Question :
231) f(x, y) = x2 + 8xy + y2
A) f(8, : 1757204
231) f(x, y) = x2 + 8xy + y2
A) f(8, 8) = 640, local maximim
B) f(0, 0) = 0, saddle point
C) f(8, 0) = 64, local minimum; f(0, 8) = 64, local minimum
D) f(0, 0) = 0, saddle point; f(8, 8) = 640, local maximim
232) f(x, y) = x3 + y3 - 108x - 27y - 3
A) f(6, -3) = -381, saddle point; f(-6, 3) = 375, saddle point
B) f(-6, -3) = 483, local maximum; f(6, 3) = -489, local minimum
C) f(-6, -3) = 483, local maximum
D) f(6, 3) = -489. local minimum; f(6, -3) = -381, saddle point; f(-6, 3) = 375, saddle point; f(-6, -3) = 483, local maximum
233) f(x, y) = 2 - x4y4
A) f(2, 0) = 2, saddle point; f(0, 2) = 2, saddle point
B) f(0, 0) = 2, local maximum; f(2, 2) = -254, local minimum
C) f(0, 0) = 2, local maximum
D) f(2, 2) = -254, local minimum
234) f(x, y) = 4x2y + 6xy2
235) f(x, y) = 25x2 + 40xy + 64y2
A) f(0, 0) = 0, local minimum
B) f(5, 8) = 6321, saddle point; f(8, 5) = 4800, saddle point
C) f(40, 40) = 179,200, local maximum; f(0, 0) = 0, local minimum
D) f(40, 40) = 179,200, local maximum
236) f(x, y) = (x2 - 16)2 + (y2 - 64)2
A) f(0, 0) = 4352, local maximum; f(-4, -8) = 0, local minimum
B) f(0, 0) = 4352, local maximum; f(0, 8) = 256, saddle point; f(0, -8) = 256, saddle point; f(4, 0) = 4352, saddle point; f(4, 8) = 0, local minimum; f(4, -8) = 0, local minimum;
f(-4, 0) = 4096, saddle point; f(-4, 8) = 0, local minimum; f(-4, -8) = 0, local minimum
C) f(0, 0) = 4352, local maximum; f(0, 8) = 256, saddle point; f(4, 0) = 4096, saddle point;
f(4, 8) = 0, local minimum; f(-4, -8) = 0, local minimum
D) f(0, 0) = 4352, local maximum; f(4, 8) = 0, local minimum; f(4, -8) = 0, local minimum;
f(-4, 8) = 0, local minimum; f(-4, -8) = 0, local minimum
237) f(x, y) = (x2 - 49)2 - (y2 - 100)2
A) f(0, 10) = 2401, local maximum; f(0, -10) = 2401, local maximum; f(7, 0) = -10,000, local minimum; f(-7, 0) = -10,000, local minimum
B) f(0, 0) = -7599, saddle point; f(7, 10) = 0, saddle point; f(7, -10) = 0, saddle point; f(-7, 10) = 0, saddle point; f(-7, -10) = 0, saddle point
C) f(0, 0) = -7599, saddle point; f(0, 10) = 2401, local maximum; f(7, 0) = -10,000, local minimum
D) f(0, 0) = -7599, saddle point; f(0, 10) = 2401, local maximum; f(0, -10) = 2401, local maximum; f(7, 0) = -10,000, local minimum; f(7, 10) = 0, saddle point; f(7, -10) = 0, saddle point; f(-7, 0) = -10,000, local minimum; f(-7, 10) = 0, saddle point; f(-7, -10) = 0, saddle point
238) f(x, y) = 5x + 7y on the closed triangular region with vertices (0, 0), (1, 0), and (0, 1)
A) Absolute maximum: 7 at (0, 1); absolute minimum: 0 at (0, 0)
B) Absolute maximum: 5 at (1, 0); absolute minimum: 0 at (0, 0)
C) Absolute maximum: 12 at (1, 1); absolute minimum: 5 at (1, 0)
D) Absolute maximum: 7 at (0, 1); absolute minimum: 5 at (1, 0)
239) f(x, y) = 9x2 + 10y2 on the closed triangular region bounded by the lines y = x, y = 2x, and x + y = 6
A) Absolute maximum: 196 at (2, 4); absolute minimum: 0 at (0, 0)
B) Absolute maximum: 196 at (2, 4); absolute minimum: 171 at (3, 3)
C) Absolute maximum: 171 at (3, 3); absolute minimum: 76 at (2, 2)
D) Absolute maximum: 171 at (3, 3); absolute minimum: 0 at (0, 0)
240) f(x, y) = 6x2 + 10y2 on the disk bounded by the circle x2 + y2 = 9
A) Absolute maximum: 90 at (0, 3) and (0, -3); absolute minimum: 54 at (3, 0) and (-3, 0)
B) Absolute maximum: 54 at (3, 0) and (-3, 0); absolute minimum: 0 at (0, 0)
C) Absolute maximum: 90 at (0, 3) and (0, -3); absolute minimum: 0 at (0, 0)
D) Absolute maximum: 144 at (3, 3); absolute minimum: 0 at (0, 0)