/
/
/
Correct Computers, Inc., finds that the cost to make x laptop computers
Not my Question
Flag Content

Question : Correct Computers, Inc., finds that the cost to make x laptop computers : 2147417

Solve the inequality.

211) Correct Computers, Inc., finds that the cost to make x laptop computers is C = 3316x + 147,692, while the revenue produced from them is R = 3537x (C and R are in dollars). What is the smallest whole number of computers, x, that must be sold for the company to show a profit?

A) 22

B) 32,639,932

C) 669

D) 1,012,133,276

212) Fantastic Flags, Inc., finds that the cost to make x flags is C = 39x + 14,869, while the revenue produced from them is R = 44x (C and R are in dollars). What is the smallest whole number of flags, x, that must be sold for the company to show a profit?

A) 1,234,127

B) 74,345

C) 2974

D) 180

213) Behemoth Back Packs, Inc., finds that the cost to make x back packs is C = 75x + 7059, while the revenue produced from them is R = 108x (C and R are in dollars). What is the smallest whole number of back packs, x, that must be sold for the company to show a profit?

A) 1,291,797

B) 232,947

C) 39

D) 214

Solve the inequality and graph the solution.

214) (x - 8)(x + 5) > 0

A) (-∞,  -8) or ( 5, ∞)

-8                                     5

B) ( -5, ∞)

-5

C) ( -5,  8)

-5                                     8

D) (-∞,  -5) or ( 8, ∞)

-5                                     8

215) p2 - 10p + 24 > 0

A) (6, ∞)

6

B) (-∞, 4)

4

C) (4, 6)

4          6

D) (-∞, 4) or (6, ∞)

4          6

216) s2 - 3s - 10 < 0

A) (5, ∞)

5

B) ( -2,  5)

-2                                   5

C) (-∞,  -2)

-2

D) (-∞,  -2) or ( 5, ∞)

-2                                   5

217) t2 - 6t - 7 ≤ 0

A) [ 7, ∞)

7

B) (-∞,  -1] or [ 7, ∞)

-1                                   7

C) (-∞,  -1]

-1

D) [ -1,  7]

-1                                   7

218) v2 + 6v + 5 ≥ 0

A) (-∞,  -5]

-5

B) [ -5,  -1]

-5                                   -1

C) [ -1, ∞)

-1

D) (-∞,  -5] or [ -1, ∞)

-5                                   -1

219) x2 - 4x ≤ -3

A) [ 1,  3]

1                                    3

B) ( -3,  -1)

-3                                   -1

C) (-∞,  -3] or [ -1, ∞)

-3                                   -1

D) [ -3,  -1]

-3                                   -1

220) x2 - 3x ≥ -2

A) [ 2, ∞)

2

B) (-∞,  1] or [ 2, ∞)

1                                    2

C) [ 1,  2]

1                                    2

D) (-∞,  1]

1

Solution 5 (1 Ratings )

Solved
Mathematics 3 Months Ago 37 Views