Question : Factor the sum or difference of two cubes. 1) t^3 + 64 : 2163462
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Factor the sum or difference of two cubes.
1) t3 + 64
A) (t - 64)(t + 1)(t - 1)
B) (t - 4)(t2 + 4t + 16)
C) (t + 4)(t2 + 16)
D) (t + 4)(t2 - 4t + 16)
2) x3 - 343
A) (x - 7)(x2 + 49)
B) (x + 343)(x + 1)(x - 1)
C) (x + 7)(x2 - 7x + 49)
D) (x - 7)(x2 + 7x + 49)
3) 64p3 + 1
A) (4p + 1)(16p2 - 4p + 1)
B) (4p + 1)(16p2 + 4p + 1)
C) (4p + 1)(16p2 - 4p - 1)
D) (4p + 1)(16p2 + 1)
4) 512p3 - 1
A) (8p - 1)(64p2 + 1)
B) (8p + 1)(64p2 - 8p + 1)
C) (8p - 1)(64p2 + 8p + 1)
D) (512p - 1)(p2 + 8p + 1)
5) 4k3 + 108
A) 4(k + 3)(k2 - 3k + 9)
B) 4(k - 3)(k2 + 3k + 9)
C) 4(k + 12)(k2 - 12k + 36)
D) 4(k + 3)(k2 + 3k + 9)
6) 3r3 - 192
A) 3(r - 4)(r2 + 4r + 16)
B) 3(r - 12)(r2 + 12r + 48)
C) 3(r - 4)(r2 - 4r + 16)
D) 3(r + 4)(r2 - 4r + 16)
7) a3b3 + 27
A) (ab + 3)(a2b2 - 9)
B) (ab - 3)(a2b2 + 9)
C) (ab + 3)(a2b2 - 3ab + 9)
D) (ab - 3)(a2b2 + 3ab + 9)
8) 8x3 - y3
A) (2x - y)(4x2 + y2)
B) (2x + y)(4x2 - 2xy + y2)
C) (2x - y)(4x2 + 2xy + y2)
D) (8x - y)(x2 + 2xy + y2)
9) 54x4 - 250xy3
A) 2x(3x + 5y)(9x2 - 15xy + 25y2)
B) 2x(3x - 5y)(9x2 - 15xy + 25y2)
C) 2(3x - 5y)(9x2 + 15xy + 25y2)
D) 2x(3x - 5y)(9x2 + 15xy + 25y2)
10) 243x3 - 1125x6
A) 9(3x -5x2)(9x2 + 15x3 + 25x4)
B) 9x3(3 - 5x)(9 + 15x + 25x2)
C) 9(3x + 5x2)(9x2 - 15x3 + 25x4)
D) 9x3(3 - 5x)(9 + 25x2)
11) 512 - t3
A) (8 - t)(64 + t2)
B) (8 + t)(64 - t2)
C) (8 + t)(64 - 8t + t2)
D) (8 - t)(64 + 8t + t2)
12) 343 + z3
A) (z + 7)(z2 + 49)
B) (z - 343)(z2 - 1)
C) (z - 7)(z2 + 7z + 49)
D) (z + 7)(z2 - 7z + 49)
13) 189s3 + 7
A) 7(3s - 1)(9s2 + 3s + 1)
B) 7(3s + 1)(9s2 - 3s + 1)
C) 7(3s + 1)(9s2 + 3s + 1)
D) 7(3s + 7)(9s2 - 21s + 7)
14) 5r3 - 320
A) 5(r - 4)(r2 - 4r + 16)
B) 5(r - 4)(r2 + 4r + 16)
C) 5(r + 4)(r2 - 4r + 16)
D) 5(r - 20)(r2 + 20r + 80)
15) 384t3 - 6
A) 6(4t + 1)(16t2 - 4t + 1)
B) 6(4t - 1)(16t2 - 4t + 1)
C) 6(4t - 1)(16t2 + 4t + 1)
D) 6(4t - 6)(16t2 + 24t + 6)
16) s3 - 343t3
A) (s + 7t)(s2 - 7st + 49t2)
B) (s - 7t)(s2 + 7st + 49t2)
C) (s - 7t)(s2 + 49t2)
D) (s + 343t)(s + t)(s - t)
17) 64p3 + q3
A) (4p + q)(16p2 + 4pq + q2)
B) (4p + q)(16p2 - 4pq + q2)
C) (4p + q)(16p2 - 4pq - q2)
D) (4p + q)(16p2 + q2)
List the elements of the set.
18) If A = {x|x is an even integer} and B = {35, 37, 39, 41}, list the elements of A∩B.
A) {x|x is an even integer}
B) ∅
C) {35, 37, 39, 41}
D) {x|x is an even integer or x = 35 or x = 37 or x = 39 or x = 41}
19) If A = {x|x is an odd integer} and B = {59, 61, 62, 64}, list the elements of A∩B.
A) {59, 61}
B) {x|x is an odd integer or x = 62 or x = 64}
C) {x|x is an odd integer}
D) ∅
20) If A = {51, 52, 53, 56} and B = {49, 51, 52, 54}, list the elements of A∩B.
A) ∅
B) {49, 53, 54, 56}
C) {49, 51, 52, 53, 54, 56}
D) {51, 52}
21) If A = {x|x is an even integer} and B = {x|x is an odd integer}, list the elements of A∩B.
A) ∅
B) {x|x is an integer}
C) {x|x is an odd integer}
D) {x|x is an even integer}
22) If A = {21, 23, 24, 25, 28} and B = {21, 23, 24, 25}, list the elements of A∩B.
A) ∅
B) {21, 23, 24, 25}
C) {21, 23, 24, 25, 28}
D) {28}
Solve the compound inequality. Graph the solution set and write the solution in interval notation.
23) x ≤ 3 and x ≥ 1
A) (-∞, 1]U[3, ∞)
B) (1, 3)
C) [1, 3]
D) ∅
24) x ≤ 5 and x ≤ 3
A) (-∞, 3]
B) (-∞, 3]U[5, ∞)
C) [3, ∞)
D) [3, 5]
25) x ≤ -2 and x ≥ 5
A) ∅
B) (-2, 5)
C) (-∞, ∞)
D) [-2, 5]