Question : Use synthetic division to find the quotient. : 2151859
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Use synthetic division to find the quotient.
1) (x3 - x2 + 5/x + 2)
A) x2 + 3x + 6 + (-7/x + 2)
B) x2 - 2x + 6 + (6/x + 2)
C) x2 - 3x + 6 + (6/x + 2)
D) x2 - 3x + 6 + (-7/x + 2)
2) (-5x3 - 7x2 + 2x - 8 /x + 2)
A) - (5/2)x2 + - (7/2)x + 1
B) -5x2 + 3x - 4
C) -5x + 3
D) 5x2 - 2x - 4
3) (x4 - 2x3 - 13x2 - 8x - 10/x - 5)
A) x3 + 3x2 + 2x + 2
B) x3 + 3x2 + 4x
C) x3 + 3x2 + 4x + 4
D) x3 + 4x2 + 2x - 2
4) (x5 - 3x4 - 13x3 + 18x2 - 13x - 7/x - 5)
A) x3 + 2x2 - 3x + 3 + (3/x - 5)
B) x4 + 2x3 - 3x2 + 3x + 3
C) x4 + 2x3 - 3x2 + 3x + 2 + (3/x - 5)
D) x4 + 2x3 - 3x2 + 3x - 2 + (5/x - 5)
5) (x3 + (10/3)x2 + 3x + (2/3)/x + (1/3))
A) x2 + 3x + 4
B) x2 - (13/3)x + (38/x + 1)
C) x2 - (13/3)x + (14/9) - (16/27)
D) x2 + 3x + 2
6) (x5 - 1/x - 1)
A) x4 + x3 + x2 + x + 1 + (1/x - 1)
B) x5 + x4 + x3 + x2 + x + 1
C) x4 + x3 + x2 + x + 1
D) x5 + x4 + x3 + x2 + x + 1 + (1/x - 1)
7) (-6x3 + 2x2 + 5x - 10) ÷ (x - 2)
A) -6x2 - 10x - 15 + (-25/x - 2)
B) -6x2 - 10x - 5 + (-10/x - 2)
C) -6x2 - 10x - 25 + (-40/x - 2)
D) -6x2 - 10x - 15 + (-40/x - 2)
8) (x4 + 81) ÷ (x - 3)
A) x3 + 3x2 + 9x + 27 + (81/x - 3)
B) x3 - 3x2 + 9x - 27 + (162/x - 3)
C) x3 + 3x2 + 9x + 27
D) x3 + 3x2 + 9x + 27 + (162/x - 3)
9) (2x3 + x2 - 3x + 2) ÷ (x + 3)
A) 2x2 - 5x + 12 + (- 34/x + 3)
B) 2x2 - 5x - 12 + (- 34/x + 3)
C) 2x2 - 5x - 12
D) 2x2 - 5x + 12
10) (3x4 - 2x3 - 10x2 + 15) ÷ (x - 2)
A) 3x3 + 4x2 - 2x - 4 + (-11/x - 2)
B) 3x3 + 4x2 - 2x - 4 + (7/x - 2)
C) 3x3 + 4x2 - x - 3 + (1/x - 2)
D) 3x3 + 4x2 - 2x + 4 + (-8/x - 2)
Use the remainder theorem to find P(k).
11) k = -3; P(x) = 2x3- 4x2 - 4x + 9
A) -69
B) -93
C) -39
D) -9
12) k = 3; P(x) = 6x4+ 9x3 + 4x2 - 4x + 51
A) 1,440
B) 168
C) 804
D) 2,334
13) k = -3; P(x) = x2 + 2x + 2
A) 5
B) -17
C) 1
D) -13
14) k = -3; P(x) = -x3 + 3x2 + 2
A) -59
B) 56
C) 3
D) -56
15) k = 2; P(x) = x3 - 4x2 - 4x - 2
A) -18
B) -34
C) -32
D) -14
16) k = 1; P(x) = -4x5 + 2x3 - 2x2 - 2
A) -2
B) 2
C) -6
D) -5
17) k = -3; P(x) = x6 - 3x5 + 3x4 - 3x3 - 2x2 - 5x + 6
A) 1,786
B) 1,785
C) 135
D) -1,785
18) k = - (1/2); P(x) = 4x3 - 12x2 - 9x
A) 4
B) 2
C) 0
D) 1
19) k = 4 + i; P(x) = x3 + 11
A) 52 + 48i
B) 63 + 47i
C) 63 + 48i
D) 52 + 47i
20) k = -5 - 2i; P(x) = x2 + 3x + 5
A) 25
B) 11 + 4i
C) 11 + 14i
D) 6 + 4i
Use synthetic division to decide whether the given number is a solution of the given equation.
21) 4x3 + 2x2 + x + 3; x = -1
A) Yes
B) No
22) 8x3 + x2 - 2x + 7; x = -1
A) Yes
B) No
23) x4 + 7x2 - 144; x = -3
A) Yes
B) No
24) -x4 - 5x2 - x - 1; x = -2
A) Yes
B) No
25) -3x4 + 44x3 - 2x + 1; x = - (1/3)
A) Yes
B) No
26) -3x4 - 3x2 - 4; x = - (2/3)
A) Yes
B) No
27) x2 + 2x + 10; x = -1 - 3i
A) Yes
B) No
28) x2 - 6x + 25; x = -3 - 4i
A) Yes
B) No
29) x3 + 4x2 + 49x + 196; x = 7i
A) Yes
B) No
30) x3 + 5x2 - 12x + 14; x = 2 + i
A) Yes
B) No