x
Info
x
Warning
x
Danger
 / 
 / 
 / 
Use integration by parts to find the integral. 1) integral(2xe^xdx)

Question : Use integration by parts to find the integral. 1) integral(2xe^xdx) : 2151793

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Use integration by parts to find the integral.

1) ∫(2xexdx)

A) xex - 2ex + C

B) 2ex - ex + C

C) 2ex - 2xex + C

D) 2xex - 2ex + C

2) ∫(e2xx2dx)

A) (1/2)x2e2x - (1/2)xe2x + C

B) (1/2)x2e2x - xe2x + (1/4)e2x + C

C) (1/2)x2e2x - (1/2)xe2x + (1/4)e2x + C

D) (1/2)x2e2x - (1/4)xe2x + (1/4)e2x + C

3) ∫(9xlnxdx)

A) (9/2)x2lnx - (x2/4) + C

B) (9/2)x2lnx - (9/4)x2 + C

C) (9/2)xlnx - (9/4)x + C

D) (x2/2)lnx - (x2/4) + C

4) ∫(ln7xdx)

A) 7xlnx - x + C

B) xln7x - 7x + C

C) xln7x + x + C

D) xln7x - x + C

5) ∫((x + 4))lnxdx

A)lnx - (1/4)x2 + C

B) (1/2)x2lnx - (1/4)x2 + 4x + C

C) (1/2)x2lnx + 4xlnx - (1/4)x2 - 4x + C

D) (1/2)x2lnx - (1/4)x2 + C

6) ∫(x4)ln9xdx

A) (1/5) x5ln9x - (1/30) x6 + C

B) ln9x - (1/5) x5 + C

C) (1/5) x5ln9x - (1/25) x5 + C

D) (1/5) x5ln9x + (1/25) x5 + C

7) ∫((ln3x/x3))dx

A) - (1/2) x-2ln3x - (1/4) x-2 + C

B) ln3x + (1/2) x-2 + C

C) - (1/2) x-2ln3x - (1/2) x-1 + C

D) - (1/2) x-2ln3x + (1/4) x-2 + C

8) ∫(x√(4 - x))dx

A) (2/3)x(4 - x)3/2 + (4/15)(4 - x)5/2 + C

B) - (2/3)x(4 - x)3/2 - (2/5)(4 - x)5/2 + C

C) - (2/3)x(4 - x)3/2 - (4/15)(4 - x)5/2 + C

D) - (2/3)x(4 - x)3/2 + (4/15)(4 - x)5/2 + C

9) ∫((x - 3))e2xdx

A) 2(x - 3)e2x - 4 e2x + C

B) (1/2)(x - 3)e2x + (1/4) e2x + C

C) (1/2)(x - 3)e2x - (1/4) e2x + C

D) (x - 3)e2x - e2x + C

10) ∫((3x + 7) e-2xdx)

A) - (3/2) x e-2x - e-2x + C

B) -6x e-2x - 26 e-2x + C

C) (3/2)x e-2x + (17/4)e-2x + C

D) - (3/2)x e-2x - (17/4)e-2x + C

Use integration by parts to find the ∫. Round the answer to two decimal places if necessary.

11)

A) 12.64

B) 6.70

C) 74.6

D) 53.63

12)

A) -5.12

B) 4.88

C) 17.7

D) 8.88

13)

A) -0.94

B) 0.39

C) -2.27

D) -1.33

14) ln9xdx

A) 6.82

B) 8.60

C) 7.04

D) 0.22

15)

A) -477.27

B) -419.24

C) -1513.29

D) -6839.92

16) dx

A) 0.39

B) -7.61

C) 2.84

D) -1.31

17) dx

A) 4.53

B) 5.28

C) -5.28

D) 2.26

18) dx

Give your answer in exact form.

A) 5e4 + 1

B) 3e4 - 1

C) 3e4

D) 3e4 + 1

19) dx

Give your answer in exact form.

A) -5e-4 + 1

B) -5e-4

C) -3e-4 + 1

D) -5e-4 - 1

20)

A) -6.99

B) 6.95

C) 4.01

D) 13.15

Find the Integral by using integration by parts or other techniques. Round the answer to four decimal places if necessary.

21) ∫(20x2 e2xdx)

A) 20e2x(2x2 - 2x + 1) + C

B) 10e2x(2x2 - 2x + 1) + C

C) 5e2x(2x2 - 2x + 1) + C

D) 5e2x(x2 - x + 1) + C

22) ∫((2x - 1)ln(9x)dx)

A) (x2 - x)ln9x - (x2/2) + 2x + C

B) ((x2/2) - x)ln9x - (x2/4) + x + C

C) (x2 - x)ln9x - x2 + x + C

D) (x2 - x)ln9x - (x2/2) + x + C

23) ∫(x2 √(x + 7)dx)

A) ((30x2 - 168x + 112)√((x + 7)3)/105) + C

B) ((15x2 - 84x + 392)√((x + 7)3)/105) + C

C) ((30x2 - 168x + 784)√((x + 7)3)/105) + C

D) ((30x2 - 168x + 784)√((x + 7))/105) + C

24) ∫((x2/√(x2 + 22))dx)

A) x√(x2 + 22) -ln(x + √(x2 + 22)) + C

B) (x/2)√(x2 + 22) - 11ln(x + √(x2 + 22)) + C

C) (3x/2)√(x2 + 22) - 11ln(x + √(x2 + 22)) + C

D) (x/2)√(x2 + 22) + 11ln(x + √(x2 + 22)) + C

25) ∫(21xex^2dx)

A) (21/4)ex^2 + C

B) (21/2)x2ex^2 + C

C) 21ex^2 + C

D) (21/2)ex^2 + C

26)

A) -26,828.6218

B) -17,142.3557

C) -15,655.5712

D) -17,140.5084

27)

A) 618.9889

B) 442.7920

C) 614.9889

D) 811.7853

28)

A) - (7/3)(7x2 + 3)-6 + C

B) - (7/3)(7x2 + 3)-4 + C

C) - (1/14)(7x2 + 3)-6 + C

D) - (1/56)(7x2 + 3)-4 + C

29)

A) (2s4/√(3 - s4) )

B) -2s3√(3 - s4) + C

C) -2√(3 - s4) + C

D) (-1/2√(3 - s4) ) + C

Solution
5 (1 Ratings )

Solved
Calculus 2 Years Ago 245 Views
This Question has Been Answered!

Related Answers
Unlimited Access Free
Explore More than 2 Million+
  • Textbook Solutions
  • Flashcards
  • Homework Answers
  • Documents
Signup for Instant Access!
Ask an Expert
Our Experts can answer your tough homework and study questions
6520 Calculus Questions Answered!
Post a Question