/
/
/
Find the percent of the area under a normal curve
Not my Question
Flag Content

# Question : Find the percent of the area under a normal curve : 2151735

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Find the percent of the area under a normal curve between the mean and the given number of standard deviations from the mean.

1) 3.01

A) 49.86%

B) 99.87%

C) 49.87%

D) 50.13%

2) 2.41

A) 50.80%

B) 49.20%

C) 49.18%

D) 99.20%

3) 1.64

A) 44.95%

B) 94.95%

C) 55.05%

D) 44.84%

4) 0.35

A) 63.68%

B) 14.06%

C) 13.68%

D) 86.30%

5) 0.83

A) 29.67%

B) 29.39%

C) 70.33%

D) 79.67%

6) -2.91

A) 49.82%

B) 0.18%

C) 99.82%

D) 99.64%

7) -2.11

A) 96.52%

B) 98.26%

C) 48.21%

D) 48.26%

8) -1.71

A) 95.64%

B) 45.64%

C) 45.54%

D) 91.28%

9) -0.79

A) 78.52%

B) 57.04%

C) 28.81%

D) 28.52%

10) -0.91

A) 63.72%

B) 81.86%

C) 18.14%

D) 31.86%

Find the percent of the total area under the standard normal curve between the given z-scores.

11) z = 0.0 and z = 3.01

A) 0.5013

B) 0.9987

C) 0.4987

D) 0.1217

12) z = -2.41 and z = 0.0

A) 0.4920

B) 0.0948

C) 0.5080

D) 0.4910

13) z = -1.10 and z = -0.36

A) 0.2237

B) 0.2239

C) 0.4951

D) -0.2237

14) z = 0.70 and z = 1.98

A) 0.2181

B) 0.2175

C) -0.2181

D) 1.7341

15) z = -0.55 and z = 0.55

A) 0.9000

B) -0.9000

C) 0.4176

D) -0.4176

16) z = -1.93 and z = -0.46

A) 0.3496

B) 0.3598

C) -0.2960

D) 0.2960

17) z = 0.07 and z = 2.45

A) 0.6531

B) 0.5208

C) 0.4650

D) -0.4650

18) z = 2.18 and z = 3.45

A) -0.0143

B) 0.9857

C) 0.0143

D) 0.9851

Find a z-score satisfying the given condition.

19) 4% of the total area is to the left of z.

A) 1.70

B) -1.75

C) -1.74

D) -1.76

20) 4% of the total area is to the right of z.

A) 1.76

B) 1.75

C) 1.74

D) -1.75

21) 20.1% of the total area is to the right of z.

A) 0.84

B) 0.82

C) 0.83

D) -0.84

22) 74.9% of the total area is to the left of z.

A) -0.67

B) 0.68

C) 0.67

D) 0.66

23) 25.1% of the total area is to the right of z.

A) -0.68

B) -0.67

C) 0.33

D) 0.67

24) 3.0% of the total area is to the right of z.

A) 1.88

B) 1.89

C) -1.89

D) -1.88

25) 82.9% of the total area is to the left of z.

A) -0.96

B) -0.95

C) 0.95

D) 0.96

26) 33% of the total area is to the right of z.

A) 0.74

B) -0.44

C) 0.44

D) 0.45

27) 30.2% of the total area is to the right of z.

A) -0.52

B) 0.52

C) 0.53

D) 0.88

28) 30.2% of the total area is to the left of z.

A) -0.53

B) -0.52

C) 0.52

D) -0.88

A company installs 5000 light bulbs, each with an average life of 500 hours, standard deviation of 100 hours, and distribution approximated by a normal curve. Find the approximate number of bulbs that can be expected to last the specified period of time.

29) At least 500 hours

A) 2400

B) 1000

C) 2500

D) 5000

30) Less than 500 hours

A) 3000

B) 2500

C) 2400

D) 1000

31) Between 500 hours and 675 hours

A) 2256

B) 4800

C) 4700

D) 2300

32) Between 290 hours and 500 hours

A) 2913

B) 2911

C) 2413

D) 2411

33) Between 290 hours and 540 hours

A) 3188

B) 3190

C) 1639

D) 1641

34) Between 540 hours and 780 hours

A) 1717

B) 2217

C) 1710

D) 2215

35) Less than 690 hours

A) 2357

B) 4853

C) 4857

D) 4860

36) More than 400 hours

A) 4219

B) 4195

C) 4207

D) 2207

37) Less than 200 hours

A) 4444

B) 7

C) 10

D) 5

38) More than 740 hours

A) 49

B) 4960

C) 499

D) 41

## Solution 5 (1 Ratings )

Solved
Calculus 1 Month Ago 18 Views