Question :
101)
A) 1 B) π C) 0 D) π/2
102) f(x, : 1757191
101)
A) 1 B) π C) 0 D) π/2
102) f(x, y) = x2y + xy2/x2 + y2
A) 1 B) 2 C) 0 D) No limit
103) f(x, y) = x + y/x2 + y + y2
A) 2 B) 0 C) 1 D) No limit
104) f(x, y) = cos x2/x2 + y2
A) 1 B) 0 C) π/2 D) No limit
105) f(x, y) =
A) 1 B) π C) 0 D) -1
106) f(x, y) =
A) 1 B) π C) π/2 D) No limit
107) f(x, y) =
A) 0 B) π C) 1 D) No limit
108) Define f(0,0) in a way that extends f(x, y) = x2y2/x2 + y2 to be continuous at the origin.
A) No definition makes f(x, y) continuous at the origin.
B) f(0, 0) = 0
C) f(0, 0) = 2
D) f(0, 0) = 1
109) Define f(0, 0) in a way that extends f(x, y) = 7x2 - x2y + 7y2/x2 + y2 to be continuous at the origin.
A) f(0, 0) = 7 B) f(0, 0) = 2 C) f(0, 0) = 14 D) f(0, 0) = 0
110) f(x, y) = 10x - 3y2 - 2
A) ∂f/∂x = 8; ∂f/∂y = -6y - 2 B) ∂f/∂x = -6y; ∂f/∂y = 10
C) ∂f/∂x = 10x; ∂f/∂y = -6y D) ∂f/∂x = 10; ∂f/∂y = -6y