Question : Find the range of the quadratic function. 34) f(x) = x^2 + 8 : 2152284
Find the range of the quadratic function.
34) f(x) = x2 + 8
A) (-∞, 8]
B) [0, ∞)
C) [8, ∞)
D) [-8, ∞)
35) f(x) = (x + 3)2 + 7
A) [-3, ∞)
B) [7, ∞)
C) [3, ∞)
D) [-7, ∞)
36) f(x) = 9 - (x + 3)2
A) (-∞, 3]
B) [9, ∞)
C) [-3, ∞)
D) (-∞, 9]
37) f(x) = (x + 1)2 - 5
A) [-5, ∞)
B) [-1, ∞)
C) (-∞, -5]
D) (-∞, -1]
38) y + 9 = (x + 3)2
A) [9, ∞)
B) (-∞, 9]
C) [- 9, ∞)
D) (-∞, 3]
39) f(x) = 11(x - 2)2 + 7
A) (-∞, 7]
B) [2, ∞)
C) [7, ∞)
D) [-7, ∞)
40) f(x) = -7(x - 4)2 - 8
A) [-4, ∞)
B) (-∞, 4]
C) [-8, ∞)
D) (-∞, -8]
41) f(x) = x2 - 4x + 8
A) (-∞, -4]
B) [-2, ∞)
C) [4, ∞)
D) (-∞, 4]
42) f(x) = -x2 + 2x - 1
A) (-∞, 1]
B) (-∞, 0]
C) [0, ∞)
D) [1, ∞)
43) f(x) = 4x2 - 3x - 9
A) (-∞, - 153/16]
B) [3/8, ∞)
C) (-∞, 3/8]
D) [- 153/16, ∞)
44) f(x) = -4x2 + 4x
A) (-∞, 1/2]
B) (-∞, 1]
C) (-∞, - 1]
D) (-∞, - 1/2]
Find the x-intercepts (if any) for the graph of the quadratic function.
45) f(x) = x2 - 9
A) (-9, 0)
B) No x-intercepts
C) (-3, 0) and (3, 0)
D) (3, 0)
46) f(x) = (x + 1)2 - 1
A) (2, 0) and (-2, 0)
B) (0, 0) and (-1, 0)
C) (0, 0) and (2, 0)
D) (0, 0) and (-2, 0)
47) y + 9 = (x + 3)2
A) (6, 0) and (-6, 0)
B) (0, 0)
C) (0, 0) and (-6, 0)
D) (0, 0) and (6, 0)
48) f(x) = 2 + 3x + x2
A) (1, 0) and (2, 0)
B) (1, 0) and (-2, 0)
C) (-1, 0) and (2, 0)
D) (-1, 0) and (-2, 0)
49) f(x) = x2 + 16x + 42 Give your answers in exact form.
A) (-16 ± √42, 0)
B) (8 + √22, 0)
C) (8 ± √42, 0)
D) (-8 ± √22, 0)
50) f(x) = -x2 + 13x - 42
A) (6, 0) and (-7, 0)
B) (-6, 0) and (-7, 0)
C) No x-intercepts
D) (6, 0) and (7, 0)
51) f(x) = 2x2 - 14x + 24
A) (3, 0) and (-4, 0)
B) (8, 0) and (1.5, 0)
C) (8, 0) and (-1.5, 0)
D) (3, 0) and (4, 0)
52) f(x) = 2x2 - 18x + 36
A) (3, 0) and (6, 0)
B) (-3, 0) and (-6, 0)
C) (-3, 0) and (6, 0)
D) (3, 0) and (-6, 0)
53) 2x2 + 6x + 2 = 0
Give your answers in exact form.
A) (-3 ± √5/2, 0)
B) (-6 ± √5/2, 0)
C) (-3 ± √5/4, 0)
D) ( -3 ± √13/2, 0)
Find the y-intercept for the graph of the quadratic function.
54) f(x) = -x2 + 2x + 3
A) (0, -1)
B) (3, 0)
C) (0, 3)
D) (0, -3)
55) y + 9 = (x + 3)2
A) (9, 0)
B) (0, 0)
C) (0, -6)
D) (0, 6)
56) f(x) = 2 + 3x + x2
A) (0, 2)
B) (0, 1)
C) (0, 3)
D) (0, -2)
57) f(x) = x2 + 5x - 4
A) (0, 5)
B) (0, 4)
C) (0, 1)
D) (0, -4)
58) f(x) = (x – 1)2 - 1
A) (0, 1)
B) (0, 0)
C) (0, -2)
D) (0, -1)
59) f(x) = 2x2 - 3x - 5
A) (0, -5)
B) (0, 5)
C) (0, -(5/2))
D) (0, 5/2)
Find the domain and range of the quadratic function whose graph is described.
60) The vertex is (-1, -4) and the graph opens up.
A) Domain: (-∞, ∞)
Range: (-∞, -4]
B) Domain: (-∞, ∞)
Range: [-4, ∞)
C) Domain: [-1, ∞)
Range: [-4, ∞)
D) Domain: (-∞, ∞)
Range: [-1, ∞)
61) The vertex is (1, 10) and the graph opens down.
A) Domain: (-∞, ∞)
Range: [10, ∞)
B) Domain: (-∞, ∞)
Range: (-∞, 10]
C) Domain: (-∞, 1]
Range: (-∞, 10]
D) Domain: (-∞, ∞)
Range: (-∞, 1]
62) The minimum is -9 at x = 1.
A) Domain: (-∞, ∞)
Range: [-9, ∞)
B) Domain: (-∞, ∞)
Range: [1, ∞)
C) Domain: (-∞, ∞)
Range: (-∞, -9]
D) Domain: [1, ∞)
Range: [-9, ∞)
63) The maximum is -1 at x = 1
A) Domain: (-∞, 1]
Range: (-∞, -1]
B) Domain: (-∞, ∞)
Range: (-∞, -1]
C) Domain: (-∞, ∞)
Range: (-∞, 1]
D) Domain: (-∞, ∞)
Range: [-1, ∞)
Solve the problem.
64) Write an equation in standard form of the parabola that has the same shape as the graph of f(x) = 11x2, but which has its vertex at (5, 6).
A) f(x) = 11(x - 5)2 + 6
B) f(x) = (11x + 5)2 + 6
C) f(x) = 11(x + 5)2 + 6
D) f(x) = 11(x + 6)2 + 5
65) Write an equation in standard form of the parabola that has the same shape as the graph of f(x) = 5x2, but which has a minimum of 4 at x = 3.
A) f(x) = 5(x + 4)2 - 3
B) f(x) = -5(x - 3)2 + 4
C) f(x) = 5(x - 3)2 + 4
D) f(x) = 5(x + 3)2 + 4
66) Write an equation in standard form of the parabola that has the same shape as the graph of f(x) = -7x2, but which has a maximum of 5 at x = 3.
A) f(x) = 7(x - 3)2 + 5
B) f(x) = -7(x - 3)2 + 5
C) f(x) = -7(x - 3)2 - 5
D) f(x) = -7(x + 3)2 + 5