Test Bank for A First Course in Probability, 9th Edition

Preview Extract
Chapter 2 Problems 1. (a) S = {(r, r), (r, g), (r, b), (g, r), (g, g), (g, b), (b, r), b, g), (b, b)} (b) S = {(r, g), (r, b), (g, r), (g, b), (b, r), (b, g)} 2. S = {(n, x1, โ€ฆ, xnโˆ’1), n โ‰ฅ 1, xi โ‰  6, i = 1, โ€ฆ, n โˆ’ 1}, with the interpretation that the outcome is (n, x1, โ€ฆ, xnโˆ’1) if the first 6 appears on roll n, and xi appears on roll, i, i = 1, โ€ฆ, n โˆ’ 1. The event (๏ƒˆn๏‚ฅ๏€ฝ1 En )c is the event that 6 never appears. 3. EF = {(1, 2), (1, 4), (1, 6), (2, 1), (4, 1), (6, 1)}. E โˆช F occurs if the sum is odd or if at least one of the dice lands on 1. FG = {(1, 4), (4, 1)}. EFc is the event that neither of the dice lands on 1 and the sum is odd. EFG = FG. 4. A = {1,0001,0000001, โ€ฆ} B = {01, 00001, 00000001, โ€ฆ} (A โˆช B)c = {00000 โ€ฆ, 001, 000001, โ€ฆ} 5. (a) 25 = 32 (b) W = {(1, 1, 1, 1, 1), (1, 1, 1, 1, 0), (1, 1, 1, 0, 1), (1, 1, 0, 1, 1), (1, 1, 1, 0, 0), (1, 1, 0, 1, 0) (1, 1, 0, 0, 1), (1, 1, 0, 0, 0), (1, 0, 1, 1, 1), (0, 1, 1, 1, 1), (1, 0, 1, 1, 0), (0, 1, 1, 1, 0), (0, 0, 1, 1, 1) (0, 0, 1, 1, 0), (1, 0, 1, 0, 1)} (c) 8 (d) AW = {(1, 1, 1, 0, 0), (1, 1, 0, 0, 0)} 6. (a) S = {(1, g), (0, g), (1, f), (0, f), (1, s), (0, s)} (b) A = {(1, s), (0, s)} (c) B = {(0, g), (0, f), (0, s)} (d) {(1, s), (0, s), (1, g), (1, f)} 7. (a) 615 (b) 615 โˆ’ 315 (c) 415 8. (a) .8 (b) .3 (c) 0 9. Choose a customer at random. Let A denote the event that this customer carries an American Express card and V the event that he or she carries a VISA card. P(A โˆช V) = P(A) + P(V) โˆ’ P(AV) = .24 + .61 โˆ’ .11 = .74. Therefore, 74 percent of the establishmentโ€™s customers carry at least one of the two types of credit cards that it accepts. 10 Copyright ยฉ 2014 Pearson Education, Inc. Chapter 2 10. 11 Let R and N denote the events, respectively, that the student wears a ring and wears a necklace. (a) P(R โˆช N) = 1 โˆ’ .6 = .4 (b) .4 = P(R โˆช N) = P(R) + P(N) โˆ’ P(RN) = .2 + .3 โˆ’ P(RN) Thus, P(RN) = .1 11. Let A be the event that a randomly chosen person is a cigarette smoker and let B be the event that she or he is a cigar smoker. (a) 1 โˆ’ P(A โˆช B) = 1 โˆ’ (.07 + .28 โˆ’ .05) = .7. Hence, 70 percent smoke neither. (b) P(AcB) = P(B) โˆ’ P(AB) = .07 โˆ’ .05 = .02. Hence, 2 percent smoke cigars but not cigarettes. 12. (a) P(S โˆช F โˆช G) = (28 + 26 + 16 โˆ’ 12 โˆ’ 4 โˆ’ 6 + 2)/100 = 1/2 The desired probability is 1 โˆ’ 1/2 = 1/2. (b) Use the Venn diagram below to obtain the answer 32/100. S 14 F 10 10 2 2 4 8 G (c) Since 50 students are not taking any of the courses, the probability that neither one is ๏ƒฆ 50 ๏ƒถ ๏ƒฆ100 ๏ƒถ = 49/198 and so the probability that at least one is taking taking a course is ๏ƒง ๏ƒท ๏ƒง ๏ƒจ 2 ๏ƒธ ๏ƒจ 2 ๏ƒท๏ƒธ a course is 149/198. I 13. 1000 II 7000 19000 (a) (b) (c) (d) (e) 20,000 12,000 11,000 68,000 10,000 1000 1000 3000 0 III Copyright ยฉ 2014 Pearson Education, Inc. 12 14. 15. Chapter 2 P(M) + P(W) + P(G) โˆ’ P(MW) โˆ’ P(MG) โˆ’ P(WG) + P(MWG) = .312 + .470 + .525 โˆ’ .086 โˆ’ .042 โˆ’ .147 + .025 = 1.057 ๏ƒฆ13๏ƒถ (a) 4 ๏ƒง ๏ƒท ๏ƒจ5๏ƒธ ๏ƒฆ 52 ๏ƒถ ๏ƒง๏ƒจ 5 ๏ƒท๏ƒธ ๏ƒฆ 4 ๏ƒถ ๏ƒฆ12 ๏ƒถ ๏ƒฆ 4 ๏ƒถ ๏ƒฆ 4 ๏ƒถ ๏ƒฆ 4 ๏ƒถ (b) 13 ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒจ2๏ƒธ ๏ƒจ 3 ๏ƒธ ๏ƒจ1๏ƒธ ๏ƒจ1๏ƒธ ๏ƒจ1๏ƒธ ๏ƒฆ13๏ƒถ ๏ƒฆ 4 ๏ƒถ ๏ƒฆ 4 ๏ƒถ ๏ƒฆ 44 ๏ƒถ (c) ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒจ 2 ๏ƒธ ๏ƒจ2๏ƒธ ๏ƒจ 2๏ƒธ ๏ƒจ 1 ๏ƒธ ๏ƒฆ 52 ๏ƒถ ๏ƒง๏ƒจ 5 ๏ƒท๏ƒธ ๏ƒฆ 4 ๏ƒถ ๏ƒฆ12 ๏ƒถ ๏ƒฆ 4 ๏ƒถ ๏ƒฆ 4 ๏ƒถ (d) 13 ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒจ3๏ƒธ ๏ƒจ 2 ๏ƒธ ๏ƒจ1๏ƒธ ๏ƒจ1๏ƒธ ๏ƒฆ 52 ๏ƒถ ๏ƒง๏ƒจ 5 ๏ƒท๏ƒธ ๏ƒฆ 4 ๏ƒถ ๏ƒฆ 48 ๏ƒถ (e) 13 ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒจ 4๏ƒธ ๏ƒจ 1 ๏ƒธ 16. ๏ƒฆ 52 ๏ƒถ ๏ƒง๏ƒจ 5 ๏ƒท๏ƒธ (a) ๏ƒฆ 52 ๏ƒถ ๏ƒง๏ƒจ 5 ๏ƒท๏ƒธ 6 ๏ƒ— 5๏ƒ— 4 ๏ƒ— 3๏ƒ— 2 65 (b) ๏ƒฆ 5๏ƒถ 6๏ƒ— 5๏ƒ— 4 ๏ƒง ๏ƒท ๏ƒจ 3๏ƒธ (d) 21 (g) 65 ๏ƒฆ 5๏ƒถ 6๏ƒ— 5๏ƒง ๏ƒท ๏ƒจ 3๏ƒธ (c) (f) 65 ๏ƒฆ 6 ๏ƒถ ๏ƒฆ 5๏ƒถ ๏ƒฆ 3๏ƒถ ๏ƒง๏ƒจ 2 ๏ƒท๏ƒธ 4 ๏ƒง๏ƒจ 2 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 2 ๏ƒท๏ƒธ 65 ๏ƒฆ5 ๏ƒถ 6๏ƒ—5๏ƒง ๏ƒท ๏ƒจ4๏ƒธ 65 6 65 ๏ƒ• i 8 17. (e) ๏ƒฆ 5๏ƒถ 6 ๏ƒง ๏ƒท 5๏ƒ— 4 ๏ƒ— 3 ๏ƒจ 2๏ƒธ 2 i ๏€ฝ1 64 ๏ƒ— 63 ๏ƒ—๏ƒ—๏ƒ— 58 18. 2 ๏ƒ— 4 ๏ƒ— 16 52 ๏ƒ— 51 19. 4/36 + 4/36 +1/36 + 1/36 = 5/18 20. Let A be the event that you are dealt blackjack and let B be the event that the dealer is dealt blackjack. Then, P(A โˆช B) = P(A) + P(B) โˆ’ P(AB) 4 ๏ƒ— 4 ๏ƒ— 16 4 ๏ƒ— 4 ๏ƒ— 16 ๏ƒ— 3 ๏ƒ— 15 = ๏€ซ 52 ๏ƒ— 51 52 ๏ƒ— 51 ๏ƒ— 50 ๏ƒ— 49 = .0983 where the preceding used that P(A) = P(B) = 2 ร— 4 ๏ƒ— 16 . Hence, the probability that neither 52 ๏ƒ— 51 is dealt blackjack is .9017. Copyright ยฉ 2014 Pearson Education, Inc. Chapter 2 21. 13 (a) p1 = 4/20, p2 = 8/20, p3 = 5/20, p4 = 2/20, p5 = 1/20 (b) There are a total of 4 โ‹… 1 + 8 โ‹… 2 + 5 โ‹… 3 + 2 โ‹… 4 + 1 โ‹… 5 = 48 children. Hence, q1 = 4/48, q2 = 16/48, q3 = 15/48, q4 = 8/48, q5 = 5/48 22. The ordering will be unchanged if for some k, 0 โ‰ค k โ‰ค n, the first k coin tosses land heads and the last n โˆ’ k land tails. Hence, the desired probability is (n + 1/2n 23. The answer is 5/12, which can be seen as follows: 1 = P{first higher} + P{second higher} + p{same} = 2P{second higher} + p{same} = 2P{second higher} + 1/6 Another way of solving is to list all the outcomes for which the second is higher. There is 1 outcome when the second die lands on two, 2 when it lands on three, 3 when it lands on four, 4 when it lands on five, and 5 when it lands on six. Hence, the probability is (1 + 2 + 3 + 4 + 5)/36 = 5/12. 25. 27. ๏ƒฆ 26 ๏ƒถ P(En) = ๏ƒง ๏ƒท ๏ƒจ 36 ๏ƒธ 6 , 36 ๏‚ฅ ๏ƒฅ P( E ) ๏€ฝ 5 2 n n ๏€ฝ1 Imagine that all 10 balls are withdrawn P(A) = 28. n ๏€ญ1 3 ๏ƒ— 9!๏€ซ 7 ๏ƒ— 6 ๏ƒ— 3 ๏ƒ— 7!๏€ซ 7 ๏ƒ— 6 ๏ƒ— 5 ๏ƒ— 4 ๏ƒ— 3 ๏ƒ— 5!๏€ซ 7 ๏ƒ— 6 ๏ƒ— 5 ๏ƒ— 4 ๏ƒ— 3 ๏ƒ— 2 ๏ƒ— 3 ๏ƒ— 3! 10! ๏ƒฆ 5๏ƒถ ๏ƒฆ 6 ๏ƒถ ๏ƒฆ 8 ๏ƒถ ๏ƒง๏ƒจ 3๏ƒท๏ƒธ ๏€ซ ๏ƒง๏ƒจ 3๏ƒท๏ƒธ ๏€ซ ๏ƒง๏ƒจ 3๏ƒท๏ƒธ P{same} = ๏ƒฆ19 ๏ƒถ ๏ƒง๏ƒจ 3 ๏ƒท๏ƒธ ๏ƒฆ 5๏ƒถ ๏ƒฆ 6 ๏ƒถ ๏ƒฆ 8 ๏ƒถ P{different} = ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒจ1๏ƒธ ๏ƒจ 1 ๏ƒธ ๏ƒจ1๏ƒธ ๏ƒฆ19 ๏ƒถ ๏ƒง๏ƒจ 3 ๏ƒท๏ƒธ If sampling is with replacement P{same} = 53 ๏€ซ 63 ๏€ซ 83 (19)3 P{different} = P(RBG) + P{BRG) + P(RGB) + โ€ฆ + P(GBR) 6๏ƒ— 5๏ƒ— 6๏ƒ—8 = (19)3 Copyright ยฉ 2014 Pearson Education, Inc. 14 29. Chapter 2 (a) n( n ๏€ญ 1) ๏€ซ m( m ๏€ญ 1) ( n ๏€ซ m )( n ๏€ซ m ๏€ญ 1) (b) Putting all terms over the common denominator (n + m)2(n + m โˆ’ 1) shows that we must prove that n2(n + m โˆ’ 1) + m2(n + m โˆ’ 1) โ‰ฅ n(n โˆ’ 1)(n + m) + m(m โˆ’ 1)(n + m) which is immediate upon multiplying through and simplifying. 30. ๏ƒฆ 7 ๏ƒถ ๏ƒฆ8๏ƒถ ๏ƒง๏ƒจ 3 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 3๏ƒท๏ƒธ 3! = 1/18 (a) ๏ƒฆ8 ๏ƒถ ๏ƒฆ 9 ๏ƒถ ๏ƒง๏ƒจ 4 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 4 ๏ƒท๏ƒธ 4! ๏ƒฆ 7 ๏ƒถ ๏ƒฆ8๏ƒถ ๏ƒง๏ƒจ 3 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 3๏ƒท๏ƒธ 3! โˆ’ 1/18 = 1/6 (b) ๏ƒฆ8 ๏ƒถ ๏ƒฆ 9 ๏ƒถ ๏ƒง๏ƒจ 4 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 4 ๏ƒท๏ƒธ 4! ๏ƒฆ 7 ๏ƒถ ๏ƒฆ8 ๏ƒถ ๏ƒฆ 7 ๏ƒถ ๏ƒฆ8๏ƒถ ๏ƒง๏ƒจ 3 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 4 ๏ƒท๏ƒธ ๏€ซ ๏ƒง๏ƒจ 4 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 3๏ƒท๏ƒธ = 1/2 (c) ๏ƒฆ8๏ƒถ ๏ƒฆ9๏ƒถ ๏ƒง๏ƒจ 4 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 4 ๏ƒท๏ƒธ 31. P({complete} = P{same} = 32. g (b ๏€ซ g ๏€ญ 1)! g ๏€ฝ (b ๏€ซ g )! b๏€ซ g 33. ๏ƒฆ 5 ๏ƒถ ๏ƒฆ15๏ƒถ ๏ƒง๏ƒจ 2 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 2 ๏ƒท๏ƒธ 70 ๏€ฝ 323 ๏ƒฆ 20 ๏ƒถ ๏ƒง๏ƒจ 4 ๏ƒท๏ƒธ 34. ๏ƒฆ 32 ๏ƒถ ๏ƒง๏ƒจ 13 ๏ƒท๏ƒธ ๏ƒฆ 52 ๏ƒถ ๏ƒง๏ƒจ 13 ๏ƒท๏ƒธ Copyright ยฉ 2014 Pearson Education, Inc. Chapter 2 35. 15 ๏ƒฆ12 ๏ƒถ ๏ƒฆ16 ๏ƒถ ๏ƒฆ18 ๏ƒถ ๏ƒง๏ƒจ 3 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 2 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 2 ๏ƒท๏ƒธ (a) ๏ƒฆ 46 ๏ƒถ ๏ƒง๏ƒจ 7 ๏ƒท๏ƒธ ๏ƒฆ 34 ๏ƒถ ๏ƒฆ12 ๏ƒถ ๏ƒฆ 34 ๏ƒถ ๏ƒง๏ƒจ 7 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 1 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 6 ๏ƒท๏ƒธ (b) 1 ๏€ญ ๏€ญ ๏ƒฆ 46 ๏ƒถ ๏ƒฆ 46 ๏ƒถ ๏ƒง๏ƒจ 7 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 7 ๏ƒท๏ƒธ ๏ƒฆ12 ๏ƒถ ๏ƒฆ16 ๏ƒถ ๏ƒฆ18 ๏ƒถ ๏ƒง๏ƒจ 7 ๏ƒท๏ƒธ ๏€ซ ๏ƒง๏ƒจ 7 ๏ƒท๏ƒธ ๏€ซ ๏ƒง๏ƒจ 7 ๏ƒท๏ƒธ (c) ๏ƒฆ 46 ๏ƒถ ๏ƒง๏ƒจ 7 ๏ƒท๏ƒธ ๏ƒฆ12 ๏ƒถ ๏ƒฆ 34 ๏ƒถ ๏ƒฆ16 ๏ƒถ ๏ƒฆ 30 ๏ƒถ ๏ƒฆ12 ๏ƒถ ๏ƒฆ16 ๏ƒถ ๏ƒฆ18 ๏ƒถ ๏ƒง๏ƒจ 3 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 4 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 3 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 4 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 3 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 3 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 1 ๏ƒท๏ƒธ ๏€ซ ๏€ญ (d) P ( R3 ๏ƒˆ B3 ) ๏€ฝ P( R3 ) ๏€ซ P ( B3 ) ๏€ญ P ( R3 B3 ) ๏€ฝ ๏ƒฆ 46 ๏ƒถ ๏ƒฆ 46 ๏ƒถ ๏ƒฆ 46 ๏ƒถ ๏ƒง๏ƒจ 7 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 7 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 7 ๏ƒท๏ƒธ 36. ๏ƒฆ 4๏ƒถ (a) ๏ƒง ๏ƒท ๏ƒจ 2๏ƒธ ๏ƒฆ 52 ๏ƒถ ๏ƒง๏ƒจ 2 ๏ƒท๏ƒธ โ‰ˆ .0045, ๏ƒฆ4๏ƒถ (b) 13 ๏ƒง ๏ƒท ๏ƒจ2๏ƒธ 37. ๏ƒฆ7๏ƒถ (a) ๏ƒง ๏ƒท ๏ƒจ5๏ƒธ ๏ƒฆ 52 ๏ƒถ ๏ƒง๏ƒจ 2 ๏ƒท๏ƒธ = 1/17 โ‰ˆ .0588 ๏ƒฆ10 ๏ƒถ ๏ƒง๏ƒจ 5 ๏ƒท๏ƒธ = 1/12 โ‰ˆ .0833 ๏ƒฆ 7 ๏ƒถ ๏ƒฆ 3๏ƒถ (b) ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒจ 4 ๏ƒธ ๏ƒจ1๏ƒธ 38. ๏ƒฆ3๏ƒถ 1/2 = ๏ƒง ๏ƒท ๏ƒจ 2๏ƒธ 39. 5 ๏ƒ— 4 ๏ƒ— 3 12 ๏€ฝ 5 ๏ƒ— 5 ๏ƒ— 5 25 ๏ƒฆ10 ๏ƒถ ๏ƒง๏ƒจ 5 ๏ƒท๏ƒธ + 1/12 = 1/2 ๏ƒฆn๏ƒถ ๏ƒง๏ƒจ 2 ๏ƒท๏ƒธ or n(n โˆ’ 1) = 12 or n = 4. Copyright ยฉ 2014 Pearson Education, Inc. 16 40. Chapter 2 P{1} = 4 1 ๏€ฝ 44 64 ๏ƒฆ 4๏ƒถ ๏ƒฉ ๏ƒฆ 4๏ƒถ ๏ƒน 84 P{2} = ๏ƒง ๏ƒท ๏ƒช 4 ๏€ซ ๏ƒง ๏ƒท ๏€ซ 4๏ƒบ 44 ๏€ฝ 256 ๏ƒจ 2๏ƒธ ๏ƒซ ๏ƒจ 2๏ƒธ ๏ƒป ๏ƒฆ 4 ๏ƒถ ๏ƒฆ 3๏ƒถ 4! 4 36 P{3} = ๏ƒง ๏ƒท ๏ƒง ๏ƒท 4 ๏€ฝ 64 ๏ƒจ 3 ๏ƒธ ๏ƒจ 1 ๏ƒธ 2! 4! 6 P{4} = 4 ๏€ฝ 64 4 54 64 41. 1โˆ’ 42. ๏ƒฆ 35 ๏ƒถ 1โˆ’ ๏ƒง ๏ƒท ๏ƒจ 36 ๏ƒธ 43. 44. n 2( n ๏€ญ 1)( n ๏€ญ 2) 2 ๏€ฝ in a line n! n 2n ( n ๏€ญ 2)! 2 if in a circle, n โ‰ฅ 2 ๏€ฝ n! n ๏€ญ1 (a) If A is first, then A can be in any one of 3 places and Bโ€™s place is determined, and the others can be arranged in any of 3! ways. As a similar result is true, when B is first, we see that the probability in this case is 2 โ‹… 3 โ‹… 3!/5! = 3/10 (b) 2 โ‹… 2 โ‹… 3!/5! = 1/5 45. 46. (c) 2 โ‹… 3!/5! = 1/10 (n ๏€ญ 1) k ๏€ญ1 1/n if discard, if do not discard nk If n in the room, P{all different} = 12 ๏ƒ— 11 ๏ƒ— 12 ๏ƒ— 12 ๏ƒ— ๏ƒ— (13 ๏€ญ n ) ๏ƒ— 12 When n = 5 this falls below 1/2. (Its value when n = 5 is .3819) 47. 12!/(12)12 48. ๏ƒฆ12 ๏ƒถ ๏ƒฆ 8 ๏ƒถ (20)! ๏ƒง๏ƒจ 4 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 4 ๏ƒท๏ƒธ (3!) 4 (2!)4 49. ๏ƒฆ 6๏ƒถ ๏ƒฆ 6๏ƒถ ๏ƒง๏ƒจ 3 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 3 ๏ƒท๏ƒธ (12)20 ๏ƒฆ12 ๏ƒถ ๏ƒง๏ƒจ 6 ๏ƒท๏ƒธ Copyright ยฉ 2014 Pearson Education, Inc. Chapter 2 17 50. ๏ƒฆ13๏ƒถ ๏ƒฆ 39 ๏ƒถ ๏ƒฆ 8 ๏ƒถ ๏ƒฆ 31๏ƒถ ๏ƒง๏ƒจ 5 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 8 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 8 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 5 ๏ƒท๏ƒธ 51. ๏ƒฆn๏ƒถ n๏€ญm / Nn ๏ƒง๏ƒจ m ๏ƒท๏ƒธ ( n ๏€ญ 1) 52. (a) (b) 53. ๏ƒฆ 52 ๏ƒถ ๏ƒฆ 39 ๏ƒถ ๏ƒง๏ƒจ 13 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 13 ๏ƒท๏ƒธ 20 ๏ƒ— 18 ๏ƒ— 16 ๏ƒ— 14 ๏ƒ— 12 ๏ƒ— 10 ๏ƒ— 8 ๏ƒ— 6 20 ๏ƒ— 19 ๏ƒ— 18 ๏ƒ— 17 ๏ƒ— 16 ๏ƒ— 15 ๏ƒ— 14 ๏ƒ— 13 ๏ƒฆ10 ๏ƒถ ๏ƒฆ 9 ๏ƒถ 8! 6 ๏ƒง๏ƒจ 1 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 6 ๏ƒท๏ƒธ 2! 2 20 ๏ƒ— 19 ๏ƒ— 18 ๏ƒ— 17 ๏ƒ— 16 ๏ƒ— 15 ๏ƒ— 14 ๏ƒ— 13 Let Ai be the event that couple i sit next to each other. Then P (๏ƒˆi4๏€ฝ1 Ai ) ๏€ฝ 4 2 ๏ƒ— 7! 22 ๏ƒ— 6! 23 ๏ƒ— 5! 24 ๏ƒ— 4! ๏€ญ6 ๏€ซ4 ๏€ญ 8! 8! 8! 8! and the desired probability is 1 minus the preceding. 54. P(S โˆช H โˆช D โˆช C) = P(S) + P(H) + P(D) + P(C) โˆ’ P(SH) โˆ’ โ€ฆ โˆ’ P(SHDC) ๏ƒฆ 39 ๏ƒถ ๏ƒฆ 26 ๏ƒถ ๏ƒฆ13๏ƒถ 4๏ƒง ๏ƒท 6๏ƒง ๏ƒท 4๏ƒง ๏ƒท ๏ƒจ 13 ๏ƒธ ๏ƒจ 13 ๏ƒธ ๏ƒจ13๏ƒธ ๏€ญ ๏€ซ = ๏ƒฆ 52 ๏ƒถ ๏ƒฆ 52 ๏ƒถ ๏ƒฆ 52 ๏ƒถ ๏ƒง๏ƒจ 13 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 13 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 13 ๏ƒท๏ƒธ ๏ƒฆ 39 ๏ƒถ ๏ƒฆ 26 ๏ƒถ 4๏ƒง ๏ƒท ๏€ญ 6๏ƒง ๏ƒท ๏€ซ 4 ๏ƒจ 13 ๏ƒธ ๏ƒจ 13 ๏ƒธ = ๏ƒฆ 52 ๏ƒถ ๏ƒง๏ƒจ 13 ๏ƒท๏ƒธ Copyright ยฉ 2014 Pearson Education, Inc. 18 55. Chapter 2 (a) P(S โˆช H โˆช D โˆช C) = P(S) + โ€ฆ โˆ’ P(SHDC) 3 4 ๏ƒฆ2๏ƒถ ๏ƒฆ 2 ๏ƒถ ๏ƒฆ 2 ๏ƒถ ๏ƒฆ 48 ๏ƒถ ๏ƒฆ 2 ๏ƒถ ๏ƒฆ 46 ๏ƒถ ๏ƒฆ 2 ๏ƒถ ๏ƒฆ 44 ๏ƒถ 4๏ƒง ๏ƒท 6๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท 4๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒจ2๏ƒธ ๏ƒจ2๏ƒธ ๏ƒจ2๏ƒธ ๏ƒจ 9 ๏ƒธ ๏ƒจ 2๏ƒธ ๏ƒจ 7 ๏ƒธ ๏ƒจ2๏ƒธ ๏ƒจ 5 ๏ƒธ = ๏€ญ ๏€ซ ๏€ญ ๏ƒฆ 52 ๏ƒถ ๏ƒฆ 52 ๏ƒถ ๏ƒฆ 52 ๏ƒถ ๏ƒฆ 52 ๏ƒถ ๏ƒง๏ƒจ 13 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 13 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 13 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 13 ๏ƒท๏ƒธ ๏ƒฆ 50 ๏ƒถ ๏ƒฆ 48 ๏ƒถ ๏ƒฆ 46 ๏ƒถ ๏ƒฆ 44 ๏ƒถ 4๏ƒง ๏ƒท ๏€ญ 6๏ƒง ๏ƒท ๏€ซ 4๏ƒง ๏ƒท ๏€ญ ๏ƒง ๏ƒท ๏ƒจ 11 ๏ƒธ ๏ƒจ9๏ƒธ ๏ƒจ7๏ƒธ ๏ƒจ5๏ƒธ = ๏ƒฆ 52 ๏ƒถ ๏ƒง๏ƒจ 13 ๏ƒท๏ƒธ ๏ƒฆ 48 ๏ƒถ ๏ƒฆ13๏ƒถ ๏ƒฆ 44 ๏ƒถ ๏ƒฆ13๏ƒถ ๏ƒฆ 40 ๏ƒถ 13 ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒจ 9 ๏ƒธ ๏ƒจ 2 ๏ƒธ๏ƒจ 5 ๏ƒธ ๏ƒจ 3 ๏ƒธ๏ƒจ 1 ๏ƒธ ๏€ญ ๏€ซ (b) P(1 โˆช 2 โˆช โ€ฆ โˆช 13) = ๏ƒฆ 52 ๏ƒถ ๏ƒฆ 52 ๏ƒถ ๏ƒฆ 52 ๏ƒถ ๏ƒง๏ƒจ 13 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 13 ๏ƒท๏ƒธ ๏ƒง๏ƒจ 13 ๏ƒท๏ƒธ 56. Player B. If Player A chooses spinner (a) then B can choose spinner (c). If A chooses (b) then B chooses (a). If A chooses (c) then B chooses (b). In each case B wins probability 5/9. Copyright ยฉ 2014 Pearson Education, Inc. Chapter 2 19 Theoretical Exercises i ๏€ฝ1 5. Fi = Ei ๏ƒ‡ E cj 6. (a) EFcGc j ๏€ฝ1 (b) EFcG (c) E โˆช F โˆช G (d) EF โˆช EG โˆช FG (e) EFG (f) EcFcGc (g) EcFcGc โˆช EFcGc โˆช EcFGc โˆช EcFcG (h) (EFG)c (i) EFGc โˆช EFcG โˆช EcFG (j) S 8. The number of partitions that has n + 1 and a fixed set of i of the elements 1, 2, โ€ฆ, n as a ๏ƒฆn๏ƒถ subset is Tnโˆ’i. Hence, (where T0 = 1). Hence, as there are ๏ƒง ๏ƒท such subsets. ๏ƒจi๏ƒธ n ๏€ญ1 n ๏ƒฆn๏ƒถ ๏ƒฆn๏ƒถ ๏ƒฆn๏ƒถ ๏€ฝ 1 ๏€ซ ๏€ฝ 1 ๏€ซ T T ๏ƒง๏ƒจ i ๏ƒท๏ƒธ n ๏€ญi ๏ƒง๏ƒจ i ๏ƒท๏ƒธ n ๏€ญi ๏ƒง๏ƒจ k ๏ƒท๏ƒธ Tk . i ๏€ฝ0 i๏€ฝ0 k ๏€ฝ1 n Tn+1 = ๏ƒฅ ๏ƒฅ ๏ƒฅ 11. 1 โ‰ฅ P(E โˆช F) = P(E) + P(F) โˆ’ P(EF) 12. P(EFc โˆช EcF) = P(EFc) + P(EcF) = P(E) โˆ’ P(EF) + P(F) โˆ’ P(EF) 13. E = EF โˆช EFc 15. ๏ƒฆM ๏ƒถ ๏ƒฆ N ๏ƒถ ๏ƒง๏ƒจ k ๏ƒท๏ƒธ ๏ƒง๏ƒจ r ๏€ญ k ๏ƒท๏ƒธ ๏ƒฆM ๏€ซ N ๏ƒถ ๏ƒง๏ƒจ r ๏ƒท๏ƒธ Copyright ยฉ 2014 Pearson Education, Inc. 20 16. Chapter 2 P(E1 โ€ฆ En) โ‰ฅ P(E1 โ€ฆ Enโˆ’1) + P(En) โˆ’ 1 by Bonferonniโ€™s Ineq. โ‰ฅ n ๏€ญ1 ๏ƒฅ P( E ) โˆ’ (n โˆ’ 2) + P(E ) โˆ’ 1 by induction hypothesis n i 1 19. 21. ๏ƒฆ n ๏ƒถ๏ƒฆ m ๏ƒถ ๏ƒง๏ƒจ r ๏€ญ 1๏ƒท๏ƒธ ๏ƒง๏ƒจ k ๏€ญ r ๏ƒท๏ƒธ ( n ๏€ญ r ๏€ซ 1) ๏ƒฆn ๏€ซ m๏ƒถ ๏ƒง๏ƒจ k ๏€ญ 1 ๏ƒท๏ƒธ ( n ๏€ซ m ๏€ญ k ๏€ซ 1) Let y1, y2, โ€ฆ, yk denote the successive runs of losses and x1, โ€ฆ, xk the successive runs of wins. There will be 2k runs if the outcome is either of the form y1, x1, โ€ฆ, yk xk or x1y1, โ€ฆ xk, yk where all xi, yi are positive, with x1 + โ€ฆ + xk = n, y1 + โ€ฆ + yk = m. By Proposition 6.1 there are ๏ƒฆ n ๏€ญ 1๏ƒถ ๏ƒฆ m ๏€ญ 1๏ƒถ number of outcomes and so 2๏ƒง ๏ƒจ k ๏€ญ 1๏ƒท๏ƒธ ๏ƒง๏ƒจ k ๏€ญ 1 ๏ƒท๏ƒธ ๏ƒฆ n ๏€ญ 1๏ƒถ ๏ƒฆ m ๏€ญ 1๏ƒถ P{2k runs} = 2 ๏ƒง ๏ƒจ k ๏€ญ 1๏ƒท๏ƒธ ๏ƒง๏ƒจ k ๏€ญ 1 ๏ƒท๏ƒธ ๏ƒฆm ๏€ซ n๏ƒถ ๏ƒง๏ƒจ n ๏ƒท๏ƒธ . There will be 2k + 1 runs if the outcome is either of the form x1, y1, โ€ฆ, xk, yk, xk+1 or y1, x1, โ€ฆ, yk, xk yk + 1 where all are positive and xi = n, yi = m. By Proposition 6.1 there are ๏ƒฅ ๏ƒฅ ๏ƒฆ n ๏€ญ 1๏ƒถ ๏ƒฆ m ๏€ญ 1๏ƒถ ๏ƒฆ n ๏€ญ 1๏ƒถ ๏ƒฆ m ๏€ญ 1๏ƒถ ๏ƒง๏ƒจ k ๏ƒท๏ƒธ ๏ƒง๏ƒจ k ๏€ญ 1 ๏ƒท๏ƒธ outcomes of the first type and ๏ƒง๏ƒจ k ๏€ญ 1๏ƒท๏ƒธ ๏ƒง๏ƒจ k ๏ƒท๏ƒธ of the second. Copyright ยฉ 2014 Pearson Education, Inc.

Document Preview (11 of 155 Pages)

User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.

Shop by Category See All


Shopping Cart (0)

Your bag is empty

Don't miss out on great deals! Start shopping or Sign in to view products added.

Shop What's New Sign in