Preview Extract
Chapter 2
Problems
1.
(a) S = {(r, r), (r, g), (r, b), (g, r), (g, g), (g, b), (b, r), b, g), (b, b)}
(b) S = {(r, g), (r, b), (g, r), (g, b), (b, r), (b, g)}
2.
S = {(n, x1, โฆ, xnโ1), n โฅ 1, xi โ 6, i = 1, โฆ, n โ 1}, with the interpretation that the outcome is
(n, x1, โฆ, xnโ1) if the first 6 appears on roll n, and xi appears on roll, i, i = 1, โฆ, n โ 1. The
event (๏n๏ฅ๏ฝ1 En )c is the event that 6 never appears.
3.
EF = {(1, 2), (1, 4), (1, 6), (2, 1), (4, 1), (6, 1)}.
E โช F occurs if the sum is odd or if at least one of the dice lands on 1. FG = {(1, 4), (4, 1)}.
EFc is the event that neither of the dice lands on 1 and the sum is odd. EFG = FG.
4.
A = {1,0001,0000001, โฆ} B = {01, 00001, 00000001, โฆ}
(A โช B)c = {00000 โฆ, 001, 000001, โฆ}
5.
(a) 25 = 32
(b)
W = {(1, 1, 1, 1, 1), (1, 1, 1, 1, 0), (1, 1, 1, 0, 1), (1, 1, 0, 1, 1), (1, 1, 1, 0, 0), (1, 1, 0, 1, 0)
(1, 1, 0, 0, 1), (1, 1, 0, 0, 0), (1, 0, 1, 1, 1), (0, 1, 1, 1, 1), (1, 0, 1, 1, 0), (0, 1, 1, 1, 0), (0, 0, 1, 1, 1)
(0, 0, 1, 1, 0), (1, 0, 1, 0, 1)}
(c) 8
(d) AW = {(1, 1, 1, 0, 0), (1, 1, 0, 0, 0)}
6.
(a) S = {(1, g), (0, g), (1, f), (0, f), (1, s), (0, s)}
(b) A = {(1, s), (0, s)}
(c) B = {(0, g), (0, f), (0, s)}
(d) {(1, s), (0, s), (1, g), (1, f)}
7.
(a) 615
(b) 615 โ 315
(c) 415
8.
(a) .8
(b) .3
(c) 0
9.
Choose a customer at random. Let A denote the event that this customer carries an American
Express card and V the event that he or she carries a VISA card.
P(A โช V) = P(A) + P(V) โ P(AV) = .24 + .61 โ .11 = .74.
Therefore, 74 percent of the establishmentโs customers carry at least one of the two types of
credit cards that it accepts.
10
Copyright ยฉ 2014 Pearson Education, Inc.
Chapter 2
10.
11
Let R and N denote the events, respectively, that the student wears a ring and wears a
necklace.
(a) P(R โช N) = 1 โ .6 = .4
(b) .4 = P(R โช N) = P(R) + P(N) โ P(RN) = .2 + .3 โ P(RN)
Thus, P(RN) = .1
11.
Let A be the event that a randomly chosen person is a cigarette smoker and let B be the event
that she or he is a cigar smoker.
(a) 1 โ P(A โช B) = 1 โ (.07 + .28 โ .05) = .7. Hence, 70 percent smoke neither.
(b) P(AcB) = P(B) โ P(AB) = .07 โ .05 = .02. Hence, 2 percent smoke cigars but not
cigarettes.
12.
(a) P(S โช F โช G) = (28 + 26 + 16 โ 12 โ 4 โ 6 + 2)/100 = 1/2
The desired probability is 1 โ 1/2 = 1/2.
(b) Use the Venn diagram below to obtain the answer 32/100.
S
14
F
10
10
2
2
4
8
G
(c) Since 50 students are not taking any of the courses, the probability that neither one is
๏ฆ 50 ๏ถ ๏ฆ100 ๏ถ
= 49/198 and so the probability that at least one is taking
taking a course is ๏ง ๏ท ๏ง
๏จ 2 ๏ธ ๏จ 2 ๏ท๏ธ
a course is 149/198.
I
13.
1000
II
7000
19000
(a)
(b)
(c)
(d)
(e)
20,000
12,000
11,000
68,000
10,000
1000
1000
3000
0
III
Copyright ยฉ 2014 Pearson Education, Inc.
12
14.
15.
Chapter 2
P(M) + P(W) + P(G) โ P(MW) โ P(MG) โ P(WG) + P(MWG) = .312 + .470 + .525 โ .086 โ
.042 โ .147 + .025 = 1.057
๏ฆ13๏ถ
(a) 4 ๏ง ๏ท
๏จ5๏ธ
๏ฆ 52 ๏ถ
๏ง๏จ 5 ๏ท๏ธ
๏ฆ 4 ๏ถ ๏ฆ12 ๏ถ ๏ฆ 4 ๏ถ ๏ฆ 4 ๏ถ ๏ฆ 4 ๏ถ
(b) 13 ๏ง ๏ท ๏ง ๏ท ๏ง ๏ท ๏ง ๏ท ๏ง ๏ท
๏จ2๏ธ ๏จ 3 ๏ธ ๏จ1๏ธ ๏จ1๏ธ ๏จ1๏ธ
๏ฆ13๏ถ ๏ฆ 4 ๏ถ ๏ฆ 4 ๏ถ ๏ฆ 44 ๏ถ
(c) ๏ง ๏ท ๏ง ๏ท ๏ง ๏ท ๏ง ๏ท
๏จ 2 ๏ธ ๏จ2๏ธ ๏จ 2๏ธ ๏จ 1 ๏ธ
๏ฆ 52 ๏ถ
๏ง๏จ 5 ๏ท๏ธ
๏ฆ 4 ๏ถ ๏ฆ12 ๏ถ ๏ฆ 4 ๏ถ ๏ฆ 4 ๏ถ
(d) 13 ๏ง ๏ท ๏ง ๏ท ๏ง ๏ท ๏ง ๏ท
๏จ3๏ธ ๏จ 2 ๏ธ ๏จ1๏ธ ๏จ1๏ธ
๏ฆ 52 ๏ถ
๏ง๏จ 5 ๏ท๏ธ
๏ฆ 4 ๏ถ ๏ฆ 48 ๏ถ
(e) 13 ๏ง ๏ท ๏ง ๏ท
๏จ 4๏ธ ๏จ 1 ๏ธ
16.
๏ฆ 52 ๏ถ
๏ง๏จ 5 ๏ท๏ธ
(a)
๏ฆ 52 ๏ถ
๏ง๏จ 5 ๏ท๏ธ
6 ๏ 5๏ 4 ๏ 3๏ 2
65
(b)
๏ฆ 5๏ถ
6๏ 5๏ 4 ๏ง ๏ท
๏จ 3๏ธ
(d)
21
(g)
65
๏ฆ 5๏ถ
6๏ 5๏ง ๏ท
๏จ 3๏ธ
(c)
(f)
65
๏ฆ 6 ๏ถ ๏ฆ 5๏ถ ๏ฆ 3๏ถ
๏ง๏จ 2 ๏ท๏ธ 4 ๏ง๏จ 2 ๏ท๏ธ ๏ง๏จ 2 ๏ท๏ธ
65
๏ฆ5 ๏ถ
6๏5๏ง ๏ท
๏จ4๏ธ
65
6
65
๏ i
8
17.
(e)
๏ฆ 5๏ถ
6 ๏ง ๏ท 5๏ 4 ๏ 3
๏จ 2๏ธ
2
i ๏ฝ1
64 ๏ 63 ๏๏๏ 58
18.
2 ๏ 4 ๏ 16
52 ๏ 51
19.
4/36 + 4/36 +1/36 + 1/36 = 5/18
20.
Let A be the event that you are dealt blackjack and let B be the event that the dealer is dealt
blackjack. Then,
P(A โช B) = P(A) + P(B) โ P(AB)
4 ๏ 4 ๏ 16 4 ๏ 4 ๏ 16 ๏ 3 ๏ 15
=
๏ซ
52 ๏ 51 52 ๏ 51 ๏ 50 ๏ 49
= .0983
where the preceding used that P(A) = P(B) = 2 ร
4 ๏ 16
. Hence, the probability that neither
52 ๏ 51
is dealt blackjack is .9017.
Copyright ยฉ 2014 Pearson Education, Inc.
Chapter 2
21.
13
(a) p1 = 4/20, p2 = 8/20, p3 = 5/20, p4 = 2/20, p5 = 1/20
(b) There are a total of 4 โ
1 + 8 โ
2 + 5 โ
3 + 2 โ
4 + 1 โ
5 = 48 children. Hence,
q1 = 4/48, q2 = 16/48, q3 = 15/48, q4 = 8/48, q5 = 5/48
22.
The ordering will be unchanged if for some k, 0 โค k โค n, the first k coin tosses land heads and
the last n โ k land tails. Hence, the desired probability is (n + 1/2n
23.
The answer is 5/12, which can be seen as follows:
1 = P{first higher} + P{second higher} + p{same}
= 2P{second higher} + p{same}
= 2P{second higher} + 1/6
Another way of solving is to list all the outcomes for which the second is higher. There is 1
outcome when the second die lands on two, 2 when it lands on three, 3 when it lands on four,
4 when it lands on five, and 5 when it lands on six. Hence, the probability is
(1 + 2 + 3 + 4 + 5)/36 = 5/12.
25.
27.
๏ฆ 26 ๏ถ
P(En) = ๏ง ๏ท
๏จ 36 ๏ธ
6
,
36
๏ฅ
๏ฅ P( E ) ๏ฝ 5
2
n
n ๏ฝ1
Imagine that all 10 balls are withdrawn
P(A) =
28.
n ๏ญ1
3 ๏ 9!๏ซ 7 ๏ 6 ๏ 3 ๏ 7!๏ซ 7 ๏ 6 ๏ 5 ๏ 4 ๏ 3 ๏ 5!๏ซ 7 ๏ 6 ๏ 5 ๏ 4 ๏ 3 ๏ 2 ๏ 3 ๏ 3!
10!
๏ฆ 5๏ถ ๏ฆ 6 ๏ถ ๏ฆ 8 ๏ถ
๏ง๏จ 3๏ท๏ธ ๏ซ ๏ง๏จ 3๏ท๏ธ ๏ซ ๏ง๏จ 3๏ท๏ธ
P{same} =
๏ฆ19 ๏ถ
๏ง๏จ 3 ๏ท๏ธ
๏ฆ 5๏ถ ๏ฆ 6 ๏ถ ๏ฆ 8 ๏ถ
P{different} = ๏ง ๏ท ๏ง ๏ท ๏ง ๏ท
๏จ1๏ธ ๏จ 1 ๏ธ ๏จ1๏ธ
๏ฆ19 ๏ถ
๏ง๏จ 3 ๏ท๏ธ
If sampling is with replacement
P{same} =
53 ๏ซ 63 ๏ซ 83
(19)3
P{different} = P(RBG) + P{BRG) + P(RGB) + โฆ + P(GBR)
6๏ 5๏ 6๏8
=
(19)3
Copyright ยฉ 2014 Pearson Education, Inc.
14
29.
Chapter 2
(a)
n( n ๏ญ 1) ๏ซ m( m ๏ญ 1)
( n ๏ซ m )( n ๏ซ m ๏ญ 1)
(b) Putting all terms over the common denominator (n + m)2(n + m โ 1) shows that we must
prove that
n2(n + m โ 1) + m2(n + m โ 1) โฅ n(n โ 1)(n + m) + m(m โ 1)(n + m)
which is immediate upon multiplying through and simplifying.
30.
๏ฆ 7 ๏ถ ๏ฆ8๏ถ
๏ง๏จ 3 ๏ท๏ธ ๏ง๏จ 3๏ท๏ธ 3!
= 1/18
(a)
๏ฆ8 ๏ถ ๏ฆ 9 ๏ถ
๏ง๏จ 4 ๏ท๏ธ ๏ง๏จ 4 ๏ท๏ธ 4!
๏ฆ 7 ๏ถ ๏ฆ8๏ถ
๏ง๏จ 3 ๏ท๏ธ ๏ง๏จ 3๏ท๏ธ 3!
โ 1/18 = 1/6
(b)
๏ฆ8 ๏ถ ๏ฆ 9 ๏ถ
๏ง๏จ 4 ๏ท๏ธ ๏ง๏จ 4 ๏ท๏ธ 4!
๏ฆ 7 ๏ถ ๏ฆ8 ๏ถ ๏ฆ 7 ๏ถ ๏ฆ8๏ถ
๏ง๏จ 3 ๏ท๏ธ ๏ง๏จ 4 ๏ท๏ธ ๏ซ ๏ง๏จ 4 ๏ท๏ธ ๏ง๏จ 3๏ท๏ธ
= 1/2
(c)
๏ฆ8๏ถ ๏ฆ9๏ถ
๏ง๏จ 4 ๏ท๏ธ ๏ง๏จ 4 ๏ท๏ธ
31.
P({complete} =
P{same} =
32.
g (b ๏ซ g ๏ญ 1)!
g
๏ฝ
(b ๏ซ g )!
b๏ซ g
33.
๏ฆ 5 ๏ถ ๏ฆ15๏ถ
๏ง๏จ 2 ๏ท๏ธ ๏ง๏จ 2 ๏ท๏ธ 70
๏ฝ
323
๏ฆ 20 ๏ถ
๏ง๏จ 4 ๏ท๏ธ
34.
๏ฆ 32 ๏ถ
๏ง๏จ 13 ๏ท๏ธ
๏ฆ 52 ๏ถ
๏ง๏จ 13 ๏ท๏ธ
Copyright ยฉ 2014 Pearson Education, Inc.
Chapter 2
35.
15
๏ฆ12 ๏ถ ๏ฆ16 ๏ถ ๏ฆ18 ๏ถ
๏ง๏จ 3 ๏ท๏ธ ๏ง๏จ 2 ๏ท๏ธ ๏ง๏จ 2 ๏ท๏ธ
(a)
๏ฆ 46 ๏ถ
๏ง๏จ 7 ๏ท๏ธ
๏ฆ 34 ๏ถ ๏ฆ12 ๏ถ ๏ฆ 34 ๏ถ
๏ง๏จ 7 ๏ท๏ธ ๏ง๏จ 1 ๏ท๏ธ ๏ง๏จ 6 ๏ท๏ธ
(b) 1 ๏ญ
๏ญ
๏ฆ 46 ๏ถ
๏ฆ 46 ๏ถ
๏ง๏จ 7 ๏ท๏ธ
๏ง๏จ 7 ๏ท๏ธ
๏ฆ12 ๏ถ ๏ฆ16 ๏ถ ๏ฆ18 ๏ถ
๏ง๏จ 7 ๏ท๏ธ ๏ซ ๏ง๏จ 7 ๏ท๏ธ ๏ซ ๏ง๏จ 7 ๏ท๏ธ
(c)
๏ฆ 46 ๏ถ
๏ง๏จ 7 ๏ท๏ธ
๏ฆ12 ๏ถ ๏ฆ 34 ๏ถ ๏ฆ16 ๏ถ ๏ฆ 30 ๏ถ ๏ฆ12 ๏ถ ๏ฆ16 ๏ถ ๏ฆ18 ๏ถ
๏ง๏จ 3 ๏ท๏ธ ๏ง๏จ 4 ๏ท๏ธ ๏ง๏จ 3 ๏ท๏ธ ๏ง๏จ 4 ๏ท๏ธ ๏ง๏จ 3 ๏ท๏ธ ๏ง๏จ 3 ๏ท๏ธ ๏ง๏จ 1 ๏ท๏ธ
๏ซ
๏ญ
(d) P ( R3 ๏ B3 ) ๏ฝ P( R3 ) ๏ซ P ( B3 ) ๏ญ P ( R3 B3 ) ๏ฝ
๏ฆ 46 ๏ถ
๏ฆ 46 ๏ถ
๏ฆ 46 ๏ถ
๏ง๏จ 7 ๏ท๏ธ
๏ง๏จ 7 ๏ท๏ธ
๏ง๏จ 7 ๏ท๏ธ
36.
๏ฆ 4๏ถ
(a) ๏ง ๏ท
๏จ 2๏ธ
๏ฆ 52 ๏ถ
๏ง๏จ 2 ๏ท๏ธ โ .0045,
๏ฆ4๏ถ
(b) 13 ๏ง ๏ท
๏จ2๏ธ
37.
๏ฆ7๏ถ
(a) ๏ง ๏ท
๏จ5๏ธ
๏ฆ 52 ๏ถ
๏ง๏จ 2 ๏ท๏ธ = 1/17 โ .0588
๏ฆ10 ๏ถ
๏ง๏จ 5 ๏ท๏ธ = 1/12 โ .0833
๏ฆ 7 ๏ถ ๏ฆ 3๏ถ
(b) ๏ง ๏ท ๏ง ๏ท
๏จ 4 ๏ธ ๏จ1๏ธ
38.
๏ฆ3๏ถ
1/2 = ๏ง ๏ท
๏จ 2๏ธ
39.
5 ๏ 4 ๏ 3 12
๏ฝ
5 ๏ 5 ๏ 5 25
๏ฆ10 ๏ถ
๏ง๏จ 5 ๏ท๏ธ + 1/12 = 1/2
๏ฆn๏ถ
๏ง๏จ 2 ๏ท๏ธ or n(n โ 1) = 12 or n = 4.
Copyright ยฉ 2014 Pearson Education, Inc.
16
40.
Chapter 2
P{1} =
4
1
๏ฝ
44 64
๏ฆ 4๏ถ ๏ฉ ๏ฆ 4๏ถ ๏น
84
P{2} = ๏ง ๏ท ๏ช 4 ๏ซ ๏ง ๏ท ๏ซ 4๏บ 44 ๏ฝ
256
๏จ 2๏ธ ๏ซ ๏จ 2๏ธ ๏ป
๏ฆ 4 ๏ถ ๏ฆ 3๏ถ 4! 4 36
P{3} = ๏ง ๏ท ๏ง ๏ท
4 ๏ฝ
64
๏จ 3 ๏ธ ๏จ 1 ๏ธ 2!
4! 6
P{4} = 4 ๏ฝ
64
4
54
64
41.
1โ
42.
๏ฆ 35 ๏ถ
1โ ๏ง ๏ท
๏จ 36 ๏ธ
43.
44.
n
2( n ๏ญ 1)( n ๏ญ 2) 2
๏ฝ in a line
n!
n
2n ( n ๏ญ 2)!
2
if in a circle, n โฅ 2
๏ฝ
n!
n ๏ญ1
(a) If A is first, then A can be in any one of 3 places and Bโs place is determined, and the
others can be arranged in any of 3! ways. As a similar result is true, when B is first, we
see that the probability in this case is 2 โ
3 โ
3!/5! = 3/10
(b) 2 โ
2 โ
3!/5! = 1/5
45.
46.
(c) 2 โ
3!/5! = 1/10
(n ๏ญ 1) k ๏ญ1
1/n if discard,
if do not discard
nk
If n in the room,
P{all different} =
12 ๏ 11 ๏
12 ๏ 12 ๏
๏ (13 ๏ญ n )
๏ 12
When n = 5 this falls below 1/2. (Its value when n = 5 is .3819)
47.
12!/(12)12
48.
๏ฆ12 ๏ถ ๏ฆ 8 ๏ถ (20)!
๏ง๏จ 4 ๏ท๏ธ ๏ง๏จ 4 ๏ท๏ธ (3!) 4 (2!)4
49.
๏ฆ 6๏ถ ๏ฆ 6๏ถ
๏ง๏จ 3 ๏ท๏ธ ๏ง๏จ 3 ๏ท๏ธ
(12)20
๏ฆ12 ๏ถ
๏ง๏จ 6 ๏ท๏ธ
Copyright ยฉ 2014 Pearson Education, Inc.
Chapter 2
17
50.
๏ฆ13๏ถ ๏ฆ 39 ๏ถ ๏ฆ 8 ๏ถ ๏ฆ 31๏ถ
๏ง๏จ 5 ๏ท๏ธ ๏ง๏จ 8 ๏ท๏ธ ๏ง๏จ 8 ๏ท๏ธ ๏ง๏จ 5 ๏ท๏ธ
51.
๏ฆn๏ถ
n๏ญm
/ Nn
๏ง๏จ m ๏ท๏ธ ( n ๏ญ 1)
52.
(a)
(b)
53.
๏ฆ 52 ๏ถ ๏ฆ 39 ๏ถ
๏ง๏จ 13 ๏ท๏ธ ๏ง๏จ 13 ๏ท๏ธ
20 ๏ 18 ๏ 16 ๏ 14 ๏ 12 ๏ 10 ๏ 8 ๏ 6
20 ๏ 19 ๏ 18 ๏ 17 ๏ 16 ๏ 15 ๏ 14 ๏ 13
๏ฆ10 ๏ถ ๏ฆ 9 ๏ถ 8! 6
๏ง๏จ 1 ๏ท๏ธ ๏ง๏จ 6 ๏ท๏ธ 2! 2
20 ๏ 19 ๏ 18 ๏ 17 ๏ 16 ๏ 15 ๏ 14 ๏ 13
Let Ai be the event that couple i sit next to each other. Then
P (๏i4๏ฝ1 Ai ) ๏ฝ 4
2 ๏ 7!
22 ๏ 6!
23 ๏ 5! 24 ๏ 4!
๏ญ6
๏ซ4
๏ญ
8!
8!
8!
8!
and the desired probability is 1 minus the preceding.
54.
P(S โช H โช D โช C) = P(S) + P(H) + P(D) + P(C) โ P(SH) โ โฆ โ P(SHDC)
๏ฆ 39 ๏ถ
๏ฆ 26 ๏ถ
๏ฆ13๏ถ
4๏ง ๏ท 6๏ง ๏ท 4๏ง ๏ท
๏จ 13 ๏ธ
๏จ 13 ๏ธ
๏จ13๏ธ
๏ญ
๏ซ
=
๏ฆ 52 ๏ถ
๏ฆ 52 ๏ถ
๏ฆ 52 ๏ถ
๏ง๏จ 13 ๏ท๏ธ
๏ง๏จ 13 ๏ท๏ธ
๏ง๏จ 13 ๏ท๏ธ
๏ฆ 39 ๏ถ
๏ฆ 26 ๏ถ
4๏ง ๏ท ๏ญ 6๏ง ๏ท ๏ซ 4
๏จ 13 ๏ธ
๏จ 13 ๏ธ
=
๏ฆ 52 ๏ถ
๏ง๏จ 13 ๏ท๏ธ
Copyright ยฉ 2014 Pearson Education, Inc.
18
55.
Chapter 2
(a) P(S โช H โช D โช C) = P(S) + โฆ โ P(SHDC)
3
4
๏ฆ2๏ถ
๏ฆ 2 ๏ถ ๏ฆ 2 ๏ถ ๏ฆ 48 ๏ถ
๏ฆ 2 ๏ถ ๏ฆ 46 ๏ถ ๏ฆ 2 ๏ถ ๏ฆ 44 ๏ถ
4๏ง ๏ท 6๏ง ๏ท ๏ง ๏ท ๏ง ๏ท 4๏ง ๏ท ๏ง ๏ท ๏ง ๏ท ๏ง ๏ท
๏จ2๏ธ
๏จ2๏ธ ๏จ2๏ธ ๏จ 9 ๏ธ
๏จ 2๏ธ ๏จ 7 ๏ธ ๏จ2๏ธ ๏จ 5 ๏ธ
=
๏ญ
๏ซ
๏ญ
๏ฆ 52 ๏ถ
๏ฆ 52 ๏ถ
๏ฆ 52 ๏ถ
๏ฆ 52 ๏ถ
๏ง๏จ 13 ๏ท๏ธ
๏ง๏จ 13 ๏ท๏ธ
๏ง๏จ 13 ๏ท๏ธ
๏ง๏จ 13 ๏ท๏ธ
๏ฆ 50 ๏ถ
๏ฆ 48 ๏ถ
๏ฆ 46 ๏ถ ๏ฆ 44 ๏ถ
4๏ง ๏ท ๏ญ 6๏ง ๏ท ๏ซ 4๏ง ๏ท ๏ญ ๏ง ๏ท
๏จ 11 ๏ธ
๏จ9๏ธ
๏จ7๏ธ ๏จ5๏ธ
=
๏ฆ 52 ๏ถ
๏ง๏จ 13 ๏ท๏ธ
๏ฆ 48 ๏ถ ๏ฆ13๏ถ ๏ฆ 44 ๏ถ ๏ฆ13๏ถ ๏ฆ 40 ๏ถ
13 ๏ง ๏ท ๏ง ๏ท ๏ง ๏ท ๏ง ๏ท ๏ง ๏ท
๏จ 9 ๏ธ ๏จ 2 ๏ธ๏จ 5 ๏ธ ๏จ 3 ๏ธ๏จ 1 ๏ธ
๏ญ
๏ซ
(b) P(1 โช 2 โช โฆ โช 13) =
๏ฆ 52 ๏ถ
๏ฆ 52 ๏ถ
๏ฆ 52 ๏ถ
๏ง๏จ 13 ๏ท๏ธ
๏ง๏จ 13 ๏ท๏ธ
๏ง๏จ 13 ๏ท๏ธ
56.
Player B. If Player A chooses spinner (a) then B can choose spinner (c). If A chooses (b)
then B chooses (a). If A chooses (c) then B chooses (b). In each case B wins probability 5/9.
Copyright ยฉ 2014 Pearson Education, Inc.
Chapter 2
19
Theoretical Exercises
i ๏ฝ1
5.
Fi = Ei ๏ E cj
6.
(a) EFcGc
j ๏ฝ1
(b) EFcG
(c) E โช F โช G
(d) EF โช EG โช FG
(e) EFG
(f) EcFcGc
(g) EcFcGc โช EFcGc โช EcFGc โช EcFcG
(h) (EFG)c
(i) EFGc โช EFcG โช EcFG
(j) S
8.
The number of partitions that has n + 1 and a fixed set of i of the elements 1, 2, โฆ, n as a
๏ฆn๏ถ
subset is Tnโi. Hence, (where T0 = 1). Hence, as there are ๏ง ๏ท such subsets.
๏จi๏ธ
n ๏ญ1
n
๏ฆn๏ถ
๏ฆn๏ถ
๏ฆn๏ถ
๏ฝ
1
๏ซ
๏ฝ
1
๏ซ
T
T
๏ง๏จ i ๏ท๏ธ n ๏ญi
๏ง๏จ i ๏ท๏ธ n ๏ญi
๏ง๏จ k ๏ท๏ธ Tk .
i ๏ฝ0
i๏ฝ0
k ๏ฝ1
n
Tn+1 =
๏ฅ
๏ฅ
๏ฅ
11.
1 โฅ P(E โช F) = P(E) + P(F) โ P(EF)
12.
P(EFc โช EcF) = P(EFc) + P(EcF)
= P(E) โ P(EF) + P(F) โ P(EF)
13.
E = EF โช EFc
15.
๏ฆM ๏ถ ๏ฆ N ๏ถ
๏ง๏จ k ๏ท๏ธ ๏ง๏จ r ๏ญ k ๏ท๏ธ
๏ฆM ๏ซ N ๏ถ
๏ง๏จ r ๏ท๏ธ
Copyright ยฉ 2014 Pearson Education, Inc.
20
16.
Chapter 2
P(E1 โฆ En) โฅ P(E1 โฆ Enโ1) + P(En) โ 1 by Bonferonniโs Ineq.
โฅ
n ๏ญ1
๏ฅ P( E ) โ (n โ 2) + P(E ) โ 1 by induction hypothesis
n
i
1
19.
21.
๏ฆ n ๏ถ๏ฆ m ๏ถ
๏ง๏จ r ๏ญ 1๏ท๏ธ ๏ง๏จ k ๏ญ r ๏ท๏ธ ( n ๏ญ r ๏ซ 1)
๏ฆn ๏ซ m๏ถ
๏ง๏จ k ๏ญ 1 ๏ท๏ธ ( n ๏ซ m ๏ญ k ๏ซ 1)
Let y1, y2, โฆ, yk denote the successive runs of losses and x1, โฆ, xk the successive runs of wins.
There will be 2k runs if the outcome is either of the form y1, x1, โฆ, yk xk or x1y1, โฆ xk, yk where
all xi, yi are positive, with x1 + โฆ + xk = n, y1 + โฆ + yk = m. By Proposition 6.1 there are
๏ฆ n ๏ญ 1๏ถ ๏ฆ m ๏ญ 1๏ถ
number of outcomes and so
2๏ง
๏จ k ๏ญ 1๏ท๏ธ ๏ง๏จ k ๏ญ 1 ๏ท๏ธ
๏ฆ n ๏ญ 1๏ถ ๏ฆ m ๏ญ 1๏ถ
P{2k runs} = 2 ๏ง
๏จ k ๏ญ 1๏ท๏ธ ๏ง๏จ k ๏ญ 1 ๏ท๏ธ
๏ฆm ๏ซ n๏ถ
๏ง๏จ n ๏ท๏ธ .
There will be 2k + 1 runs if the outcome is either of the form x1, y1, โฆ, xk, yk, xk+1 or y1, x1, โฆ,
yk, xk yk + 1 where all are positive and
xi = n,
yi = m. By Proposition 6.1 there are
๏ฅ
๏ฅ
๏ฆ n ๏ญ 1๏ถ ๏ฆ m ๏ญ 1๏ถ
๏ฆ n ๏ญ 1๏ถ ๏ฆ m ๏ญ 1๏ถ
๏ง๏จ k ๏ท๏ธ ๏ง๏จ k ๏ญ 1 ๏ท๏ธ outcomes of the first type and ๏ง๏จ k ๏ญ 1๏ท๏ธ ๏ง๏จ k ๏ท๏ธ of the second.
Copyright ยฉ 2014 Pearson Education, Inc.
Document Preview (11 of 155 Pages)
User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.
-37%
Test Bank for A First Course in Probability, 9th Edition
$18.99 $29.99Save:$11.00(37%)
24/7 Live Chat
Instant Download
100% Confidential
Store
William Taylor
0 (0 Reviews)
Best Selling
Test Bank for Strategies For Reading Assessment And Instruction: Helping Every Child Succeed, 6th Edition
$18.99 $29.99Save:$11.00(37%)
Chemistry: Principles And Reactions, 7th Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Test Bank for Hospitality Facilities Management and Design, 4th Edition
$18.99 $29.99Save:$11.00(37%)
Solution Manual for Designing the User Interface: Strategies for Effective Human-Computer Interaction, 6th Edition
$18.99 $29.99Save:$11.00(37%)
Data Structures and Other Objects Using C++ 4th Edition Solution Manual
$18.99 $29.99Save:$11.00(37%)
The World Of Customer Service, 3rd Edition Test Bank
$18.99 $29.99Save:$11.00(37%)