Question : Find a point-slope form for the equation of the line satisfying the conditions. 21) (10, -1) and (5, -4) : 2152280
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Find a point-slope form for the equation of the line satisfying the conditions.
21) (10, -1) and (5, -4)
A) y = - (11/9)x - (91/9)
B) y = - (3/5)x - 7
C) y = (11/9)x - (91/9)
D) y = (3/5)x - 7
22) (-6, -5) and (-6, 5)
A) 5x - 5y = 0
B) x = -6
C) y = -5
D) -5x + 5y = 0
23) (-6, 2) and (-5, 2)
A) -6x - 5y = 0
B) y = 2
C) x = -6
D) -5x - 6y = 0
24) (-5, -10) and (-8, -10)
A) -5x - 8y = 0
B) x = -5
C) -8x - 5y = 0
D) y = -10
25) y-intercept -9 and x-intercept -2
A) y = - (9/2)x - 9
B) y = (2/9)x - 2
C) y = (9/2)x - 9
D) y = - (2/9)x - 2
Write an equation of the line through the given point with the given slope. Write the equation in slope-intercept form.
26) (2, 5); slope: -3
A) y = -3x - 11
B) y = - (1/3)x + 11
C) y = -3x + 11
D) y = -3x + (1/11)
27) (4, 3); slope: - (3/8)
A) y = - (3/8)x - (9/2)
B) y = - (3/8)x + (2/9)
C) y = - (3/8)x + (9/2)
D) y = - (8/3)x + (9/2)
28) (3, 2); slope: - (4/5)
A) y = - (4/5)x + (22/5)
B) y = - (4/5)x - (22/5)
C) y = - (5/4)x - (5/22)
D) y = - (4/5)x + (5/22)
29) (1, -2); slope: 0
A) y = 2x + 0
B) y = -2
C) y = (1/2)x + 0
D) x = 1
30) (6, 0); slope: 7
A) y = 6x + 7
B) y = 7x - 42
C) y = -6x + 7
D) y = -7x + 6
31) (7, -3); slope: -4
A) y = 4x + 24
B) y = -4x + 23
C) y = -4x + 25
D) y = -4x + 26
32) (-8, 6); slope: -8
A) y = 8x - 60
B) y = -8x - 58
C) y = -8x - 59
D) y = -8x - 66
33) (7, -1); slope: - (3/4)
A) y = - (3/4)x + 5
B) y = - (3/4)x + (17/4)
C) y = - (3/4)x + (25/4)
D) y = (3/4)x - (17/4)
Find an equation of the line satisfying the following conditions.
If possible, write the equation in slope-intercept form.
34) y-intercept -22, slope 4.1
A) y = 22x - 4.1
B) y = -4.1x - 22
C) y = -22x + 4.1
D) y = 4.1x - 22
35) y-intercept -29, x-intercept 25
A) y = - (29/25)x - 29
B) y = (29/25)x - 29
C) y = (25/29)x - 29
D) y = (29/25)x + 29
36) Through (4, 3), parallel to 5x + 9y = -7
A) y = (5/9)x - (47/9)
B) y = - (4/9)x - (7/9)
C) y = - (9/5)x + (3/5)
D) y = - (5/9)x + (47/9)
37) Through (-6, -7), perpendicular to -9x + 5y = 89
A) y = (5/9)x - (31/3)
B) y = - (5/9)x - (31/3)
C) y = - (6/5)x - (89/5)
D) y = - (9/5)x - (9/5)
38) Through (1, 7), perpendicular to x = 3
A) x = 3
B) y = 3
C) y = 7
D) y = -7
39) Vertical, passing through (-4, 5)
A) x = 5
B) y = 5
C) x = -4
D) y = -4
40) Vertical, passing through (-8.66, -2.99)
A) y = -8.66
B) x = -8.66
C) x = -2.99
D) y = -2.99