Question :
131) f(x ,y, z) = (sin xy)(cos yz2)
A) ∂f/∂x = : 1757194
131) f(x ,y, z) = (sin xy)(cos yz2)
A) ∂f/∂x = (y cos xy)(cos yz2); ∂f/∂y = (z2 sin xy)(sin yz2)- (x cos xy)(cos yz2); ∂f
∂z = 2(yz sin xy)(sinyz2)
B) ∂f/∂x = (y cos xy)(cos yz2); ∂f/∂y = (x cos xy)(cos yz2) - (z2 sin xy)(sin yz2); ∂f/∂z = 2(yz sin xy)(sinyz2)
C) ∂f/∂x = (y cos xy)(cosyz2); ∂f/∂y = (x cos xy)(cos yz2) - (z2 sin xy)(sin yz2); ∂f/∂z = -2(yz sin
xy)(sin yz2)
D) ∂f/∂x = (y cos xy)(cos yz2); ∂f/∂y = (x cos xy)(cos yz2); ∂f/∂z = -2(yz sin xy)(sin yz2)
132) f(x, y, z) = z(ex)y
A) ∂f/∂x = zyexy; ∂f/∂y = zxexy; ∂f/∂z = zexy B) ∂f/∂x = zexy; ∂f/∂y = zexy; ∂f/∂z = exy
C) ∂f/∂x = zyexy; ∂f/∂y = zxexy; ∂f/∂z = exy D) ∂f/∂x = zxexy; ∂f/∂y = zyexy; ∂f/∂z = exy
133) f(x,y,z) = xe(x2 + y2 + z2)
A) ∂f/∂x = (1 + 2x2) e(x2 + y2 + z2); ∂f/∂y = xy2e(x2 + y2 + z2); ∂f/∂z = xz2e(x2 + y2 + z2)
B) ∂f/∂x = 2x2e(x2 + y2 + z2); ∂f/∂y = xye(x2 + y2 + z2); ∂f/∂z = 2xze(x2 + y2 + z2)
C) ∂f/∂x = (1 + 2x2) e(x2 + y2 + z2); ∂f/∂y = xe(x2 + y2 + z2); ∂f/∂z = xe(x2 + y2 + z2)
D) ∂f/∂x = (1 + 2x2) e(x2 + y2 + z2); ∂f/∂y = 2xye(x2 + y2 + z2); ∂f/∂z = 2xze(x2 + y2 + z2)
134) f(x, y, z) =
135) f(x, y, z) = cos x sin2 yz
A) ∂f/∂x = sin x sin2 yz; ∂f/∂y = -2z cos x sin yz cos yz; ∂f/∂z = - 2y cos x sin yz cos yz
B) ∂f/∂x = sin x sin2 yz; ∂f/∂y = - cos x sin yz cos yz; ∂f/∂z = -cos x sin yz cos yz
C) ∂f/∂x = -sin x sin2 yz; ∂f/∂y = z cos x sin yz cos yz; ∂f/∂z = y cos x sin yz cos yz
D) ∂f/∂x = -sin x sin2 yz; ∂f/∂y = 2z cos x sin yz cos yz ; ∂f/∂z = 2y cos x sin yz cos yz
136) f(x, y, z) = cos y/xz2
137) f(x, y, z) = e(sin (x) + yz)
A) ∂f/∂x = cos(x)e(sin (x) + yz); ∂f/∂y = e(sin (x) + yz); ∂f/∂z = e(sin (x) + yz)
B) ∂f/∂x = cos(x) + yz e(sin (x) + yz); ∂f/∂y = ze(sin (x) + yz); ∂f/∂z = ye(sin (x) + yz)
C) ∂f/∂x = cos(x) e(sin (x) + yz); ∂f/∂y = ze(sin (x) + yz); ∂f/∂z = ye(sin (x) + yz)
D) ∂f/∂x = e(sin (x) + yz); ∂f/∂y = ze(sin (x) + yz); ∂f/∂z = ye(sin (x) + yz)
138) The Van derWaals equation provides an approximate model for the behavior of real gases. The equation is P(V, T) = RT/V - b - a/V2 , where P is pressure, V is volume, T is Kelvin temperature, and a,b , and R are constants. Find the partial derivative of the function with respect to each variable.
139) The Redlich-Kwong equation provides an approximate model for the behavior of real gases. The equation is P(V, T) = RT/V - b - a/T1/2V(V + b) , where P is pressure, V is volume, T is Kelvin temperature, and a,b , and R are constants. Find the partial derivative of the function with respect to each variable.
140) w(x, t) = sin (2x + 2ct)
A) No B) Yes