/
/
/
131) f(x ,y, z) = (sin xy)(cos yz2) A) ∂f/∂x =
Not my Question
Flag Content

# Question : 131) f(x ,y, z) = (sin xy)(cos yz2) A) ∂f/∂x = : 1757194

131) f(x ,y, z) = (sin xy)(cos yz2)

A) f/x = (y cos xy)(cos yz2); f/y = (z2 sin xy)(sin yz2)- (x cos xy)(cos yz2); f

z = 2(yz sin xy)(sinyz2)

B) f/x = (y cos xy)(cos yz2); f/y = (x cos xy)(cos yz2) - (z2 sin xy)(sin yz2); f/z = 2(yz sin xy)(sinyz2)

C) f/x = (y cos xy)(cosyz2); f/y = (x cos xy)(cos yz2) - (z2 sin xy)(sin yz2); f/z = -2(yz sin

xy)(sin yz2)

D) f/x = (y cos xy)(cos yz2); f/y = (x cos xy)(cos yz2); f/z = -2(yz sin xy)(sin yz2)

132) f(x, y, z) = z(ex)y

A) f/x = zyexy; f/y = zxexy; f/z = zexy B) f/x = zexy; f/y = zexy; f/z = exy

C) f/x = zyexy; f/y = zxexy; f/z = exy D) f/x = zxexy; f/y = zyexy; f/z = exy

133) f(x,y,z) = xe(x2 + y2 + z2)

A) f/x = (1 + 2x2) e(x2 + y2 + z2); f/y = xy2e(x2 + y2 + z2); f/z = xz2e(x2 + y2 + z2)

B) f/x = 2x2e(x2 + y2 + z2); f/y = xye(x2 + y2 + z2); f/z = 2xze(x2 + y2 + z2)

C) f/x = (1 + 2x2) e(x2 + y2 + z2); f/y = xe(x2 + y2 + z2); f/z = xe(x2 + y2 + z2)

D) f/x = (1 + 2x2) e(x2 + y2 + z2); f/y = 2xye(x2 + y2 + z2); f/z = 2xze(x2 + y2 + z2)

134) f(x, y, z) =

135) f(x, y, z) = cos x sin2 yz

A) f/x = sin x sin2 yz; f/y = -2z cos x sin yz cos yz; f/z = - 2y cos x sin yz cos yz

B) f/x = sin x sin2 yz; f/y = - cos x sin yz cos yz; f/z = -cos x sin yz cos yz

C) f/x = -sin x sin2 yz; f/y = z cos x sin yz cos yz; f/z = y cos x sin yz cos yz

D) f/x = -sin x sin2 yz; f/y = 2z cos x sin yz cos yz ; f/z = 2y cos x sin yz cos yz

136) f(x, y, z) = cos y/xz2

137) f(x, y, z) = e(sin (x) + yz)

A) f/x = cos(x)e(sin (x) + yz); f/y = e(sin (x) + yz); f/z = e(sin (x) + yz)

B) f/x = cos(x) + yz e(sin (x) + yz); f/y = ze(sin (x) + yz); f/z = ye(sin (x) + yz)

C) f/x = cos(x) e(sin (x) + yz); f/y = ze(sin (x) + yz); f/z = ye(sin (x) + yz)

D) f/x = e(sin (x) + yz); f/y = ze(sin (x) + yz); f/z = ye(sin (x) + yz)

138) The Van derWaals equation provides an approximate model for the behavior of real gases. The equation is P(V, T) = RT/V - b - a/V2 , where P is pressure, V is volume, T is Kelvin temperature, and a,b , and R are constants. Find the partial derivative of the function with respect to each variable.

139) The Redlich-Kwong equation provides an approximate model for the behavior of real gases. The equation is P(V, T) = RT/V - b - a/T1/2V(V + b) , where P is pressure, V is volume, T is Kelvin temperature, and a,b , and R are constants. Find the partial derivative of the function with respect to each variable.

140) w(x, t) = sin (2x + 2ct)

A) No B) Yes

## Solution 5 (1 Ratings )

Solved
Mathematics 2 Weeks Ago 54 Views