#
Question : Solve the equation for the indicated variable. (Leave ± in your answer, when appropriate.) : 2146851

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Solve the equation for the indicated variable. (Leave ± in your answer, when appropriate.)

1) E = mc^{2} for c

A) c = Em

B) c = ± (√(Em)/m)

C) c = (E/m)

D) c = ± √(Em)

2) 4πr^{2} = A for r

A) r = ± (√(Aπ)/2π)

B) r = ± √(2πA)

C) r = 2π√(A)

D) r = ± (√(2Aπ)/2π)

3) v^{2} = 2as for v

A) v = 2a√(s)

B) v = ± (√(2as)/s)

C) v = (2a/s)

D) v = ± √(2as)

4) A = (1/3)πr^{2} for r

A) r = 3√(Aπ)

B) r = (3π/A)

C) r = ± (√(3Aπ)/π)

D) r = ± (√(3Aπ)/3π)

5) r = √((A/2π)) for A

A) A = 2πr^{2}

B) A = ± 2π√(r)

C) A = 2πr

D) A = ± √(2πr)

6) x = ± √(r^{2} - y^{2}) for r

A) r = ± √(x + y)

B) r = ± √(x^{2} + y^{2})

C) r = x + y

D) r = ± √(x^{2} - y^{2})

7) M = πr^{2}hd for r

A) r = (± √(Mπhd)/πhd)

B) r = (± M√(πhd)/πhd)

C) r = ± √(πMhd)

D) r = (± √(πMhd)/hd)

8) rm = t^{2} - mt for t

A) t = (m ± √(m^{2} - 4mr)/4)

B) t = (m ± √(m^{2} + 4mr)/2m)

C) t = (m ± √(m^{2} + 4rm)/2)

D) t = √(mr - m)

9) c^{2} + d^{2} + f^{2} = g^{2}, for c

A) c = g^{2} - d^{2} - f^{2}

B) c = ±√(g^{2} - d^{2} - f^{2})

C) c = -g + d + f

D) c = g - d - f

10) aS^{2} + bS = c, for S

A) S = (-b + √(b^{2} + 4ac)/2a)

B) S = (-b + b^{2} - 4ac/2a)

C) S = (-b + √(b^{2} - 4ac)/2a)

D) S = (-b + b2 + 4ac/2a)