Question :
111) f(x, y) = (7x5y3 + 9)2
A) ∂f/∂x = 2(7x5y3 : 1757192
111) f(x, y) = (7x5y3 + 9)2
A) ∂f/∂x = 2(7x5y3 + 9); ∂f/∂y = 2(7x5y3 + 9)
B) ∂f/∂x = 42x5y2(7x5y3 + 9); ∂f/∂y = 70x4y3(7x5y3 + 9)
C) ∂f/∂x = 70x4y3(7x5y3 + 9); ∂f/∂y = 42x5y2(7x5y3 + 9)
D) ∂f/∂x = 35x4y3; ∂f/∂y = 21x5y2
112) f(x, y) =
113) f(x, y) =
114) f(x, y) = sin2 (-2xy2 - y)
A) ∂f/∂x = 2sin (-2xy2 - y) cos (-2xy2 - y); ∂f/∂y = 2sin(-2xy2 - y) cos(-2xy2 - y)
B) ∂f/∂x = -4y2sin (-2xy2 - y) cos (-2xy2 - y); ∂f/∂y = 2sin (-2xy2 - y) cos (-2xy2 - y)
C) ∂f/∂x = 2sin (-2xy2 - y) cos (-2xy2 - y); ∂f/∂y = (-8x - 2) sin (-2xy2 - y) cos (-2xy2 - y)
D) ∂f/∂x = -4y2sin (-2xy2 - y) cos (-2xy2 - y); ∂f/∂y = (-8xy - 2) sin (-2xy2 - y) cos (-2xy2 - y)
115) f(x, y) = ln yx
A) ∂f/∂x = ln y; ∂f/∂y = x/y B) ∂f/∂x = xln y; ∂f/∂y = - x/y
C) ∂f/∂x = ln y; ∂f/∂y = - xln y D) ∂f/∂x = 0; ∂f/∂y = - x/y
116) f(x, y) = e-x/x2 + y2
A) ∂f/∂x = e-x(x2 + y2 + 2x) / (x2 + y2)2 ; ∂f/∂y = 2ye-x/ (x2 + y2)2
B) ∂f/∂x = - 2xe-x/ (x2 + y2)2 ; ∂f/∂y = - 2ye-x/ (x2 + y2)2
C) ∂f/∂x = - e-x(x2 + y2 + x) / (x2 + y2)2 ; ∂f/∂y = -ye-x/ (x2 + y2)2
D) ∂f/∂x = -e-x(x2 + y2 + 2x) / (x2 + y2)2 ; ∂f/∂y = -2ye-x/ (x2 + y2)2
117) f(x, y) = x/x + y
118) f(x, y) = xye-y
A) ∂f/∂x = ye-y; ∂f/∂y = - xye-y B) ∂f/∂x = ye-y; ∂f/∂y = xe-y(y - 1)
C) ∂f/∂x = ye-y; ∂f/∂y = xe-y(1 - y) D) ∂f/∂x = ye-y; ∂f/∂y = xe-y
119) f(x, y) = x3 + 7x2y + 9xy3
A) ∂f/∂x = 3x2 + 2xy + 9y3; ∂f/∂y = 7x2 + 3xy2 B) ∂f∂x = 3x2; ∂f/∂y = 7x2 + 27xy2
C) ∂f/∂x = x2 + 7xy + 9y3; ∂f/∂y = 7x2 + 9xy2 D) ∂f/∂x = 3x2 + 14xy + 9y3; ∂f/∂y = 7x2 + 27xy2
120) f(x, y) = x2 + y - ex+y