/
/
/
Use synthetic division to divide.
Not my Question
Flag Content

# Question : Use synthetic division to divide. : 2163525

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Determine whether the expression is rational.

281) (x4 + 9x2 + 10/x2 + 1)

A) x2 + 8x + (1/2)

B) x2 + 8

C) x2 + 8 + (2/x2 + 1)

D) x2 + 8x + 1

282) (16x5 + 4x4 - 20x3 - 24x2 - 28x - 12) ÷ (4x2 - 4x - 4)

A) 4x3 + 5x2 + 4x - 3

B) 4x3 + 5x2 + 4x + 3

C) 4x3 - 5x2 + 4x + 3

D) 4x3 + 5x2 - 4x + 3

Use synthetic division to divide.

283) (x3 - 4x2 + 2x - 7/x + 4)

A) x3 - 4x2 + 34x - 143

B) x2 - 8x + 34 + (-143/x + 4)

C) x2 - 8x + 18 + (-79/x + 4)

D) x2 - 8x + 34 + (-143/x3 - 4x2 +2x - 7)

284) (12x2 + 41x - 28/x + 4)

A) -7x + 4

B) 12x - 7

C) x - 7

D) -12x + 7

285) (-5x3 - 15x2 - 5x + 10) ÷ (x + 2)

A) -5x2 - 5x + 5

B) 5x2 - 2x + 5

C) -5x - 5

D) (-5/2)x2 + (-15/2)x + (-5/2)

286) (6x3 + 34x2 + 26x + 30) ÷ (x + 5)

A) -6x2 - 5x + 6

B) 6x + 4

C) 6x2 + 4x + 6

D) ( 6/5)x2 + (34/5)x + (26/5)

287) (7m3 + 11m2 - 4m + 4) ÷ (m + 2)

A) 7m2 - 3m + 2

B) m2 + 3m + 7

C) m2 + 4m + 5

D) 7m2 + 3m + 2

288) (8r3 - 70r2 - 10r - 72) ÷ (r - 9)

A) 8r2 + 2r + (8/r - 9)

B) r2 + 8r + 2

C) 8r2 + 2r + 8

D) 8r2 - 2r - 8

289) (-3x3 - 14x2 - 6x + 8) ÷ (x + 4)

A) 3x2 - 4x + 2

B) -3x - 2

C) -3x2 - 2x + 2

D) (-3/4)x2 + (-7/2)x + (-3/2)

290) (x4 + 256/x - 4)

A) x3 - 4x2 + 16x - 64 + (512/x - 4)

B) x3 + 4x2 + 16x + 64

C) x3 + 4x2 + 16x + 64 + (256/x - 4)

D) x3 + 4x2 + 16x + 64 + (512/x - 4)

Solve the problem.

291) The area A of a rectangle is 15z2 + 14z - 8. If the width W of the rectangle is 3z + 4, find the length L of the rectangle.

A) 5z - 2

B) 15z - 2 - (1/3z + 4)

C) 5z + 2

D) 5z - 2 + (1/3z + 4)

292) The area A of a rectangle is 4x2 + 2x - 2. If the width W of the rectangle is 2x - 1, find the length L of the rectangle when x = 10 feet.

A) 19 ft

B) 28 ft

C) 18 ft

D) 22 ft

293) The area A of a rectangle is 15x2 - 9x + 2. If the length L of the rectangle is 5x + 2, find the width W of the rectangle.

A) 3x - 3

B) 3x - 3 + (8/5x + 2)

C) 3x + 5

D) 3x - 4 + (9/5x + 2)

294) The volume of a rectangular box is x3 - 5x2 - 12x + 36. If the width of the box is x - 2 and its length is x + 3, find the height of the box.

A) x - 6

B) x + 6

C) x + 33

D) x - 3

295) The area A of a triangle is 10x2 + 7x - 12. If the height of the triangle is 2x + 3, find the length of its base.

A) (5x + 4/2)

B) 2(5x + 4)

C) 5x - 4

D) 2(5x - 4)

Evaluate p(k) by dividing p(x) by x - k and determining the remainder.

296) p(x) = x2 + 2x - 5, k =-3

A) -20

B) 8

C) -2

D) -10

297) p(x) = 4x2 - 5x - 9, k = -1

A) 0

B) 4

C) 11

D) 9

298) p(x) = x3 + 3x2 + 5x + 36, k = -4

A) 36

B) 120

C) 0

D) 13

299) p(x) = x3 - 5x2 + 3x - 5, k = 4

A) -132

B) 1

C) -9

D) -137

300) p(x) = 7x3 - 27x2 + 3x - 28, k = 4

A) 27

B) 29

C) 28

D) 0

301) p(x) = 4x3- 4x2 - 3x + 5, k = -3

A) -42

B) -86

C) -158

D) -130

302) p(x) = 7x4 + 8x3 + 2x2 - 3x + 33, k = -2

A) 146

B) 71

C) 95

D) 129

Evaluate p(k). Then determine whether x - k is a factor of p(x).

303) p(x) = x2 + 3x + 5, k = -3

A) 5; no

B) 0; yes

C) 5; yes

D) -5; no

304) p(x) = x2 - 12x - 13, k = -1

A) 0; no

B) 13; yes

C) 0; yes

D) 12; no

305) p(x) = 5x2 - 3x - 8, k = -1

A) 8; yes

B) 8; no

C) 0; no

D) 0; yes

306) p(x) = x3 - 4x2 + 4x - 7, k = -4

A) -87; no

B) -151; yes

C) -151; no

D) 0; yes

307) p(x) = 9x3 + 5x2 - x - 89, k = 2

A) -17; yes

B) 0; yes

C) -17; no

D) 1; no

308) p(x) = 9x3 - 35x2 + 4x - 32, k = 4

A) 37; no

B) 0; no

C) 37; yes

D) 0; yes

309) p(x) = x3 + 2x2 + 5x + 24, k = -3

A) 11; no

B) 11; yes

C) 0; no

D) 0; yes

## Solution 5 (1 Ratings )

Solved
Algebra 2 Years Ago 210 Views