Question : The rate of growth of a microbe population is given by m'(x) = 30xe^2x : 2158468
Use the Trapezoidal Rule to approximate the ∫ using the indicated value of n.
62) ; n = 4, Write answer as a whole number or reduced fraction.
A) 33
B) (45/2)
C) 16
D) (33/2)
63) dx; n = 4, Round to two decimal places.
A) 1.62
B) 1.12
C) 1.02
D) 1.42
64) ; n = 4, Round to three decimal places.
A) 6.071
B) 3.809
C) 12.142
D) 3.036
Use Simpson's rule to approximate the ∫ using the indicated value of n (so there are 2n subintervals).
65) ; n = 4, Round to three decimal places.
A) 4.236
B) 4.424
C) 4.024
D) 3.616
66) dx; n = 4, Round to two decimal places.
A) 0.89
B) 1.10
C) 1.24
D) 1.33
67) dx; n = 2, Round to two decimal places.
A) 1.46,
B) 1.33
C) 1.29
D) 1.20
68) dx; n = 4, Round to two decimal places.
A) 1.03
B) 1.11
C) 1.21
D) 1.13
69) dx; n = 4, Round to two decimal places.
A) 0.24
B) 0.20
C) 0.34
D) 0.30
70) ; n = 4, Write answer as whole number or reduced fraction.
A) (115/3)
B) 92
C) 23
D) 46
71) ; n = 4, Write answer as whole number or reduced fraction.
A) (101/24)
B) (145/16)
C) (101/12)
D) (161/24)
Find the indefinite ∫ using a table of integration formulas.
72) ∫(√(16x2 + 96)) dx
A) (1/2)[x√(x2 + 6) + 6ln(x + √(x2 + 6))] + C
B) (1/2)[x√(16x2 + 96) + 96ln(x + √(16x2 + 96))] + C
C) 2[x√(x2 + 6) + 6ln(x + √(x2 + 6))] + C
D) 2[x√(x2 + 96) + 96ln(x + √(x2 + 96))] + C
73) ∫(√(x2 + 9))dx
A) (1/4)(x√(x2 + 9) + 9ln|x + √(x2 + 9) |) + C
B) (1/2)(x√(x2 + 9) + ln|x + √(x2 + 9) |) + C
C) (1/2)(x√(x2 + 9) + 9ln|x + √(x2 + 9)|) + C
D) (1/4)(x√(x2 + 9) + ln|x + √(x2 + 9) |) + C
74) ∫((1/√(x2 - 16)))dx
A) ln(x + √(x2 - 16)) + C
B) (1/8)ln((4 + x/4 - x)) + C
C) (1/8)ln((x - 4/x + 4)) + C
D) ln(x + √(x2 + 16)) + C
75) ∫((1/√(x2 - 49))dx)
A) ln|x + √(x2 - 49)| + C
B) ln|x + √(x2 + 49)| + C
C) (1/14)ln|(7 + x/7 - x)| + C
D) (1/14)ln|(x - 7/x + 7)| + C
76) ∫(x√(x4 + 81) dx)
A) (1/4)(x2√(x4 + 81) + 81ln|x2 + √(x4 + 81)|) + C
B) (1/2)(x√(x4 + 81) + ln|x + √(x4 + 81) |) + C
C) (1/4)(x√(x4 + 81) + 81ln|x + √(x4 + 81) |) + C
D) (1/4)(x√(x4 + 81) + ln|x + √(x4 + 81) |) + C
77) ∫((x/(4 + 5x)(5 + x)))dx
A) (4/21)ln|4 + 5x| + (5/105)ln|5 + x| + C
B) - (4/105)ln|4 + 5x| + (5/21)ln|5 + x| + C
C) - (4/21)ln|4 + 5x| + C
D) - (4/21)ln|4 + 5x| + (5/105)ln|5 + x| + C
78) ∫((2/5x (7x + 7)))dx
A) (2/35)ln|(x/7x + 7)| + C
B) (1/7) + (x/7) - (1/7)ln|7x + 7| + C
C) (2/7)ln|(x/7x + 7)| + C
D) (1/7)ln|(x/7x + 7)| + C
Provide an appropriate response.
79) Use an integral table to find ∫(x3 e2x) dx.
A) (x3e2x/2) - (3x2e2x/4) - (3xe2x/4) + C
B) (x3e2x/2) - (3x2e2x/4) - (3xe2x/4) - (3e2x/8) + C
C) (x3e2x/2) + (3x2e2x/4) - (3xe2x/4) - (3e2x/8) + C
D) (x3e2x/2) - (3x2e2x/4) - (3e2x/8) + C
80) Use the integral table to find ∫(x e3x dx .)
A) (x e3x/3) - (e3x/9) + C
B) (x e3x/3) - (e3x/3) + C
C) (x e3x/3) + (e3x/9) + C
D) x e3x - (e3x/3) + C
81) Use an integral table to find ∫(9x6lnx dx).
A) x7|(lnx/7) - (1/49)| + C
B) 9x7|(lnx/7) - (1/49)| + C
C) 9xlnx - 9x + C
D) (x7/9)|(lnx/7) - (1/49)| + C
Solve the problem.
82) The rate of growth of a microbe population is given by m'(x) = 30xe2x, where x is time in days. What is the net growth between day 3 and day 7?
A) 222,613,544
B) 117,238,789
C) 111,306,789
D) 222,613,533