4 = (3, 8, -10)
A) 81
B) (105/2)
C) (81/2)
D) 105