x
Info
x
Warning
x
Danger
 / 
 / 
 / 
Divide using synthetic division. 1) (x^2 + 7x + 10) ÷ (x + 5)

Question : Divide using synthetic division. 1) (x^2 + 7x + 10) ÷ (x + 5) : 2153848

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Divide using synthetic division.

1) (x2 + 7x + 10) ÷ (x + 5)

A) x + 2

B) x2 + 2

C) x3 - 5

D) x - 5

2) (x2 + 11x + 15) ÷ (x + 3)

A) x + 8 - (9/x + 3)

B) (x + 8/x + 3)

C) x + 9

D) x + 8 + (9/x + 3)

3) (7x2 + 33x - 54/x + 6)

A) 7x - 9

B) -9x + 6

C) x - 9

D) -7x + 9

4) (-6x3 - 29x2 - 17x + 12/x + 4)

A) - (3/2)x2 - (29/4)x - (17/4)

B) -6x2 - 5x + 3

C) 6x2 + 4x - 3

D) 6x2 - 4x + 3

5) (4x3 + 22x2 - 17x - 30/x + 6)

A) 4x2 x + (11/3) - 5

B) -4x2 - 6x - 5

C) 4x2 - 2x - 5

D) (2/3)x2 + (11/3)x - (17/6)

6) (x5 + x3 - 3/x + 3)

A) x4 - 3x3 + 9x2 - 26x + 78 + (-237/x + 3)

B) x4 - 2 + (3/x + 3)

C) x4 - 2x2 + (3/x + 3)

D) x4 - 3x3 + 10x2 - 30x + 90 + (-273/x + 3)

7) (x4 - 3x3 + x2 + 5x - 7/x - 1)

A) x3 + 2x2 - x + 6 - (3/x - 1)

B) x3 - 2x2 - x + 4 - (3/x - 1)

C) x3 - 2x2 + x + 6 + (6/x - 1)

D) x3 - 2x2 + x + 4 + (6/x - 1)

8) (x4 + 625) ÷ (x - 5)

A) x3+ 5x2 + 25x + 125 + (1250/x - 5)

B) x3+ 5x2 + 25x + 125 + (625/x - 5)

C) x3- 5x2 + 25x - 125 + (1250/x - 5)

D) x3+ 5x2 + 25x + 125

9) (x5 - 3x4 - 8x3 + x2 - x + 18) ÷ (x + 2)

A) x4 - 5x3 + 2x2 - 4x - 6 + (12/x + 2)

B) x4 - 5x3 + 2x2 - 3x + 5 + (8/x + 2)

C) x4 - 5x3 + 2x2 - 4x + 5 + (12/x + 2)

D) x4 - 5x3 + 2x2 - 3x - 5 + (8/x + 2)

10) (5x5 + 2x4 + 2x3 + x2 - x + 5) ÷ (x + 1)

A) 5x4 - 3x3 + 5x2 - 5x + 4 + (6/x + 1)

B) 5x4 - 3x3 + 5x2 - 5x - 4 + (6/x + 1)

C) 5x4 - 3x3 + 5x2 + 4x + 3 + (2/x + 1)

D) 5x4 - 3x3 + 5x2 - 4x - 4 + (2/x + 1)

Use synthetic division and the Remainder Theorem to find the indicated function value.

11) f(x) = x4 - 4x3 + 6x2 - 2x + 9; f(2)

A) -3

B) 13

C) -13

D) 26

12) f(x) = 3x3 - 4x2 - 5x + 4; f(-2)

A) -26

B) -20

C) -22

D) -46

13) f(x) = 4x4 + 10x3 + 2x2 - 6x + 43; f(-2)

A) 103

B) 47

C) 98

D) 81

14) f(x) = x5 - 9x4 - 6x3 + 5; f(-2)

A) -91

B) -27

C) -123

D) 123

15) f(x) = x4 + 6x3 + 8x2 + 6x - 5; f((1/4))

A) - (743/256)

B) - (93/32)

C) - (743/1024)

D) (743/256)

Solve the problem.

16) Use synthetic division to divide f(x) = x3 + 12x2 + 41x + 30 by x + 5. Use the result to find all zeros of f.

A) {5, 6, 1}

B) {-5 , 6, 1}

C) {-5, -6, -1}

D) {5, -6, -1}

17) Solve the equation 2x3 - 17x2 + 31x + 20 = 0 given that 4 is a zero of f(x) = 2x3 - 17x2 + 31x + 20.

A) {4, -5, (1/2)}

B) {4, -1, (5/2)}

C) {4, 1, - (5/2)}

D) {4, 5, - (1/2)}

18) Solve the equation 12x3 - 65x2 + 24x + 10 = 0 given that (2/3) is a root.

A) {(2/3), (1/4), -5}

B) {(2/3), - (5/4), 1}

C) {(2/3), - (1/4), 5}

D) {(2/3), (5/4), -1}

Use synthetic division to show that the number given to the right of the equation is a solution of the equation, then solve the polynomial equation.

19) x3 - 5x2 + 2x + 8 = 0; 2

A) {4, -1, 2}

B) {-4, 1, 2}

C) {-4, -1, 2}

D) {4, 1, 2}

20) 3x3 - 2x2 - 65x + 100 = 0; 4

A) {- (5/3), 5, 4}

B) {(5/3), 5, 4}

C) {(5/3), -5, 4}

D) {- (5/3), -5, 4}

21) 3x3 - 5x2 - 6x + 8 = 0; 1

A) {- (4/3), -2, 1}

B) {(2/3), -4, 1}

C) {(4/3), 2, 1}

D) {- (4/3), 2, 1}

22) 4x3 - 25x2 + 49x - 30 = 0; 2

A) {- (5/4), 3, 2}

B) {(3/4), 5, 2}

C) {(5/4), -3, 2}

D) {(5/4), 3, 2}

Use the graph or table to determine a solution of the equation. Use synthetic division to verify that this number is a solution of the equation. Then solve the polynomial equation.

23) x3 + 6x2 + 11x + 6 = 0

A) -1; The remainder is zero; -1, 2, and -3, or {-3, -1, 2}

B) -1; The remainder is zero; -1, -2, and 3, or {-2, -1, 3}

C) -1; The remainder is zero; 1, -2, and -3, or {-3, -2, 1}

D) -1; The remainder is zero; -1, -2, and -3, or {-3, -2, -1}

24) x3 + 9x2 + 26x + 24 = 0

A) -2; The remainder is zero; 2, -3, and -4, or {-4, -3, 2}

B) -2; The remainder is zero; -2, -3, and -4, or {-4, -3, -2}

C) -2; The remainder is zero; -2, 3, and -4, or {-4, -2, 3}

D) -2; The remainder is zero; -2, -3, and 4, or {-3, -2, 4}

25) 2x3 + 11x2 + 17x + 6 = 0

A) -2; The remainder is zero; -3, 2, and - (1/2), or {-3, - (1/2), 2}

B) -2; The remainder is zero; -3, -2, and (1/2), or {-3, -2, (1/2)}

C) -2; The remainder is zero; -3, -2, and - (1/2), or {-3, -2, - (1/2)}

D) -2; The remainder is zero; 3, -2, and - (1/2), or {-2, - (1/2), 3}

Solution
5 (1 Ratings )

Solved
Algebra 2 Years Ago 194 Views
This Question has Been Answered!

Related Answers
Unlimited Access Free
Explore More than 2 Million+
  • Textbook Solutions
  • Flashcards
  • Homework Answers
  • Documents
Signup for Instant Access!
Ask an Expert
Our Experts can answer your tough homework and study questions
17303 Algebra Questions Answered!
Post a Question