/
/
/
Graph the equation by plotting points 61) x = y^2
Not my Question
Flag Content

# Question : Graph the equation by plotting points 61) x = y^2 : 2162335

Graph the equation by plotting points.

61) x = y2

A)

B)

C)

D)

62) y = √x

A)

B)

C)

D)

63) y = (1/x)

A)

B)

C)

D)

Write the standard form of the equation of the circle.

64)

A) (x + 5)2 + (y + 6)2 = 3

B) (x + 5)2 + (y + 6)2 = 9

C) (x - 5)2 + (y - 6)2 = 3

D) (x - 5)2 + (y - 6)2 = 9

65)

A) (x - 4)2 + (y - 3)2 = 25

B) (x + 4)2 + (y + 3)2 = 25

C) (x - 3)2 + (y - 4)2 = 25

D) (x + 3)2 + (y + 4)2 = 25

Write the standard form of the equation of the circle with radius r and center (h, k).

66) r = 3; (h, k) = (0, 0)

A) x2 + y2 = 3

B) (x - 3)2 + (y - 3)2 = 9

C) (x - 3)2 + (y - 3)2 = 3

D) x2 + y2 = 9

67) r = 2; (h, k) = (4, -1)

A) (x + 4)2 + (y - 1)2 = 2

B) (x + 4)2 + (y - 1)2 = 4

C) (x - 4)2 + (y + 1)2 = 2

D) (x - 4)2 + (y + 1)2 = 4

68) r = 10; (h, k) = (-8, 0)

A) x2 + (y + 8)2 = 10

B) (x - 8)2 + y2 = 100

C) x2 + (y - 8)2 = 10

D) (x + 8)2 + y2 = 100

69) r = 11; (h, k) = (0, 6)

A) x2 + (y + 6)2 = 11

B) (x - 6)2 + y2 = 121

C) (x + 6)2 + y2 = 121

D) x2 + (y - 6)2 = 121

70) r = √(13); (h, k) = (5, -6)

A) (x - 5)2 + (y + 6)2 = 13

B) (x + 5)2 + (y - 6)2 = 13

C) (x - 6)2 + (y + 5)2 = 169

D) (x + 6)2 + (y - 5)2 = 169

71) r = √(14); (h, k) = (0, 1)

A) x2 + (y - 1)2 = 14

B) (x - 1)2 + y2 = 196

C) x2 + (y + 1)2 = 14

D) (x + 1)2 + y2 = 196

Solve the problem.

72) Find the equation of a circle in standard form where C(6, -2) and D(-4, 4) are endpoints of a diameter.

A) (x - 1)2 + (y - 1)2 = 136

B) (x + 1)2 + (y + 1)2 = 34

C) (x - 1)2 + (y - 1)2 = 34

D) (x + 1)2 + (y + 1)2 = 136

73) Find the equation of a circle in standard form with center at the point (-3, 2) and tangent to the line y = 4.

A) (x - 3)2 + (y + 2)2 = 16

B) (x + 3)2 + (y - 2)2 = 4

C) (x - 3)2 + (y + 2)2 = 4

D) (x + 3)2 + (y - 2)2 = 16

74) Find the equation of a circle in standard form that is tangent to the line x = -3 at (-3, 5) and also tangent to the line x = 9.

A) (x - 3)2 + (y - 5)2 = 36

B) (x + 3)2 + (y - 5)2 = 36

C) (x + 3)2 + (y + 5)2 = 36

D) (x - 3)2 + (y + 5)2 = 36

Find the center (h, k) and radius r of the circle with the given equation.

75) x2 + y2 = 9

A) (h, k) = (3, 3); r = 9

B) (h, k) = (3, 3); r = 3

C) (h, k) = (0, 0); r = 9

D) (h, k) = (0, 0); r = 3

76) (x - 9)2 + (y + 3)2 = 4

A) (h, k) = (-3, 9); r = 2

B) (h, k) = (9, -3); r = 2

C) (h, k) = (9, -3); r = 4

D) (h, k) = (-3, 9); r = 4

77) (x + 4)2 + y2 = 16

A) (h, k) = (-4, 0); r = 4

B) (h, k) = (0, -4); r = 4

C) (h, k) = (-4, 0); r = 16

D) (h, k) = (0, -4); r = 16

78) x2 + (y + 1)2 = 100

A) (h, k) = (-1, 0); r = 100

B) (h, k) = (0, -1); r = 10

C) (h, k) = (-1, 0); r = 10

D) (h, k) = (0, -1); r = 100

79) 5(x + 5)2 + 5(y - 3)2 = 75

A) (h, k) = (5, -3); r = √(15)

B) (h, k) = (-5, 3); r = √(15)

C) (h, k) = (-5, 3); r = 5√(15)

D) (h, k) = (5, -3); r = 5√(15)

Solve the problem.

80) Find the standard form of the equation of the circle. Assume that the center has integer coordinates and the radius is an integer.

A) (x + 1)2 + (y - 2)2 = 9

B) x2 + y2 - 2x + 4y - 4 = 0

C) x2 + y2 + 2x - 4y - 4 = 0

D) (x - 1)2 + (y + 2)2 = 9

## Solution 5 (1 Ratings )

Solved
Mathematics 2 Years Ago 236 Views
This Question has Been Answered!