Question : Graph the parabola. : 2163593
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Graph the parabola.
1) y = (x + 5)2
A)
B)
C)
D)
2) y = -4(x – 3)2 - 4
A)
B)
C)
D)
3) y = 4/5( x + 2)2 - 5
A)
B)
C)
D)
4) x = y2 - 2
A)
B)
C)
D)
5) x = (1/3)y2
A)
B)
C)
D)
6) x = 1/2(y + 1)2 + 3
A)
B)
C)
D)
7) y = x2 + 2x - 4
A)
B)
C)
D)
8) y = -x2 + 2x - 5
A)
B)
C)
D)
9) y = 2x2 - 2x - 9
A)
B)
C)
D)
10) y = -3x2 + 2x - 2
A)
B)
C)
D)
Find the vertex and axis of symmetry of the parabola.
11) x = y2 + 3
A) (0, 3); y = 3
B) (3, 0); x = 3
C) (3, 0); y = 0
D) (3, 0); x = 0
12) x = 1/2y2
A) (0, 0); x = 0
B) (2, 0); x = 2
C) (0, 0); y = 0
D) (2, 0); y = 0
13) x = 1/3(y + 2)2 - 2
A) (2, -2); y = -2
B) (2, 2); y = 2
C) (-2, -2); y = -2
D) (-2, -2); x = -2
14) y = 1/3(x – 1)2 + 2
A) (1, 2); y = 2
B) (-1, 2); y = 2
C) (2, 1); x = -1
D) (1, 2); x = 1
Use the graph to determine the equation of the parabola.
15)
A) y = x2 + 3
B) y = x2 - 3
C) x = y2 + 3
D) x = y2 - 3
16)
A) y = (x + 2)2 + 3
B) x = (y – 2)2 + 3
C) x = (y + 2)2 + 3
D) y = (x - 2)2 - 3
Find the standard equation of the circle with the given radius r and center C.
17) r = 5 C = (-1, -4)
A) (x + 1)2 + (y + 4)2 = 25
B) (x – 4)2 + (y – 1)2 = 5
C) (x + 4)2 + (y + 1)2 = 5
D) (x – 1)2 + (y – 4)2 = 25
18) r = 2 C = (-1, 0)
A) (x – 1)2 + y2 = 4
B) x2 + (y + 1)2 = 2
C) (x + 1)2 + y2 = 4
D) x2 + (y – 1)2 = 2
19) r = Ö19 C = (-9, -8)
A) (x – 9)2 + (y – 8)2 = 19
B) (x + 8)2 + (y + 9)2 = 361
C) (x + 9)2 + (y + 8)2 = 19
D) (x – 8)2 + (y – 9)2 = 361
Use the graph to find the equation of the circle.
20)
A) x2 + y2 = 12
B) x2 + y2 = 36
C) x2 + y2 = 6
D) x2 + y2 = 16
21)
A) (x – 3)2 + (y – 2)2 = 4
B) x2 + y2 = 16
C) (x + 3)2 + (y + 2)2 = 16
D) (x – 3)2 + (y - 2)2 = 16
Find the center and radius of the circle.
22) x2 + y2 = 25
A) (1, 1); 5
B) (0, 0); 25
C) (1, 1); 25
D) (0, 0); 5
23) (x – 4)2 + (y – 6)2 = 25
A) (6, 4); 5
B) (4, 6); 5
C) (6, 4); 25
D) (4, 6); 25
24) (x + 5)2 + (y – 9)2 = 36
A) (5, -9); 36
B) (-5, 9); 6
C) (-5, 9); 36
D) (5, -9); 6
25) x2 + y2 + 2y = 8
A) (0, 2); 2
B) (1, 0); 4
C) (0, -1); 3
D) (0, 1); 3
26) x2 + 8x + y2 = 10y
A) (4, -5); Ö41
B) (-4, 5); Ö41
C) (4, 4); 3
D) (4, 5); 6
27) x2 + 4x + y2 = 5
A) (2, 0); 3
B) (0, -2); 2
C) (0, 2); 2
D) (-2, 0); 3
Solve the problem.
28) A radio telescope has the shape of a parabolic dish, whose cross section can be modeled by x = (35/8836)y2 where -94 ≤ y ≤ 94 and the units are feet. Find the depth d of the dish.
A) 3290 ft
B) 8836 ft
C) 1225 ft
D) 35 ft
29) A parabolic train track must pass through the points (1, 0), (0, 8), and (0, -8), where the units are kilometers. Find an equation for the train tracks in the form x = a(y – h)2 + k.
A) x = 1/64(y – 0)2 - 1
B) x = - 1/64(y – 0)2 + 1
C) x = 1/64(y – 0)2 + 1
D) x = 1/8(y – 0)2 - 1
30) A comet travels in a parabolic path, given by x = -2.6y2, where the sun is located at (-0.1, 0) and the units are astronomical units (A.U.). Find the distance from the sun to the comet when the comet is located at (-10.4, -2). Round to the nearest hundredth when necessary.
A) 10.59 A.U.
B) 10.69 A.U.
C) 10.49 A.U.
D) 8.3 A.U.