Question : Identify the polynomial as a monomial, binomial, or trinomial. Give the degree of the polynomial : 2152210
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Identify the polynomial as a monomial, binomial, or trinomial. Give the degree of the polynomial.
1) -11x2
A) Monomial, degree 2
B) Binomial, degree 0
C) Monomial, degree -11
D) Binomial, degree -11
2) 17x
A) Binomial, degree 0
B) Monomial, degree 0
C) Monomial, degree 17
D) Monomial, degree 1
3) -8y3 - 4
A) Binomial, degree 4
B) Binomial, degree 0
C) Monomial, degree -8
D) Binomial, degree 3
4) 11y3 + 9y2 - 1
A) Binomial, degree 3
B) Trinomial, degree 3
C) Trinomial, degree 5
D) Trinomial, degree 6
5) 10y9
A) Monomial, degree 9
B) Binomial, degree 10
C) Monomial, degree 10
D) Binomial, degree 9
6) -10y + 9
A) Binomial, degree 2
B) Binomial, degree 0
C) Binomial, degree 1
D) Monomial, degree -10
7) 8x7 - 9x - 1
A) Trinomial, degree 8
B) Trinomial, degree 7
C) Binomial, degree 8
D) Trinomial, degree 9
8) -7x6 - 1x5 + 1x4
A) Binomial, degree 15
B) Binomial, degree 5
C) Trinomial, degree 15
D) Trinomial, degree 6
9) -8
A) Monomial, degree -8
B) Monomial, degree 1
C) Binomial, degree 0
D) Monomial, degree 0
Add the polynomials.
10) (7y + 12) + (6y + 14)
A) 42y2 + 168
B) 13y + 26
C) 13y - 26
D) 13y2 + 26
11) (8x2 - 4x - 8) + (-3x2 - 4x - 6)
A) 5x4 - 8x2 - 14
B) 5x2 - 4x - 14
C) -24x2 - 4x - 14
D) 5x2 - 8x - 14
12) (4y5 - 3y2) + (8y5 - 7y2)
A) 12y10 - 10y4
B) 2y14
C) 12y5 - 10y2
D) 2y7
13) (2x6 - 4x5 + 4) + (8x6 - 5x5 - 9)
A) -4x11
B) 10 - 9x6 - 5x5
C) 12x6 - 3x5 - 13
D) 10x6 - 9x5 - 5
14) (6y5 + 2y3 + 8y) + (2y5 + 3y3 - 6y)
A) 15y9
B) 10y5 + 9y3 - 4y
C) 8y5 + 5y3 + 2y
D) 8y + 5y5 + 2y3
15) (5x3 + 9x + 8) + (9x2 + 5x - 3)
A) 14x3 + 18x2 + 8x - 3
B) 14x3 + 14x + 5
C) 5x3 + 18x2 + 13x - 3
D) 5x3 + 9x2 + 14x + 5
16) (- (3/4)x2 + (1/4)x + (1/5)) + ((4/5)x2 - (1/2)x + (2/3))
A) - (1/5)x6 + (13/15)
B) (1/20)x2 - (1/4)x + (13/15)
C) (1/20)x4 - (1/4)x2 + (13/15)
D) - 6x2 - (5/4)x + (4/3)
Use a vertical format to add the polynomials.
17) 8x3 + 8x2
A) 18x5
B) 13x3 + 5x2
C) 18x10
D) 13x6 + 5x4
18) 4y7 + 7y6 + 8
A) 30y13
B) 6 + 14y7 + 10y6
C) 6y7 + 14y6 + 10
D) 10y7 + 11y6 + 9
19) 4x8 - 6x7 + 4x6 + 4
A) 13x8 - 15x7 - 5x6 + 12
B) -7x42 + 12
C) -5x8 - 5x7 + 12x6 + 3
D) 13x16 - 15x14 - 5x12 + 12
20) 2y5 - 8y4
A) 10y5 - 3y4
B) 7y9
C) 7y18
D) 10y10 - 3y8
21) 2x5 - 5x2 - 3x
A) 7x5 - 9x2 - 12x
B) 7x - 9x5 - 12x2
C) 2x5 - 2x2 - 14x
D) -14x8
22) - (1/4)x2 + (1/3)x + (2/3)
A) (23/60)x6 + (4/3)
B) - (3/4)x2 + (17/15)x + (4/3)
C) (5/4)x2 + (8/3)x + (40/9)
D) - (3/4)x4 + (17/15)x2 + (4/3)
23) -4x3 + 7x - 5
A) 4x3 + 15x2 - 5x + 6
B) 4x3 + 15x + 1
C) -4x3 + 8x2 + 15x + 1
D) -4x3 + 15x2 + 3x + 6
24) 1.1x3 + 7.3x2 + 4.5
6.1x - 2.9
A) 1.1x3 + 10.4x2 + 5.1x - 8.1
B) 1.1x3 + 4.2x2 + 6.1x + 11.3
C) 12.4x6 + 11.3
D) 1.1x3 + 4.2x2 + 7.1x + 11.3