Preview Extract
Chapter 2
Acute Angles and Right Triangles
Section 2.1 Trigonometric Functions of
Acute Angles
10. sin A ๏ฝ
For Exercises 1โ6, refer to the Function Values of
Special Angles chart on page 170 of the text.
cos A ๏ฝ
1. C; sin 30๏ฐ ๏ฝ
1
2
2
2. H; cos 45๏ฐ ๏ฝ
2
3. B; tan 45๏ฐ ๏ฝ 1
4. G; sec 60๏ฐ ๏ฝ
1
1
๏ฝ ๏ฝ2
cos 60๏ฐ 12
5. E; csc 60๏ฐ ๏ฝ
1
1
2
๏ฝ
๏ฝ
3
sin 60๏ฐ
3
2
2
3 2 3
๏ฝ
๏
๏ฝ
3
3 3
6. A; cot 30๏ฐ ๏ฝ
7.
cos 30๏ฐ
๏ฝ
sin 30๏ฐ
3
2
1
2
side opposite 21
sin A ๏ฝ
๏ฝ
hypotenuse
29
side adjacent 20
๏ฝ
hypotenuse
29
side opposite 21
tan A ๏ฝ
๏ฝ
side adjacent 20
cos A ๏ฝ
8.
9.
side opposite 45
๏ฝ
hypotenuse
53
side adjacent 28
cos A ๏ฝ
๏ฝ
hypotenuse
53
side opposite 45
tan A ๏ฝ
๏ฝ
side adjacent 28
sin A ๏ฝ
side opposite n
๏ฝ
hypotenuse
p
side adjacent m
cos A ๏ฝ
๏ฝ
hypotenuse
p
side opposite n
tan A ๏ฝ
๏ฝ
side adjacent m
sin A ๏ฝ
๏ฝ
3 2
๏ ๏ฝ 3
2 1
side opposite k
๏ฝ
hypotenuse
z
side adjacent y
๏ฝ
hypotenuse
z
side opposite k
tan A ๏ฝ
๏ฝ
side adjacent y
11. a = 5, b = 12
c 2 ๏ฝ a 2 ๏ซ b 2 ๏ c 2 ๏ฝ 52 ๏ซ 122 ๏ c 2 ๏ฝ 169 ๏
c ๏ฝ 13
side opposite b 12
sin B ๏ฝ
๏ฝ ๏ฝ
hypotenuse
c 13
side adjacent a 5
cos B ๏ฝ
๏ฝ ๏ฝ
hypotenuse
c 13
side opposite b 12
tan B ๏ฝ
๏ฝ ๏ฝ
side adjacent a 5
side adjacent a 5
cot B ๏ฝ
๏ฝ ๏ฝ
side opposite b 12
hypotenuse
c 13
sec B ๏ฝ
๏ฝ ๏ฝ
side adjacent a 5
hypotenuse
c 13
csc B ๏ฝ
๏ฝ ๏ฝ
side opposite b 12
12. a = 3, b = 4
c 2 ๏ฝ a 2 ๏ซ b 2 ๏ c 2 ๏ฝ 32 ๏ซ 42 ๏ c 2 ๏ฝ 25 ๏
c๏ฝ5
side opposite b 4
sin B ๏ฝ
๏ฝ ๏ฝ
hypotenuse
c 5
side adjacent a 3
cos B ๏ฝ
๏ฝ ๏ฝ
hypotenuse
c 5
side opposite b 4
tan B ๏ฝ
๏ฝ ๏ฝ
side adjacent a 3
side adjacent a 3
cot B ๏ฝ
๏ฝ ๏ฝ
side opposite b 4
hypotenuse
c 5
sec B ๏ฝ
๏ฝ ๏ฝ
side adjacent a 3
hypotenuse
c 5
csc B ๏ฝ
๏ฝ ๏ฝ
side opposite b 4
Copyright ยฉ 2021 Pearson Education, Inc.
115
116
Chapter 2 Acute Angles and Right Triangles
13. a = 6, c = 7
c 2 ๏ฝ a 2 ๏ซ b 2 ๏ 7 2 ๏ฝ 62 ๏ซ b 2 ๏
49 ๏ฝ 36 ๏ซ b 2 ๏ 13 ๏ฝ b 2 ๏ 13 ๏ฝ b
side opposite b
13
๏ฝ ๏ฝ
c
hypotenuse
7
side adjacent a 6
๏ฝ ๏ฝ
cos B ๏ฝ
c 7
hypotenuse
side opposite b
13
๏ฝ ๏ฝ
tan B ๏ฝ
side adjacent a
6
side adjacent a
6
cot B ๏ฝ
๏ฝ ๏ฝ
side opposite b
13
6
13 6 13
๏ฝ
๏
๏ฝ
13
13 13
hypotenuse
c 7
sec B ๏ฝ
๏ฝ ๏ฝ
side adjacent a 6
hypotenuse
7
c
csc B ๏ฝ
๏ฝ ๏ฝ
side opposite b
13
7
13 7 13
๏ฝ
๏
๏ฝ
13
13 13
sin B ๏ฝ
14. b = 7, c = 12
c 2 ๏ฝ a 2 ๏ซ b 2 ๏ 122 ๏ฝ a 2 ๏ซ 7 2 ๏
144 ๏ฝ a 2 ๏ซ 49 ๏ 95 ๏ฝ a 2 ๏ 95 ๏ฝ a
side opposite b 7
sin B ๏ฝ
๏ฝ ๏ฝ
hypotenuse
c 12
side adjacent a
95
cos B ๏ฝ
๏ฝ ๏ฝ
hypotenuse
12
c
side opposite b
7
tan B ๏ฝ
๏ฝ ๏ฝ
side adjacent a
95
7
95 7 95
๏ฝ
๏
๏ฝ
95
95 95
side adjacent a
95
๏ฝ ๏ฝ
side opposite b
7
hypotenuse
12
c
sec B ๏ฝ
๏ฝ ๏ฝ
side adjacent a
95
12
95 12 95
๏ฝ
๏
๏ฝ
95
95 95
hypotenuse
c 12
csc B ๏ฝ
๏ฝ ๏ฝ
side opposite b 7
cot B ๏ฝ
15. a = 3, c = 10
c 2 ๏ฝ a 2 ๏ซ b 2 ๏ 102 ๏ฝ 32 ๏ซ b 2 ๏
100 ๏ฝ 9 ๏ซ b 2 ๏ 91 ๏ฝ b 2 ๏ 91 ๏ฝ b
side opposite b
91
๏ฝ ๏ฝ
hypotenuse
10
c
side adjacent a 3
cos B ๏ฝ
๏ฝ ๏ฝ
hypotenuse
c 10
sin B ๏ฝ
side opposite b
91
๏ฝ ๏ฝ
side adjacent a
3
side adjacent a
3
cot B ๏ฝ
๏ฝ ๏ฝ
side opposite b
91
3
91 3 91
๏ฝ
๏
๏ฝ
91
91 91
hypotenuse
c 10
sec B ๏ฝ
๏ฝ ๏ฝ
side adjacent a 3
hypotenuse
10
c
csc B ๏ฝ
๏ฝ ๏ฝ
side opposite b
91
10
91 10 91
๏ฝ
๏
๏ฝ
91
91 91
tan B ๏ฝ
16. b = 8, c = 11
c 2 ๏ฝ a 2 ๏ซ b 2 ๏ 112 ๏ฝ a 2 ๏ซ 82 ๏
121 ๏ฝ a 2 ๏ซ 64 ๏ 57 ๏ฝ a 2 ๏ 57 ๏ฝ a
side opposite b 8
sin B ๏ฝ
๏ฝ ๏ฝ
hypotenuse
c 11
side adjacent a
57
cos B ๏ฝ
๏ฝ ๏ฝ
hypotenuse
11
c
side opposite b
8
tan B ๏ฝ
๏ฝ ๏ฝ
side adjacent a
57
8
57 8 57
๏ฝ
๏
๏ฝ
57
57
57
side adjacent a
57
๏ฝ ๏ฝ
side opposite b
8
hypotenuse
11
c
sec B ๏ฝ
๏ฝ ๏ฝ
side adjacent a
57
11
57 11 57
๏ฝ
๏
๏ฝ
57
57
57
hypotenuse
c 11
csc B ๏ฝ
๏ฝ ๏ฝ
side opposite b 8
cot B ๏ฝ
17. a = 1, c = 2
c 2 ๏ฝ a 2 ๏ซ b 2 ๏ 22 ๏ฝ 12 ๏ซ b 2 ๏
4 ๏ฝ 1 ๏ซ b2 ๏ 3 ๏ฝ b2 ๏ 3 ๏ฝ b
side opposite b
3
๏ฝ ๏ฝ
hypotenuse
c
2
side adjacent a 1
cos B ๏ฝ
๏ฝ ๏ฝ
hypotenuse
c 2
side opposite b
3
tan B ๏ฝ
๏ฝ ๏ฝ
๏ฝ 3
side adjacent a
1
side adjacent a
1
cot B ๏ฝ
๏ฝ ๏ฝ
side opposite b
3
1
3
3
๏ฝ
๏
๏ฝ
3
3 3
sin B ๏ฝ
Copyright ยฉ 2021 Pearson Education, Inc.
(continued on next page)
Section 2.1 Trigonometric Functions of Acute Angles
(continued)
hypotenuse
c 2
๏ฝ ๏ฝ ๏ฝ2
side adjacent a 1
hypotenuse
2
c
csc B ๏ฝ
๏ฝ ๏ฝ
side opposite b
3
2
3 2 3
๏ฝ
๏
๏ฝ
3
3 3
sec B ๏ฝ
18. a ๏ฝ 2, c ๏ฝ 2
2
c 2 ๏ฝ a 2 ๏ซ b 2 ๏ 22 ๏ฝ 2 ๏ซ b 2 ๏
4 ๏ฝ 2 ๏ซ b2 ๏ 2 ๏ฝ b2 ๏ 2 ๏ฝ b
side opposite b
2
๏ฝ ๏ฝ
hypotenuse
2
c
side adjacent a
2
cos B ๏ฝ
๏ฝ ๏ฝ
hypotenuse
2
c
side opposite b
2
tan B ๏ฝ
๏ฝ ๏ฝ
๏ฝ1
side adjacent a
2
side adjacent a
2
cot B ๏ฝ
๏ฝ ๏ฝ
๏ฝ1
side opposite b
2
hypotenuse
2
c
sec B ๏ฝ
๏ฝ ๏ฝ
side adjacent a
2
2
2 2 2
๏ฝ
๏
๏ฝ
๏ฝ 2
2
2
2
2
c
hypotenuse
๏ฝ ๏ฝ
csc B ๏ฝ
side opposite b
2
2
2 2 2
๏ฝ
๏
๏ฝ
๏ฝ 2
2
2
2
sin B ๏ฝ
19. b = 2, c = 5
c 2 ๏ฝ a 2 ๏ซ b 2 ๏ 52 ๏ฝ a 2 ๏ซ 2 2 ๏
25 ๏ฝ a 2 ๏ซ 4 ๏ 21 ๏ฝ a 2 ๏ 21 ๏ฝ a
side opposite b 2
sin B ๏ฝ
๏ฝ ๏ฝ
hypotenuse
c 5
side adjacent a
21
cos B ๏ฝ
๏ฝ ๏ฝ
hypotenuse
5
c
side opposite b
2
tan B ๏ฝ
๏ฝ ๏ฝ
side adjacent a
21
2
21 2 21
๏ฝ
๏
๏ฝ
21
21 21
side adjacent a
21
cot B ๏ฝ
๏ฝ ๏ฝ
side opposite b
2
hypotenuse
5
c
sec B ๏ฝ
๏ฝ ๏ฝ
side adjacent a
21
21 5 21
5
๏ฝ
๏ฝ
๏
21
21 21
hypotenuse
c 5
csc B ๏ฝ
๏ฝ ๏ฝ
side opposite b 2
117
20. sin ๏ฑ ๏ฝ cos ๏จ90๏ฐ ๏ญ ๏ฑ ๏ฉ ; cos ๏ฑ ๏ฝ sin ๏จ90๏ฐ ๏ญ ๏ฑ ๏ฉ ;
tan ๏ฑ ๏ฝ cot ๏จ90๏ฐ ๏ญ ๏ฑ ๏ฉ ; cot ๏ฑ ๏ฝ tan ๏จ90๏ฐ ๏ญ ๏ฑ ๏ฉ ;
sec ๏ฑ ๏ฝ csc ๏จ90๏ฐ ๏ญ ๏ฑ ๏ฉ ; csc ๏ฑ ๏ฝ sec ๏จ90๏ฐ ๏ญ ๏ฑ ๏ฉ
21. cos 30๏ฐ ๏ฝ sin ๏จ90๏ฐ ๏ญ 30๏ฐ๏ฉ ๏ฝ sin 60๏ฐ
22. sin 45๏ฐ ๏ฝ cos ๏จ90๏ฐ ๏ญ 45๏ฐ๏ฉ ๏ฝ cos 45๏ฐ
23. csc 60๏ฐ ๏ฝ sec ๏จ90๏ฐ ๏ญ 60๏ฐ๏ฉ ๏ฝ sec 30๏ฐ
24. cot 73๏ฐ ๏ฝ tan ๏จ90๏ฐ ๏ญ 73๏ฐ๏ฉ ๏ฝ tan17๏ฐ
25. sec 39๏ฐ ๏ฝ csc ๏จ90๏ฐ ๏ญ 39๏ฐ๏ฉ ๏ฝ csc 51๏ฐ
26. tan 25.4๏ฐ ๏ฝ cot ๏จ90๏ฐ ๏ญ 25.4๏ฐ๏ฉ ๏ฝ cot 64.6๏ฐ
27. sin 38.7๏ฐ ๏ฝ cos ๏จ90๏ฐ ๏ญ 38.7๏ฐ๏ฉ ๏ฝ cos 51.3๏ฐ
28. cos ๏จ๏ฑ ๏ซ 20๏ฐ๏ฉ ๏ฝ sin ๏ฉ๏ซ90๏ฐ ๏ญ ๏จ๏ฑ ๏ซ 20๏ฐ๏ฉ๏น๏ป
๏ฝ sin ๏จ70๏ฐ ๏ญ ๏ฑ ๏ฉ
29. sec ๏จ๏ฑ ๏ซ 15๏ฐ๏ฉ ๏ฝ csc ๏ฉ๏ซ90๏ฐ ๏ญ ๏จ๏ฑ ๏ซ 15๏ฐ๏ฉ๏น๏ป
๏ฝ csc ๏จ75๏ฐ ๏ญ ๏ฑ ๏ฉ
30. Using ๏ฑ ๏ฝ 50๏ฐ, 102๏ฐ, 248๏ฐ, and ๏ญ 26๏ฐ, we see
that sin ๏จ90๏ฐ ๏ญ ๏ฑ ๏ฉ and cos ๏ฑ yield the same
values.
For exercises 31โ40, if the functions in the equations
are cofunctions, then the equations are true if the sum
of the angles is 90ยบ.
31.
tan ๏ก ๏ฝ cot ๏จ๏ก ๏ซ 10๏ฐ๏ฉ
๏ก ๏ซ ๏จ๏ก ๏ซ 10๏ฐ๏ฉ ๏ฝ 90๏ฐ
2๏ก ๏ซ 10๏ฐ ๏ฝ 90๏ฐ
2๏ก ๏ฝ 80๏ฐ ๏ ๏ก ๏ฝ 40๏ฐ
32.
cos ๏ฑ ๏ฝ sin ๏จ 2๏ฑ ๏ญ 30๏ฐ๏ฉ
๏ฑ ๏ซ 2๏ฑ ๏ญ 30๏ฐ ๏ฝ 90๏ฐ
3๏ฑ ๏ญ 30๏ฐ ๏ฝ 90๏ฐ
3๏ฑ ๏ฝ 120๏ฐ ๏ ๏ฑ ๏ฝ 40๏ฐ
Copyright ยฉ 2021 Pearson Education, Inc.
118
33.
34.
35.
Chapter 2 Acute Angles and Right Triangles
sin ๏จ 2๏ฑ ๏ซ 10๏ฐ๏ฉ ๏ฝ cos ๏จ3๏ฑ ๏ญ 20๏ฐ๏ฉ
๏จ2๏ฑ ๏ซ 10๏ฐ๏ฉ ๏ซ ๏จ3๏ฑ ๏ญ 20๏ฐ๏ฉ ๏ฝ 90๏ฐ
5๏ฑ ๏ญ 10๏ฐ ๏ฝ 90๏ฐ
5๏ฑ ๏ฝ 100๏ฐ ๏ ๏ฑ ๏ฝ 20๏ฐ
sec ๏จ ๏ข ๏ซ 10๏ฐ๏ฉ ๏ฝ csc ๏จ 2 ๏ข ๏ซ 20๏ฐ๏ฉ
๏ซ
10
๏ฐ
๏ข
๏จ
๏ฉ ๏ซ ๏จ2 ๏ข ๏ซ 20๏ฐ๏ฉ ๏ฝ 90๏ฐ
3๏ข ๏ซ 30๏ฐ ๏ฝ 90๏ฐ
3๏ข ๏ฝ 60๏ฐ ๏ ๏ข ๏ฝ 20๏ฐ
tan ๏จ3๏ข ๏ซ 4๏ฐ๏ฉ ๏ฝ cot ๏จ5๏ข ๏ญ 10๏ฐ๏ฉ
๏จ3๏ข ๏ซ 4๏ฐ๏ฉ ๏ซ ๏จ5๏ข ๏ญ 10๏ฐ๏ฉ ๏ฝ 90๏ฐ
8๏ข ๏ญ 6๏ฐ ๏ฝ 90๏ฐ
8 ๏ข ๏ฝ 96๏ฐ ๏ ๏ข ๏ฝ 12๏ฐ
43. sin 46๏ฐ ๏ผ cos 46๏ฐ
Using the cofunction identity,
cos 46๏ฐ ๏ฝ sin ๏จ90๏ฐ ๏ญ 46๏ฐ๏ฉ ๏ฝ sin 44๏ฐ . In the
interval from 0ยบ to 90ยบ, as the angle increases,
so does the sine of the angle, so
sin 46๏ฐ ๏ผ sin 44๏ฐ ๏ sin 46๏ฐ ๏ผ cos 46๏ฐ is false.
44. cos 28๏ฐ ๏ผ sin 28๏ฐ
Using the cofunction identity,
sin 28๏ฐ ๏ฝ cos ๏จ90๏ฐ ๏ญ 28๏ฐ๏ฉ ๏ฝ cos 62๏ฐ . In the
interval from 0ยบ to 90ยบ, as the angle increases,
the cosine of the angle decreases, so
cos 28๏ฐ ๏ผ cos 62๏ฐ ๏ cos 28๏ฐ ๏ผ sin 28๏ฐ is false.
cot ๏จ5๏ฑ ๏ซ 2๏ฐ๏ฉ ๏ฝ tan ๏จ 2๏ฑ ๏ซ 4๏ฐ๏ฉ
๏จ5๏ฑ ๏ซ 2๏ฐ๏ฉ ๏ซ ๏จ2๏ฑ ๏ซ 4๏ฐ๏ฉ ๏ฝ 90๏ฐ
45. tan 41๏ฐ ๏ผ cot 41๏ฐ
Using the cofunction identity,
cot 41๏ฐ ๏ฝ tan ๏จ90๏ฐ ๏ญ 41๏ฐ๏ฉ ๏ฝ tan 49๏ฐ . In the
37.
sin ๏จ๏ฑ ๏ญ 20๏ฐ๏ฉ ๏ฝ cos ๏จ2๏ฑ ๏ซ 5๏ฐ๏ฉ
๏จ๏ฑ ๏ญ 20๏ฐ๏ฉ ๏ซ ๏จ2๏ฑ ๏ซ 5๏ฐ๏ฉ ๏ฝ 90๏ฐ
3๏ฑ ๏ญ 15๏ฐ ๏ฝ 90๏ฐ
3๏ฑ ๏ฝ 105๏ฐ ๏ ๏ฑ ๏ฝ 35๏ฐ
46. cot 30๏ฐ ๏ผ tan 40๏ฐ
Using the cofunction identity,
cot 30๏ฐ ๏ฝ tan ๏จ90๏ฐ ๏ญ 30๏ฐ๏ฉ ๏ฝ tan 60๏ฐ . In the
38.
cos ๏จ 2๏ฑ ๏ซ 50๏ฐ๏ฉ ๏ฝ sin ๏จ 2๏ฑ ๏ญ 20๏ฐ๏ฉ
๏จ2๏ฑ ๏ซ 50๏ฐ๏ฉ ๏ซ ๏จ2๏ฑ ๏ญ 20๏ฐ๏ฉ ๏ฝ 90๏ฐ
4๏ฑ ๏ซ 30๏ฐ ๏ฝ 90๏ฐ
4๏ฑ ๏ฝ 60๏ฐ ๏ ๏ฑ ๏ฝ 15๏ฐ
36.
7๏ฑ ๏ซ 6๏ฐ ๏ฝ 90๏ฐ
7๏ฑ ๏ฝ 84๏ฐ ๏ ๏ฑ ๏ฝ 12๏ฐ
39.
sec ๏จ3๏ข ๏ซ 10๏ฐ๏ฉ ๏ฝ csc ๏จ ๏ข ๏ซ 8๏ฐ๏ฉ
๏จ3๏ข ๏ซ 10๏ฐ๏ฉ ๏ซ ๏จ ๏ข ๏ซ 8๏ฐ๏ฉ ๏ฝ 90๏ฐ
4 ๏ข ๏ซ 18๏ฐ ๏ฝ 90๏ฐ
4 ๏ข ๏ฝ 72๏ฐ ๏ ๏ข ๏ฝ 18๏ฐ
40.
csc ๏จ ๏ข ๏ซ 40๏ฐ๏ฉ ๏ฝ sec ๏จ ๏ข ๏ญ 20๏ฐ๏ฉ
๏ซ
40
๏ฐ
๏ข
๏จ
๏ฉ ๏ซ ๏จ ๏ข ๏ญ 20๏ฐ๏ฉ ๏ฝ 90๏ฐ
2 ๏ข ๏ซ 20๏ฐ ๏ฝ 90๏ฐ
2 ๏ข ๏ฝ 70๏ฐ ๏ ๏ข ๏ฝ 35๏ฐ
interval from 0ยบ to 90ยบ, as the angle increases,
the tangent of the angle increases, so
tan 41๏ฐ ๏ผ tan 49๏ฐ ๏ tan 41๏ฐ ๏ผ cot 41๏ฐ is true.
interval from 0ยบ to 90ยบ, as the angle increases,
the tangent of the angle increases, so
tan 60๏ฐ ๏ผ tan 40๏ฐ ๏ cot 30๏ฐ ๏ผ cot 40๏ฐ is false.
47. sec 60๏ฐ ๏พ sec 30๏ฐ
In the interval from 0ยบ to 90ยบ, as the angle
increases, the cosine of the angle decreases, so
the secant of the angle increases. Thus,
sec 60๏ฐ ๏พ sec 30๏ฐ is true.
48. csc 20๏ฐ ๏ผ csc 30๏ฐ
In the interval from 0ยบ to 90ยบ, as the angle
increases, sine of the angle increases, so
cosecant of the angle decreases. Thus
csc 20๏ฐ ๏ผ csc 30๏ฐ is false.
Use the following figures for exercises 49โ64.
41. sin 50๏ฐ ๏พ sin 40๏ฐ
In the interval from 0ยบ to 90ยบ, as the angle
increases, so does the sine of the angle, so
sin 50ยบ > sin 40ยบ is true.
42. tan 28๏ฐ ๏ฃ tan 40๏ฐ
In the interval from 0ยบ to 90ยบ, as the angle
increases, the tangent of the angle increases,
so tan 40ยบ > tan 28ยบ ๏ tan 28๏ฐ ๏ฃ tan 40๏ฐ is
true.
side opposite
1
๏ฝ
side adjacent
3
1
3
3
๏ฝ
๏
๏ฝ
3
3 3
49. tan 30๏ฐ ๏ฝ
Copyright ยฉ 2021 Pearson Education, Inc.
Section 2.1 Trigonometric Functions of Acute Angles
50. cot 30๏ฐ ๏ฝ
side adjacent
3
๏ฝ
๏ฝ 3
side opposite
1
side opposite 1
๏ฝ
51. sin 30๏ฐ ๏ฝ
hypotenuse
2
52. cos 30๏ฐ ๏ฝ
65. Because sin 60๏ฐ ๏ฝ
and 90ยฐ, A ๏ฝ 60๏ฐ.
119
3
and 60ยฐ is between 0ยฐ
2
66. 0.7071067812 is a rational approximation for
2
(an irrational value).
the exact value
2
side adjacent
3
๏ฝ
hypotenuse
2
67.
hypotenuse
2
๏ฝ
side adjacent
3
2
3 2 3
๏ฝ
๏
๏ฝ
3
3 3
53. sec 30๏ฐ ๏ฝ
54. csc 30๏ฐ ๏ฝ
hypotenuse
2
๏ฝ ๏ฝ2
side opposite 1
55. csc 45๏ฐ ๏ฝ
hypotenuse
2
๏ฝ
๏ฝ 2
side opposite
1
56. sec 45๏ฐ ๏ฝ
hypotenuse
2
๏ฝ
๏ฝ 2
side adjacent
1
side adjacent
1
๏ฝ
hypotenuse
2
1
2
2
๏ฝ
๏
๏ฝ
2
2
2
58. cot 45๏ฐ ๏ฝ
side adjacent 1
๏ฝ ๏ฝ1
side opposite 1
59. tan 45๏ฐ ๏ฝ
side opposite 1
๏ฝ ๏ฝ1
side adjacent 1
side opposite
1
๏ฝ
hypotenuse
2
1
2
2
๏ฝ
๏
๏ฝ
2
2
2
3
x.
3
๏จ
๏ฉ
The line passes through ๏จ0, 0๏ฉ and 1, 3 .
๏จ0, 0๏ฉ . Let ๏จ x, y ๏ฉ be any other point on this
side opposite
3
๏ฝ
๏ฝ 3
side adjacent
1
hypotenuse
2
๏ฝ
side opposite
3
2
3 2 3
๏ฝ
๏
๏ฝ
3
3 3
equation of the line is y ๏ฝ
69. One point on the line y ๏ฝ 3x is the origin
side opposite
3
๏ฝ
hypotenuse
2
side adjacent 1
๏ฝ
62. cos 60๏ฐ ๏ฝ
hypotenuse
2
64. csc 60๏ฐ ๏ฝ
The slope is change in y over the change in x.
1
1
3
3
๏ฝ
๏
๏ฝ
and the
Thus, m ๏ฝ
3
3
3 3
The slope is change in y over the change in x.
3
Thus, m ๏ฝ
๏ฝ 3 and the equation of the
1
line is y ๏ฝ 3 x.
60. sin 45๏ฐ ๏ฝ
63. tan 60๏ฐ ๏ฝ
๏จ 3, 1๏ฉ.
68.
57. cos 45๏ฐ ๏ฝ
61. sin 60๏ฐ ๏ฝ
The line passes through (0, 0) and
line. Then, by the definition of slope,
y๏ญ0 y
๏ฝ ๏ฝ 3, but also, by the
m๏ฝ
x๏ญ0 x
definition of tangent, tan ๏ฑ ๏ฝ 3. Because
tan 60๏ฐ ๏ฝ 3, the line y ๏ฝ 3 x makes a 60ยฐ
angle with the positive x-axis (See exercise
68).
Copyright ยฉ 2021 Pearson Education, Inc.
120
Chapter 2 Acute Angles and Right Triangles
3
x, is the origin
3
๏จ0, 0๏ฉ . Let ๏จ x, y ๏ฉ be any other point on this
70. One point on the line y ๏ฝ
72. (a) The diagonal forms two isosceles right
triangles. Each angle formed by a side of
the square and the diagonal measures 45ยบ.
line. Then, by the definition of slope,
y๏ญ0 y
3
๏ฝ ๏ฝ
, but also, by the
m๏ฝ
3
x๏ญ0 x
3
. Because
3
3
3
tan 30๏ฐ ๏ฝ
, the line y ๏ฝ
x makes a 30ยฐ
3
3
angle with the positive x-axis. (See Exercise
67).
definition of tangent, tan ๏ฑ ๏ฝ
71. (a) Each of the angles of the equilateral
triangle has measure 13 ๏จ180๏ฐ๏ฉ ๏ฝ 60๏ฐ .
(b) The perpendicular bisects the opposite
side so the length of each side opposite
each 30ยบ angle is k.
(b) By the Pythagorean theorem,
k 2 ๏ซ k 2 ๏ฝ c 2 ๏ 2k 2 ๏ฝ c 2 ๏ c ๏ฝ 2 k .
Thus, the length of the diagonal is 2 k .
(c) In a 45ยบ-45ยบ right triangle, the hypotenuse
has a length that is 2 times as long as
either leg.
73. Apply the relationships between the lengths of
the sides of a 30๏ฐ ๏ญ 60๏ฐ right triangle first to
the triangle on the left to find the values of y
and x, and then to the triangle on the right to
find the values of z and w. In the 30๏ฐ ๏ญ 60๏ฐ
right triangle, the side opposite the 30๏ฐ angle
(c) Let x = the length of the perpendicular.
Then apply the Pythagorean
theorem.
is 12 the length of the hypotenuse. The longer
leg is
3 times the shorter leg.
x 2 ๏ซ k 2 ๏ฝ ๏จ 2k ๏ฉ ๏ x 2 ๏ซ k 2 ๏ฝ 4k 2 ๏
2
x 2 ๏ฝ 3k 2 ๏ x ๏ฝ 3k
The length of the perpendicular is
3k .
(d) In a 30ยบ-60ยบ right triangle, the hypotenuse
is always 2 times as long as the shorter
leg, and the longer leg has a length that is
3 times as long as that of the shorter
leg. Also, the shorter leg is opposite the
30ยบ angle, and the longer leg is opposite
the 60ยบ angle.
Thus, we have
1
9
9 3
y ๏ฝ ๏จ9๏ฉ ๏ฝ and x ๏ฝ y 3 ๏ฝ
2
2
2
9
9
3 3 3
y
,
y ๏ฝ z 3, so z ๏ฝ
๏ฝ 2 ๏ฝ
๏ฝ
6
2
3
3
๏ฆ3 3 ๏ถ
and w ๏ฝ 2 z , so w ๏ฝ 2 ๏ง
๏ท๏ฝ3 3
๏จ 2 ๏ธ
Copyright ยฉ 2021 Pearson Education, Inc.
Section 2.1 Trigonometric Functions of Acute Angles
74. Apply the relationships between the lengths of
the sides of a 30๏ฐ ๏ญ 60๏ฐ right triangle first to
the triangle on the left to find the values of a
and b. In the 30๏ฐ ๏ญ 60๏ฐ right triangle, the side
opposite the 30๏ฐ angle is 12 the length of the
3 times the
hypotenuse. The longer leg is
shorter leg.
1
๏จ24๏ฉ ๏ฝ 12 and b ๏ฝ a 3 ๏ฝ 12 3
2
Apply the relationships between the lengths of
the sides of a 45๏ฐ ๏ญ 45๏ฐ right triangle next to
the triangle on the right to find the values of d
and c. In the 45๏ฐ ๏ญ 45๏ฐ right triangle, the sides
opposite the 45๏ฐ angles measure the same.
121
Thus, we have r ๏ฝ q 3 ๏
q๏ฝ
r
15 2 15 2 3
๏ฝ
๏ฝ
๏
๏ฝ 5 6 and
3
3
3
3
๏จ ๏ฉ
t ๏ฝ 2q ๏ฝ 2 5 6 ๏ฝ 10 6
76. Apply the relationships between the lengths of
the sides of a 30๏ฐ ๏ญ 60๏ฐ right triangle first to
the triangle on the right to find the values of m
and a. In the 30๏ฐ ๏ญ 60๏ฐ right triangle, the side
opposite the 60๏ฐ angle is 3 times as long as
the side opposite to the 30๏ฐ angle. The length
of the hypotenuse is 2 times as long as the
shorter leg (opposite the 30๏ฐ angle).
a๏ฝ
The hypotenuse is 2 times the measure of a
leg. d ๏ฝ b ๏ฝ 12 3 and
๏จ
c ๏ฝ d 2 ๏ฝ 12 3
๏ฉ๏จ 2 ๏ฉ ๏ฝ 12 6
75. Apply the relationships between the lengths of
the sides of a 45๏ฐ ๏ญ 45๏ฐ right triangle to the
triangle on the left to find the values of p and
r. In the 45๏ฐ ๏ญ 45๏ฐ right triangle, the sides
opposite the 45๏ฐ angles measure the same.
The hypotenuse is
leg.
2 times the measure of a
Thus, we have
7๏ฝm 3๏m๏ฝ
7
7
3 7 3
๏ฝ
๏
๏ฝ
and
3
3
3 3
๏ฆ 7 3 ๏ถ 14 3
a ๏ฝ 2m ๏ a ๏ฝ 2 ๏ง
๏ท๏ฝ 3
๏จ 3 ๏ธ
Apply the relationships between the lengths of
the sides of a 45๏ฐ ๏ญ 45๏ฐ right triangle next to
the triangle on the left to find the values of n
and q. In the 45๏ฐ ๏ญ 45๏ฐ right triangle, the sides
opposite the 45๏ฐ angles measure the same.
The hypotenuse is
2 times the measure of a
leg. Thus, we have n ๏ฝ a ๏ฝ
14 3
and
3
๏ฆ 14 3 ๏ถ
14 6
q๏ฝn 2๏ฝ๏ง
.
2๏ฝ
๏ท
3
๏จ 3 ๏ธ
Thus, we have p ๏ฝ 15 and r ๏ฝ p 2 ๏ฝ 15 2
Apply the relationships between the lengths of
the sides of a 30๏ฐ ๏ญ 60๏ฐ right triangle next to
the triangle on the right to find the values of q
and t. In the 30๏ฐ ๏ญ 60๏ฐ right triangle, the side
opposite the 60๏ฐ angle is 3 times as long as
the side opposite to the 30๏ฐ angle. The length
of the hypotenuse is 2 times as long as the
shorter leg (opposite the 30๏ฐ angle).
77. Because A ๏ฝ
A๏ฝ
1
bh, we have
2
1
1
s2
๏ s ๏ s ๏ฝ s 2 or A ๏ฝ .
2
2
2
Copyright ยฉ 2021 Pearson Education, Inc.
122
Chapter 2 Acute Angles and Right Triangles
78. Let h be the height of the equilateral triangle. h
bisects the base, s, and forms two 30ยฐโ60ยฐ
right triangles.
81.
82. sin 45๏ฐ ๏ฝ
The formula for the area of a triangle is
1
A ๏ฝ bh. In this triangle, b = s. The height h
2
of the triangle is the side opposite the 60ยฐ
angle in either 30ยฐโ60ยฐ right triangle. The side
s
opposite the 30ยฐ angle is . The height
2
s
s 3
So the area of the entire
is 3 ๏ . ๏ฝ
2
2
1 ๏ฆ s 3 ๏ถ s2 3
๏ฝ
.
triangle is A ๏ฝ s ๏ง
2 ๏จ 2 ๏ท๏ธ
4
79. Graph the equations in the window
[โ1.5, 1.5] ร [โ1.2, 1.2]. The point of
intersection is (0.70710678, 0.70710678). This
๏ฆ 2
2๏ถ
corresponds to the point ๏ง
,
.
2 ๏ท๏ธ
๏จ 2
y
2
๏ y ๏ฝ 4 sin 45๏ฐ ๏ฝ 4 ๏
๏ฝ2 2
4
2
and
cos 45๏ฐ ๏ฝ
x
2
๏ x ๏ฝ 4 cos 45๏ฐ ๏ฝ 4 ๏
๏ฝ2 2
4
2
83. The legs of the right triangle provide the
๏จ
๏ฉ
coordinates of P, 2 2, 2 2 .
84.
y
3
๏ y ๏ฝ 2 sin 60๏ฐ ๏ฝ 2 ๏
๏ฝ 3
2
2
x
1
and cos 60๏ฐ ๏ฝ ๏ x ๏ฝ 2 cos 60๏ฐ ๏ฝ 2 ๏ ๏ฝ 1
2
2
The legs of the right triangle provide the
sin 60๏ฐ ๏ฝ
These coordinates are the sine and cosine
of 45ยฐ.
80. Yes, the third angle can be found by
subtracting the given acute angle from 90ยฐ,
and the remaining two sides can be found
using a trigonometric function involving the
known angle and side.
๏จ
๏ฉ
coordinates of P. P is 1, 3 .
Section 2.2 Trigonometric Functions of
Non-Acute Angles
1. The value of sin 240ยฐ is negative because 240ยฐ
is in quadrant III. The reference angle is 60ยฐ,
and the exact value of sin 240ยฐ is ๏ญ 23 .
2. The value of cos 390ยฐ is positive because 390ยฐ
is in quadrant I. The reference angle is 30ยฐ,
and the exact value of cos 390ยฐ is
Copyright ยฉ 2021 Pearson Education, Inc.
3
.
2
Section 2.2 Trigonometric Functions of Non-Acute Angles
7. A; ๏ญ135๏ฐ ๏ซ 360๏ฐ ๏ฝ 225๏ฐ and
225๏ฐ ๏ญ 180๏ฐ = 45ยฐ
(225ยฐ is in quadrant III)
3. The value of tan (โ150ยฐ) is positive because
โ150ยฐ is in quadrant III. The reference angle is
3
.
3
30ยฐ and the exact value of tan (โ150ยฐ) is
123
8. B; ๏ญ60๏ฐ ๏ซ 360๏ฐ ๏ฝ 300๏ฐ and
360๏ฐ ๏ญ 300๏ฐ ๏ฝ 60๏ฐ
(300ยฐ is in quadrant IV)
4. The value of sec 135ยฐ is negative because 135ยฐ
is in quadrant II. The reference angle is 45ยฐ,
and the exact value of sec 135ยฐ is ๏ญ 2.
9. D; 750๏ฐ ๏ญ 2 ๏ 360๏ฐ ๏ฝ 30๏ฐ
(30ยฐ is in quadrant I)
5. C; 180๏ฐ ๏ญ 98๏ฐ ๏ฝ 82๏ฐ
(98ยฐ is in quadrant II)
10. B; 480๏ฐ ๏ญ 360๏ฐ ๏ฝ 120๏ฐ and 180๏ฐ ๏ญ 120๏ฐ ๏ฝ 60๏ฐ
(120ยฐ is in quadrant II)
6. F; 212๏ฐ ๏ญ 180๏ฐ = 32ยฐ
(212ยฐ is in quadrant III)
๏ฑ
sin ๏ฑ
cos ๏ฑ
tan ๏ฑ
cot ๏ฑ
sec ๏ฑ
csc ๏ฑ
11.
30๏ฐ
1
2
3
2
3
3
3
2 3
3
2
12.
45๏ฐ
2
2
1
1
2
2
13.
60๏ฐ
3
2
14. 120๏ฐ
3
2
2
2
1
2
cos 120๏ฐ
๏ฝ ๏ญ cos 60๏ฐ
1
๏ฝ๏ญ
2
15. 135๏ฐ
2
2
๏ญ
2
2
16. 150๏ฐ
sin150๏ฐ
๏ฝ sin 30๏ฐ
1
๏ฝ
2
๏ญ
3
2
3
๏ญ 3
tan135๏ฐ
๏ฝ ๏ญ tan 45๏ฐ
๏ฝ ๏ญ1
๏ญ
17.
210๏ฐ
๏ญ
1
2
cos 210๏ฐ
๏ฝ ๏ญ cos 30๏ฐ
3
๏ฝ๏ญ
2
18.
240๏ฐ
3
๏ญ
2
๏ญ
3
3
3
3
1
2
tan 240๏ฐ
๏ฝ tan 60๏ฐ
๏ฝ 3
3
2
3
cot 120๏ฐ
๏ฝ ๏ญ cot 60๏ฐ sec120๏ฐ
๏ฝ ๏ญ sec 60๏ฐ
3
๏ฝ ๏ญ2
๏ฝ๏ญ
3
cot135๏ฐ
๏ฝ ๏ญ cot 45๏ฐ
๏ญ 2
๏ฝ ๏ญ1
sec150๏ฐ
cot150๏ฐ
๏ฝ ๏ญ sec 30๏ฐ
๏ฝ ๏ญ cot 30๏ฐ
2 3
๏ฝ๏ญ
๏ฝ๏ญ 3
3
sec 210๏ฐ
๏ฝ ๏ญ sec 30๏ฐ
3
2 3
๏ฝ๏ญ
3
cot 240๏ฐ
๏ฝ cot 60๏ฐ
๏ญ2
3
๏ฝ
3
Copyright ยฉ 2021 Pearson Education, Inc.
2 3
3
2 3
3
2
2
๏ญ2
๏ญ
2 3
3
124
Chapter 2 Acute Angles and Right Triangles
19. To find the reference angle for 300๏ฐ, sketch
this angle in standard position.
The reference angle is 360๏ฐ ๏ญ 300๏ฐ ๏ฝ 60๏ฐ.
Because 300ยฐ lies in quadrant IV, the sine,
tangent, cotangent, and cosecant are negative.
3
sin 300๏ฐ ๏ฝ ๏ญ sin 60๏ฐ ๏ฝ ๏ญ
2
1
cos 300๏ฐ ๏ฝ cos 60๏ฐ ๏ฝ
2
tan 300๏ฐ ๏ฝ ๏ญ tan 60๏ฐ ๏ฝ ๏ญ 3
3
cot 300๏ฐ ๏ฝ ๏ญ cot 60๏ฐ ๏ฝ ๏ญ
3
sec 300๏ฐ ๏ฝ sec 60๏ฐ ๏ฝ 2
2 3
csc 300๏ฐ ๏ฝ ๏ญ csc 60๏ฐ ๏ฝ ๏ญ
3
20. To find the reference angle for 315๏ฐ, sketch
this angle in standard position.
21. To find the reference angle for 405ยฐ, sketch
this angle in standard position.
The reference angle for 405ยฐ is
405ยฐ โ 360ยฐ = 45ยฐ. Because 405ยฐ lies in
quadrant I, the values of all of its
trigonometric functions will be positive, so
these values will be identical to the
trigonometric function values for 45ยฐ See the
Function Values of Special Angles table on
page 170.)
2
sin 405๏ฐ ๏ฝ sin 45๏ฐ ๏ฝ
2
2
cos 405๏ฐ ๏ฝ cos 45๏ฐ ๏ฝ
2
tan 405๏ฐ ๏ฝ tan 45๏ฐ ๏ฝ 1
cot 405๏ฐ ๏ฝ cot 45๏ฐ ๏ฝ 1
sec 405๏ฐ ๏ฝ sec 45๏ฐ ๏ฝ 2
csc 405๏ฐ ๏ฝ csc 45๏ฐ ๏ฝ 2
22. To find the reference angle for 420ยบ, sketch
this angle in standard position.
The reference angle is 360๏ฐ ๏ญ 315๏ฐ ๏ฝ 45๏ฐ.
Because 315ยฐ lies in quadrant IV, the sine,
tangent, cotangent, and cosecant are negative.
sin 315๏ฐ ๏ฝ ๏ญ sin 45๏ฐ ๏ฝ ๏ญ
2
2
2
2
tan 315๏ฐ ๏ฝ ๏ญ tan 45๏ฐ ๏ฝ ๏ญ1
cot 315๏ฐ ๏ฝ ๏ญ cot 45๏ฐ ๏ฝ ๏ญ1
sec 315๏ฐ ๏ฝ sec 45๏ฐ ๏ฝ 2
csc 315๏ฐ ๏ฝ ๏ญ csc 45๏ฐ ๏ฝ ๏ญ 2
cos 315๏ฐ ๏ฝ cos 45๏ฐ ๏ฝ
The reference angle for 420ยบ is
420ยบ โ 360ยบ = 60ยบ. Because 420ยบ lies in
quadrant I, the values of all of its
trigonometric functions will be positive, so
these values will be identical to the
trigonometric function values for 60ยฐ. See the
Function Values of Special Angles table on
page 170.)
3
sin ๏จ 420๏ฐ๏ฉ ๏ฝ sin 60๏ฐ ๏ฝ
2
1
cos ๏จ 420๏ฐ๏ฉ ๏ฝ cos 60๏ฐ๏ฝ
2
tan ๏จ 420๏ฐ๏ฉ ๏ฝ tan 60๏ฐ ๏ฝ 3
(continued on next page)
Copyright ยฉ 2021 Pearson Education, Inc.
Section 2.2 Trigonometric Functions of Non-Acute Angles
125
cot 495๏ฐ ๏ฝ ๏ญ cot 45๏ฐ ๏ฝ ๏ญ1
sec 495๏ฐ ๏ฝ ๏ญ sec 45๏ฐ ๏ฝ ๏ญ 2
csc 495๏ฐ ๏ฝ csc 45๏ฐ ๏ฝ 2
(continued)
3
3
sec ๏จ 420๏ฐ๏ฉ ๏ฝ sec 60๏ฐ ๏ฝ 2
cot ๏จ 420๏ฐ๏ฉ ๏ฝ cot 60๏ฐ ๏ฝ
25. To find the reference angle for 570ยบ sketch this
angle in standard position.
2 3
csc ๏จ 420๏ฐ๏ฉ ๏ฝ csc 60๏ฐ๏ฝ
3
23. To find the reference angle for 480ยบ, sketch
this angle in standard position.
480ยบ is coterminal with 480ยบ โ 360ยบ = 120ยบ.
The reference angle is 180ยบ โ 120ยบ = 60ยบ.
Because 480ยบ lies in quadrant II, the cosine,
tangent, cotangent, and secant are negative.
3
sin ๏จ 480๏ฐ๏ฉ ๏ฝ sin 60๏ฐ ๏ฝ
2
1
cos ๏จ 480๏ฐ๏ฉ ๏ฝ ๏ญ cos 60๏ฐ๏ฝ ๏ญ
2
tan ๏จ 480๏ฐ๏ฉ ๏ฝ ๏ญ tan 60๏ฐ ๏ฝ ๏ญ 3
cot ๏จ 480๏ฐ๏ฉ ๏ฝ ๏ญ cot 60๏ฐ ๏ฝ ๏ญ
sec ๏จ 80๏ฐ๏ฉ ๏ฝ ๏ญ sec 60๏ฐ ๏ฝ ๏ญ2
3
3
570ยฐ is coterminal with 570ยบ โ 360ยบ = 210ยบ.
The reference angle is 210ยบ โ 180ยบ = 30ยบ.
Because 570ยบ lies in quadrant III, the sine,
cosine, secant, and cosecant are negative.
1
sin 570๏ฐ ๏ฝ ๏ญ sin 30๏ฐ ๏ฝ ๏ญ
2
3
cos 570๏ฐ ๏ฝ ๏ญ cos 30๏ฐ ๏ฝ ๏ญ
2
3
tan 570๏ฐ ๏ฝ tan 30๏ฐ ๏ฝ
3
cot 570๏ฐ ๏ฝ cot 30๏ฐ ๏ฝ 3
2 3
sec 570๏ฐ ๏ฝ ๏ญ sec 30๏ฐ ๏ฝ ๏ญ
3
csc 570๏ฐ ๏ฝ ๏ญ csc 30๏ฐ ๏ฝ ๏ญ2
26. To find the reference angle for 750ยฐ, sketch
this angle in standard position.
2 3
csc ๏จ 480๏ฐ๏ฉ ๏ฝ csc 60๏ฐ๏ฝ
3
24. To find the reference angle for 495ยบ, sketch
this angle in standard position.
495ยบ is coterminal with 495ยบ โ 360ยบ = 135ยบ.
The reference angle is 180ยบ โ 135ยบ = 45ยบ.
Because 495ยฐ lies in quadrant II, the cosine,
tangent, cotangent, and secant are negative.
2
sin 495๏ฐ ๏ฝ sin 45๏ฐ ๏ฝ
2
2
cos 495๏ฐ ๏ฝ ๏ญ cos 45๏ฐ ๏ฝ ๏ญ
2
tan 495๏ฐ ๏ฝ ๏ญ tan 45๏ฐ ๏ฝ ๏ญ1
750ยฐ is coterminal with 30๏ฐ because
750๏ฐ ๏ญ 2 ๏ 360๏ฐ ๏ฝ 750๏ฐ ๏ญ 720๏ฐ ๏ฝ 30๏ฐ. Because
750๏ฐ lies in quadrant I, the values of all of its
trigonometric functions will be positive, so
these values will be identical to the
trigonometric function values for 30๏ฐ.
1
sin 750๏ฐ ๏ฝ sin 30๏ฐ ๏ฝ
2
3
cos 750๏ฐ ๏ฝ cos 30๏ฐ ๏ฝ
2
3
tan 750๏ฐ ๏ฝ tan 30๏ฐ ๏ฝ
3
(continued on next page)
Copyright ยฉ 2021 Pearson Education, Inc.
126
Chapter 2 Acute Angles and Right Triangles
(continued)
cot 750๏ฐ ๏ฝ cot 30๏ฐ ๏ฝ 3
2 3
sec 750๏ฐ ๏ฝ sec 30๏ฐ ๏ฝ
3
csc 750๏ฐ ๏ฝ csc 30๏ฐ ๏ฝ 2
27. 1305ยบ is coterminal with
1305๏ฐ ๏ญ 3 ๏ 360๏ฐ ๏ฝ 1305๏ฐ ๏ฝ 1080๏ฐ ๏ฝ 225๏ฐ . The
reference angle is 225ยบ โ 180ยบ = 45ยบ. Because
1305ยบ lies in quadrant III, the sine, cosine, and
secant and cosecant are negative.
2
sin1305๏ฐ ๏ฝ ๏ญ sin 45๏ฐ ๏ฝ ๏ญ
2
2
cos1305๏ฐ ๏ฝ ๏ญ cos 45๏ฐ ๏ฝ ๏ญ
2
tan1305๏ฐ ๏ฝ tan 45๏ฐ ๏ฝ 1
cot1305๏ฐ ๏ฝ cot 45๏ฐ ๏ฝ 1
sec1305๏ฐ ๏ฝ ๏ญ sec 45๏ฐ ๏ฝ ๏ญ 2
csc1305๏ฐ ๏ฝ ๏ญ csc 45๏ฐ ๏ฝ ๏ญ 2
28. 1500ยบ is coterminal with
1500๏ฐ ๏ญ 4 ๏ 360๏ฐ ๏ฝ 1500๏ฐ ๏ญ 1440๏ฐ ๏ฝ 60๏ฐ .
Because 1500ยบ lies in quadrant I, the values of
all of its trigonometric functions will be
positive, so these values will be identical to
the trigonometric function values for 60ยฐ.
3
sin ๏จ 420๏ฐ๏ฉ ๏ฝ sin 60๏ฐ ๏ฝ
2
1
cos ๏จ 420๏ฐ๏ฉ ๏ฝ cos 60๏ฐ๏ฝ
2
tan ๏จ 420๏ฐ๏ฉ ๏ฝ tan 60๏ฐ ๏ฝ 3
3
3
sec ๏จ 420๏ฐ๏ฉ ๏ฝ sec 60๏ฐ ๏ฝ 2
cot ๏จ 420๏ฐ๏ฉ ๏ฝ cot 60๏ฐ ๏ฝ
csc ๏จ 420๏ฐ๏ฉ ๏ฝ csc 60๏ฐ๏ฝ
The reference angle for ๏ญ300๏ฐ is
๏ญ300๏ฐ ๏ซ 360๏ฐ ๏ฝ 60๏ฐ. Because ๏ญ300๏ฐ lies in
quadrant I, the values of all of its
trigonometric functions will be positive, so
these values will be identical to the
trigonometric function values for 60ยฐ. See the
Function Values of Special Angles table on
page 170.)
3
sin ๏จ ๏ญ 300๏ฐ๏ฉ ๏ฝ sin 60๏ฐ ๏ฝ
2
1
cos ๏จ ๏ญ 300๏ฐ๏ฉ ๏ฝ cos 60๏ฐ๏ฝ
2
tan ๏จ ๏ญ 300๏ฐ๏ฉ ๏ฝ tan 60๏ฐ ๏ฝ 3
3
3
sec ๏จ ๏ญ 300๏ฐ๏ฉ ๏ฝ sec 60๏ฐ ๏ฝ 2
cot ๏จ ๏ญ 300๏ฐ๏ฉ ๏ฝ cot 60๏ฐ ๏ฝ
csc ๏จ ๏ญ 300๏ฐ๏ฉ ๏ฝ csc 60๏ฐ๏ฝ
2 3
3
30. โ390ยฐ is coterminal with
๏ญ390๏ฐ ๏ซ 2 ๏ 360๏ฐ ๏ฝ ๏ญ390๏ฐ ๏ซ 720๏ฐ ๏ฝ 330๏ฐ. The
reference angle is 360๏ฐ ๏ญ 330๏ฐ ๏ฝ 30๏ฐ. Because
โ390ยฐ lies in quadrant IV, the sine, tangent,
cotangent, and cosecant are negative.
1
sin ๏จ ๏ญ390๏ฐ๏ฉ ๏ฝ ๏ญ sin 30๏ฐ ๏ฝ ๏ญ
2
3
cos ๏จ ๏ญ390๏ฐ๏ฉ ๏ฝ cos 30๏ฐ ๏ฝ
2
3
tan ๏จ ๏ญ390๏ฐ๏ฉ ๏ฝ ๏ญ tan 30๏ฐ ๏ฝ ๏ญ
3
cot ๏จ ๏ญ390๏ฐ๏ฉ ๏ฝ ๏ญ cot 30๏ฐ ๏ฝ ๏ญ 3
2 3
3
csc ๏จ ๏ญ390๏ฐ๏ฉ ๏ฝ ๏ญ csc 30๏ฐ ๏ฝ ๏ญ2
sec ๏จ ๏ญ390๏ฐ๏ฉ ๏ฝ sec 30๏ฐ ๏ฝ
2 3
3
29. To find the reference angle for ๏ญ300๏ฐ, sketch
this angle in standard position.
31. โ510ยฐ is coterminal with
๏ญ510๏ฐ ๏ซ 2 ๏ 360๏ฐ ๏ฝ ๏ญ510๏ฐ ๏ซ 720๏ฐ ๏ฝ 210๏ฐ. The
reference angle is 210๏ฐ ๏ญ 180๏ฐ ๏ฝ 30๏ฐ. Because
โ510ยฐ lies in quadrant III, the sine, cosine, and
secant and cosecant are negative.
1
sin ๏จ ๏ญ510๏ฐ๏ฉ ๏ฝ ๏ญ sin 30๏ฐ ๏ฝ ๏ญ
2
3
cos ๏จ ๏ญ510๏ฐ๏ฉ ๏ฝ ๏ญ cos 30๏ฐ ๏ฝ ๏ญ
2
3
tan ๏จ ๏ญ510๏ฐ๏ฉ ๏ฝ tan 30๏ฐ ๏ฝ
3
cot ๏จ ๏ญ510๏ฐ๏ฉ ๏ฝ cot 30๏ฐ ๏ฝ 3
2 3
3
csc ๏จ ๏ญ510๏ฐ๏ฉ ๏ฝ ๏ญ csc 30๏ฐ ๏ฝ ๏ญ2
sec ๏จ ๏ญ510๏ฐ๏ฉ ๏ฝ ๏ญ sec 30๏ฐ ๏ฝ ๏ญ
Copyright ยฉ 2021 Pearson Education, Inc.
Section 2.2 Trigonometric Functions of Non-Acute Angles
32. โ1020ยบ is coterminal with
๏ญ1020๏ฐ ๏ซ 3 ๏ 360๏ฐ ๏ฝ ๏ญ1020๏ฐ ๏ซ 1080๏ฐ ๏ฝ 60๏ฐ .
Because โ1020ยบ lies in quadrant I, the values
of all of its trigonometric functions will be
positive, so these values will be identical to
the trigonometric function values for 60๏ฐ.
3
2
1
cos ๏จ 420๏ฐ๏ฉ ๏ฝ cos 60๏ฐ๏ฝ
2
tan ๏จ 420๏ฐ๏ฉ ๏ฝ tan 60๏ฐ ๏ฝ 3
sin ๏จ 420๏ฐ๏ฉ ๏ฝ sin 60๏ฐ ๏ฝ
35. โ1860ยบ is coterminal with
๏ญ1860๏ฐ ๏ซ 6 ๏ 360๏ฐ ๏ฝ ๏ญ1860๏ฐ ๏ซ 2160๏ฐ ๏ฝ 300๏ฐ .
The reference angle is 360ยบ โ 300ยบ = 60ยบ.
Because โ1860ยบ lies in quadrant IV, the sine,
tangent, cotangent, and cosecant are negative.
3
sin ๏จ ๏ญ 1860๏ฐ๏ฉ ๏ฝ ๏ญ sin 60๏ฐ ๏ฝ ๏ญ
2
1
cos ๏จ ๏ญ 1860๏ฐ๏ฉ ๏ฝ cos 60๏ฐ๏ฝ
2
tan ๏จ ๏ญ 1860๏ฐ๏ฉ ๏ฝ ๏ญ tan 60๏ฐ ๏ฝ ๏ญ 3
cot ๏จ ๏ญ 1860๏ฐ๏ฉ ๏ฝ ๏ญ cot 60๏ฐ ๏ฝ ๏ญ
3
cot ๏จ 420๏ฐ๏ฉ ๏ฝ cot 60๏ฐ ๏ฝ
3
sec ๏จ 420๏ฐ๏ฉ ๏ฝ sec 60๏ฐ ๏ฝ 2
sec ๏จ ๏ญ 1860๏ฐ๏ฉ ๏ฝ sec 60๏ฐ ๏ฝ 2
csc ๏จ ๏ญ 1860๏ฐ๏ฉ ๏ฝ ๏ญ csc 60๏ฐ๏ฝ ๏ญ
2 3
csc ๏จ 420๏ฐ๏ฉ ๏ฝ csc 60๏ฐ๏ฝ
3
33. โ1290ยฐ is coterminal with
๏ญ1290๏ฐ ๏ซ 4 ๏ 360๏ฐ ๏ฝ ๏ญ1290๏ฐ ๏ซ 1440๏ฐ ๏ฝ 150๏ฐ.
The reference angle is 180๏ฐ ๏ญ 150๏ฐ ๏ฝ 30๏ฐ.
Because โ1290ยฐ lies in quadrant II, the cosine,
tangent, cotangent, and secant are negative.
1
sin 2670๏ฐ ๏ฝ sin 30๏ฐ ๏ฝ
2
3
cos 2670๏ฐ ๏ฝ ๏ญ cos 30๏ฐ ๏ฝ ๏ญ
2
3
tan 2670๏ฐ ๏ฝ ๏ญ tan 30๏ฐ ๏ฝ ๏ญ
3
cot 2670๏ฐ ๏ฝ ๏ญ cot 30๏ฐ ๏ฝ ๏ญ 3
2 3
sec 2670๏ฐ ๏ฝ ๏ญ sec 30๏ฐ ๏ฝ ๏ญ
3
csc 2670๏ฐ ๏ฝ csc 30๏ฐ ๏ฝ 2
34. โ855ยบ is coterminal with
๏ญ855๏ฐ ๏ซ 3 ๏ 360๏ฐ ๏ฝ ๏ญ855๏ฐ ๏ซ 1080๏ฐ ๏ฝ 225๏ฐ . The
reference angle is 225ยบ โ 180ยบ = 45ยบ. Because
โ855ยบ lies in quadrant III, the sine, cosine, and
secant and cosecant are negative.
2
sin ๏จ ๏ญ855๏ฐ๏ฉ ๏ฝ ๏ญ sin 45๏ฐ ๏ฝ ๏ญ
2
2
cos ๏จ ๏ญ855๏ฐ๏ฉ ๏ฝ ๏ญ cos 45๏ฐ ๏ฝ ๏ญ
2
tan ๏จ ๏ญ855๏ฐ๏ฉ ๏ฝ tan 45๏ฐ ๏ฝ 1
cot ๏จ ๏ญ855๏ฐ๏ฉ ๏ฝ cot 45๏ฐ ๏ฝ 1
sec ๏จ ๏ญ855๏ฐ๏ฉ ๏ฝ ๏ญ sec 45๏ฐ ๏ฝ ๏ญ 2
csc ๏จ ๏ญ855๏ฐ๏ฉ ๏ฝ ๏ญ csc 45๏ฐ ๏ฝ ๏ญ 2
127
3
3
2 3
3
36. โ2205ยบ is coterminal with
๏ญ2205๏ฐ ๏ซ 7 ๏ 360๏ฐ ๏ฝ ๏ญ2205๏ฐ ๏ซ 2520๏ฐ ๏ฝ 315๏ฐ .
The reference angle is 360ยบ โ 315ยบ = 45ยบ.
Because โ2205ยบ lies in quadrant IV, the sine,
tangent, cotangent, and cosecant are negative.
2
sin ๏จ ๏ญ 2205๏ฐ๏ฉ ๏ฝ ๏ญ sin 45๏ฐ ๏ฝ ๏ญ
2
2
cos ๏จ ๏ญ 2205๏ฐ๏ฉ ๏ฝ cos 45๏ฐ๏ฝ
2
tan ๏จ ๏ญ 2205๏ฐ๏ฉ ๏ฝ ๏ญ tan 45๏ฐ ๏ฝ ๏ญ1
cot ๏จ ๏ญ 2205๏ฐ๏ฉ ๏ฝ ๏ญ cot 45๏ฐ ๏ฝ ๏ญ1
sec ๏จ ๏ญ 2205๏ฐ๏ฉ ๏ฝ sec 45๏ฐ ๏ฝ 2
csc ๏จ ๏ญ 2205๏ฐ๏ฉ ๏ฝ ๏ญ csc 45๏ฐ๏ฝ ๏ญ 2
37. Because 1305๏ฐ is coterminal with an angle of
1305๏ฐ ๏ญ 3 ๏ 360๏ฐ ๏ฝ 1305๏ฐ ๏ญ 1080๏ฐ ๏ฝ 225๏ฐ, it lies
in quadrant III. Its reference angle is
225๏ฐ ๏ญ 180๏ฐ ๏ฝ 45๏ฐ. Because the sine is
negative in quadrant III, we have
2
sin1305๏ฐ ๏ฝ ๏ญ sin 45๏ฐ ๏ฝ ๏ญ
.
2
38. Because 1500๏ฐ is coterminal with an angle of
1500๏ฐ ๏ญ 4 ๏ 360๏ฐ ๏ฝ 1500๏ฐ ๏ญ 1440๏ฐ ๏ฝ 60๏ฐ, it lies
in quadrant I. Because 1500๏ฐ lies in quadrant
I, the values of all of its trigonometric
functions will be positive, so
3
sin1500๏ฐ ๏ฝ sin 60๏ฐ ๏ฝ
.
2
Copyright ยฉ 2021 Pearson Education, Inc.
128
Chapter 2 Acute Angles and Right Triangles
39. Because ๏ญ510๏ฐ is coterminal with an angle of
๏ญ510๏ฐ ๏ซ 2 ๏ 360๏ฐ ๏ฝ ๏ญ510๏ฐ ๏ซ 720๏ฐ ๏ฝ 210๏ฐ, it lies
in quadrant III. Its reference angle is
210๏ฐ ๏ญ 180๏ฐ ๏ฝ 30๏ฐ. The cosine is negative in
quadrant III, so
3
cos ๏จ ๏ญ510๏ฐ๏ฉ ๏ฝ ๏ญ cos 30๏ฐ ๏ฝ ๏ญ
.
2
40. Because ๏ญ1020๏ฐ is coterminal with an angle
of ๏ญ1020๏ฐ ๏ซ 3 ๏ 360๏ฐ ๏ฝ ๏ญ1020๏ฐ ๏ซ 1080๏ฐ ๏ฝ 60๏ฐ,
it lies in quadrant I. Because ๏ญ1020๏ฐ lies in
quadrant I, the values of all of its
trigonometric functions will be positive, so
tan ๏จ ๏ญ1020๏ฐ๏ฉ ๏ฝ tan 60๏ฐ ๏ฝ 3.
41. Because โ855ยบ is coterminal with
๏ญ855๏ฐ ๏ซ 3 ๏ 360๏ฐ ๏ฝ ๏ญ855๏ฐ ๏ซ 1080๏ฐ ๏ฝ 225๏ฐ , it
lies in quadrant III. Its reference angle is
225ยบ โ 180ยบ = 45ยบ. The cosecant is negative in
quadrant III, so
csc ๏จ ๏ญ855๏ฐ๏ฉ ๏ฝ ๏ญ csc 45๏ฐ ๏ฝ ๏ญ 2.
42. Because โ495ยบ is coterminal with an angle of
๏ญ495๏ฐ ๏ซ 2 ๏ 360๏ฐ ๏ฝ ๏ญ495๏ฐ ๏ซ 720๏ฐ ๏ฝ 225๏ฐ , it lies
in quadrant III. Its reference angle is
225๏ฐ ๏ญ 180๏ฐ ๏ฝ 45๏ฐ. Tthe secant is negative in
quadrant III, so sec ๏จ ๏ญ495๏ฐ๏ฉ ๏ฝ ๏ญ sec 45๏ฐ ๏ฝ ๏ญ 2.
43. Because 3015ยบ is coterminal with
3015๏ฐ ๏ญ 8 ๏ 360๏ฐ ๏ฝ 3015๏ฐ ๏ญ 2880๏ฐ ๏ฝ 135๏ฐ , it
lies in quadrant II. Its reference angle is
180ยบ โ 135ยบ = 45ยบ. The tangent is negative in
quadrant II, so tan 3015๏ฐ ๏ฝ ๏ญ tan 45๏ฐ ๏ฝ ๏ญ1.
44. Because 2280ยบ is coterminal with
2280๏ฐ ๏ญ 6 ๏ 360๏ฐ ๏ฝ 2280๏ฐ ๏ญ 2160๏ฐ ๏ฝ 120๏ฐ , it
lies in quadrant II. Its reference angle is
180ยบ โ 120ยบ = 60ยบ. The cotangent is negative
in quadrant II, so
3
cot 2280๏ฐ ๏ฝ ๏ญ cot 60๏ฐ ๏ฝ ๏ญ
.
3
2
๏ฆ 3 ๏ถ ๏ฆ 1 ๏ถ2
45. sin 2 120๏ฐ ๏ซ cos 2 120๏ฐ ๏ฝ ๏ง
๏ท ๏ซ๏ง ๏ท
๏จ 2 ๏ธ ๏จ2๏ธ
3 1
๏ฝ ๏ซ ๏ฝ1
4 4
2
๏ฆ
2๏ถ ๏ฆ
2๏ถ
46. sin 225๏ฐ ๏ซ cos 225๏ฐ ๏ฝ ๏ง ๏ญ
๏ซ ๏ง๏ญ
๏ท
๏ท
๏จ 2 ๏ธ ๏จ 2 ๏ธ
2 2
๏ฝ ๏ซ ๏ฝ1
4 4
2
2
47. 2 tan 2 120๏ฐ ๏ซ 3sin 2 150๏ฐ ๏ญ cos 2 180๏ฐ
๏จ
๏ฝ2 ๏ญ 3
2
๏ฉ ๏ซ 3 ๏ฆ๏ง๏จ 12 ๏ถ๏ท๏ธ ๏ญ ๏จ๏ญ1๏ฉ
2
2
23
๏ฆ1๏ถ
๏ฝ 2 ๏จ3๏ฉ ๏ซ 3 ๏ง ๏ท ๏ญ 1 ๏ฝ
๏จ4๏ธ
4
48. cot 2 135๏ฐ ๏ญ sin 30๏ฐ ๏ซ 4 tan 45๏ฐ
1
1
9
2
๏ฝ ๏จ ๏ญ1๏ฉ ๏ญ ๏ซ 4 ๏จ1๏ฉ ๏ฝ 1 ๏ญ ๏ซ 4 ๏ฝ
2
2
2
49. sin 2 225๏ฐ ๏ญ cos 2 270๏ฐ ๏ซ tan 2 60๏ฐ
2
๏ฆ
2๏ถ
2
๏ฝ ๏ง๏ญ
๏ท ๏ซ0 ๏ซ
๏จ 2 ๏ธ
๏จ 3 ๏ฉ ๏ฝ 24 ๏ซ 3 ๏ฝ 72
2
50. cot 2 90๏ฐ ๏ญ sec2 180๏ฐ ๏ซ csc 2 135๏ฐ
๏ฝ 02 ๏ญ ๏จ ๏ญ1๏ฉ ๏ซ
2
๏จ 2 ๏ฉ ๏ฝ ๏ญ1 ๏ซ 2 ๏ฝ 1
2
51. cos 2 60๏ฐ ๏ซ sec2 150๏ฐ ๏ญ csc2 210๏ฐ
2
2
2
๏ฆ1๏ถ ๏ฆ 2 3 ๏ถ
๏ฝ ๏ง ๏ท ๏ซ ๏ง๏ญ
๏ญ ๏จ ๏ญ2๏ฉ
๏จ2๏ธ ๏จ
3 ๏ท๏ธ
1 4
29
๏ฝ ๏ซ ๏ญ4๏ฝ๏ญ
4 3
12
52. cot 2 135๏ฐ ๏ซ tan 4 60๏ฐ ๏ญ sin 4 180๏ฐ
๏ฝ ๏จ๏ญ1๏ฉ ๏ซ
2
๏จ 3 ๏ฉ ๏ญ 0 ๏ฝ 1 ๏ซ 9 ๏ฝ 10
4
4
?
53. cos ๏จ30๏ฐ ๏ซ 60๏ฐ๏ฉ ๏ฝ cos 30๏ฐ ๏ซ cos 60๏ฐ
Evaluate each side to determine whether this
statement is true or false.
cos ๏จ30๏ฐ ๏ซ 60๏ฐ๏ฉ ๏ฝ cos 90๏ฐ ๏ฝ 0 and
cos 30๏ฐ ๏ซ cos 60๏ฐ ๏ฝ
0๏น
3 1
๏ซ ๏ฝ
2
2
3 ๏ซ1
2
3 ๏ซ1
, so the statement is false.
2
?
54. sin 30๏ฐ ๏ซ sin 60๏ฐ ๏ฝ sin ๏จ30๏ฐ ๏ซ 60๏ฐ๏ฉ
Evaluate each side to determine whether this
statement is true or false.
1
3 1๏ซ 3
and
sin 30๏ฐ ๏ซ sin 60๏ฐ ๏ฝ ๏ซ
๏ฝ
2
2
2
sin ๏จ30๏ฐ ๏ซ 60๏ฐ๏ฉ ๏ฝ sin 90๏ฐ ๏ฝ 1
2
Because
1๏ซ 3
๏น 1, the given statement is
2
false.
Copyright ยฉ 2021 Pearson Education, Inc.
Section 2.2 Trigonometric Functions of Non-Acute Angles
?
55. cos 60๏ฐ ๏ฝ 2 cos 30๏ฐ
Evaluate each side to determine whether this
statement is true or false.
๏ฆ 3๏ถ
1
and 2cos 30๏ฐ ๏ฝ 2 ๏ง
cos 60๏ฐ ๏ฝ
๏ท๏ฝ 3
2
๏จ 2 ๏ธ
1
Because ๏น 3, the statement is false.
2
?
56. cos 60๏ฐ ๏ฝ 2 cos 2 30๏ฐ ๏ญ 1
Evaluate each side to determine whether this
statement is true or false.
1
cos 60๏ฐ ๏ฝ and
2
2
๏ฆ 3๏ถ
๏ฆ3๏ถ
2 cos 30๏ฐ ๏ญ 1 ๏ฝ 2 ๏ง
๏ท ๏ญ 1 ๏ฝ 2 ๏ง๏จ 4 ๏ท๏ธ ๏ญ 1
2
๏จ
๏ธ
3
1
๏ฝ ๏ญ1 ๏ฝ
2
2
1 1
Because ๏ฝ , the statement is true.
2 2
2
?
57. sin 2 45๏ฐ ๏ซ cos 2 45๏ฐ ๏ฝ 1
2
2
๏ฆ 2๏ถ
๏ฆ 2๏ถ
2 2
๏ง 2 ๏ท ๏ซ ๏ง 2 ๏ท ๏ฝ 4 ๏ซ 4 ๏ฝ1
๏จ
๏ธ
๏จ
๏ธ
Because 1 = 1, the statement is true.
58. tan 2 60๏ฐ ๏ซ 1 ๏ฝ sec 2 60๏ฐ
Evaluate each side to determine whether this
statement is true or false.
tan 2 60๏ฐ ๏ซ 1 ๏ฝ
๏จ 3 ๏ฉ ๏ซ 1 ๏ฝ 3 ๏ซ 1 ๏ฝ 4 and
2
sec 2 60๏ฐ ๏ฝ 22 ๏ฝ 4 . Because 4 = 4, the
statement is true.
?
59. cos ๏จ 2 ๏ 45๏ฉ ๏ฐ ๏ฝ 2 cos 45๏ฐ
Evaluate each side to determine whether this
statement is true or false.
cos ๏จ 2 ๏ 45๏ฉ ๏ฐ ๏ฝ cos 90๏ฐ ๏ฝ 0 and
3
๏ฆ1๏ถ๏ฆ 3 ๏ถ
2 sin 30๏ฐ ๏ cos 30๏ฐ ๏ฝ 2 ๏ง ๏ท ๏ง
๏ฝ
๏จ 2 ๏ธ ๏จ 2 ๏ท๏ธ
2
Because
Because 0 ๏น 2, the statement is false.
?
60. sin ๏จ2 ๏ 30๏ฐ๏ฉ ๏ฝ 2 sin 30๏ฐ ๏ cos 30๏ฐ
Evaluate each side to determine whether this
statement is true or false.
3
sin ๏จ2 ๏ 30๏ฐ๏ฉ ๏ฝ sin 60๏ฐ ๏ฝ
2
3
3
๏ฝ
, the statement is true.
2
2
1
2
Because sin ๏ฑ is positive, ๏ฑ must lie in
quadrants I or II. Because one angle, namely
30๏ฐ, lies in quadrant I, that angle is also the
reference angle, ๏ฑ ๏ข. The angle in quadrant II
will be 180๏ฐ ๏ญ ๏ฑ ๏ข ๏ฝ 180๏ฐ ๏ญ 30๏ฐ ๏ฝ 150๏ฐ.
61. sin ๏ฑ ๏ฝ
3
2
Because cos ๏ฑ is positive, ๏ฑ must lie in
quadrants I or IV. One angle, namely 30๏ฐ, lies
in quadrant I, so that angle is also the
reference angle, ๏ฑ ๏ข. The angle in quadrant IV
will be 360๏ฐ ๏ญ ๏ฑ ๏ข ๏ฝ 360๏ฐ ๏ญ 30๏ฐ ๏ฝ 330๏ฐ.
62. cos ๏ฑ ๏ฝ
63. tan ๏ฑ ๏ฝ ๏ญ 3
Because tan ๏ฑ is negative, ๏ฑ must lie in
quadrants II or IV. The absolute value of
tan ๏ฑ is 3, so the reference angle, ๏ฑ ๏ข must
be 60๏ฐ. The quadrant II angle ๏ฑ equals
180๏ฐ ๏ญ ๏ฑ ๏ข ๏ฝ 180๏ฐ ๏ญ 60๏ฐ ๏ฝ 120๏ฐ, and the
quadrant IV angle ๏ฑ equals
360๏ฐ ๏ญ ๏ฑ ๏ข ๏ฝ 360๏ฐ ๏ญ 60๏ฐ ๏ฝ 300๏ฐ.
64. sec ๏ฑ ๏ฝ ๏ญ 2
Because sec ๏ฑ is negative, ๏ฑ must lie in
quadrants II or III. The absolute value of
sec ๏ฑ is 2, so the reference angle, ๏ฑ ๏ข must
be 45๏ฐ. The quadrant II angle ๏ฑ equals
180๏ฐ ๏ญ ๏ฑ ๏ข ๏ฝ 180๏ฐ ๏ญ 45๏ฐ ๏ฝ 135๏ฐ, and the
quadrant III angle ๏ฑ equals
180๏ฐ ๏ซ ๏ฑ ๏ข ๏ฝ 180๏ฐ ๏ซ 45๏ฐ ๏ฝ 225๏ฐ.
2
2
Because cos ๏ฑ is positive, ๏ฑ must lie in
quadrants I or IV. One angle, namely 45๏ฐ, lies
in quadrant I, so that angle is also the
reference angle, ๏ฑ ๏ข. The angle in quadrant IV
will be 360๏ฐ ๏ญ ๏ฑ ๏ข ๏ฝ 360๏ฐ ๏ญ 45๏ฐ ๏ฝ 315๏ฐ.
65. cos ๏ฑ ๏ฝ
๏ฆ 2๏ถ
2 cos 45๏ฐ ๏ฝ 2 ๏ง
๏ท๏ฝ 2
๏จ 2 ๏ธ
129
Copyright ยฉ 2021 Pearson Education, Inc.
130
Chapter 2 Acute Angles and Right Triangles
3
3
Because cot ๏ฑ is negative, ๏ฑ must lie in
quadrants II or IV. The absolute value of
3
cot ๏ฑ is
, so the reference angle, ๏ฑ ๏ข must
3
be 60๏ฐ. The quadrant II angle ๏ฑ equals
180๏ฐ ๏ญ ๏ฑ ๏ข ๏ฝ 180๏ฐ ๏ญ 60๏ฐ ๏ฝ 120๏ฐ, and the
quadrant IV angle ๏ฑ equals
360๏ฐ ๏ญ ๏ฑ ๏ข ๏ฝ 360๏ฐ ๏ญ 60๏ฐ ๏ฝ 300๏ฐ.
66. cot ๏ฑ ๏ฝ ๏ญ
67. csc ๏ฑ ๏ฝ ๏ญ2
Because csc ๏ฑ is negative, ๏ฑ must lie in
quadrants III or IV. The absolute value of
csc ๏ฑ is 2, so the reference angle, ๏ฑ ๏ข, is 30๏ฐ .
The angle in quadrant III will be
180๏ฐ ๏ซ ๏ฑ ๏ข ๏ฝ 180๏ฐ ๏ซ 30๏ฐ ๏ฝ 210๏ฐ , and the
quadrant IV angle is
360๏ฐ ๏ญ ๏ฑ ๏ข ๏ฝ 360๏ฐ ๏ญ 30๏ฐ ๏ฝ 330๏ฐ .
3
2
Because sin ๏ฑ is negative, ๏ฑ must lie in
quadrants III or IV. The absolute value of
3
sin ๏ฑ is
, so the reference angle, ๏ฑ ๏ข, is
2
60ยฐ. The angle in quadrant III will be
180๏ฐ ๏ซ ๏ฑ ๏ข ๏ฝ 180๏ฐ ๏ซ 60๏ฐ ๏ฝ 240๏ฐ , and the
quadrant IV angle is
360๏ฐ ๏ญ ๏ฑ ๏ข ๏ฝ 360๏ฐ ๏ญ 60๏ฐ ๏ฝ 300๏ฐ .
68. sin ๏ฑ ๏ฝ ๏ญ
3
3
Because tan ๏ฑ is positive, ๏ฑ must lie in
quadrants I or III. One angle, namely 30๏ฐ , lies
in quadrant I, so that angle is also the
reference angle, ๏ฑ ๏ข. The angle in quadrant III
will be 180๏ฐ ๏ซ ๏ฑ ๏ข ๏ฝ 180๏ฐ ๏ซ 30๏ฐ ๏ฝ 210๏ฐ .
69. tan ๏ฑ ๏ฝ
1
2
Because cos ๏ฑ is negative, ๏ฑ must lie in
quadrants II or III. The absolute value of
1
cos ๏ฑ is , so the reference angle, ๏ฑ ๏ข must
2
be 60๏ฐ. The quadrant II angle ๏ฑ equals
180๏ฐ ๏ญ ๏ฑ ๏ข ๏ฝ 180๏ฐ ๏ญ 60๏ฐ ๏ฝ 120๏ฐ, and the
quadrant III angle ๏ฑ equals
180๏ฐ ๏ซ ๏ฑ ๏ข ๏ฝ 180๏ฐ ๏ซ 60๏ฐ ๏ฝ 240๏ฐ.
70. cos ๏ฑ ๏ฝ ๏ญ
71. csc ๏ฑ ๏ฝ ๏ญ 2
Because csc ๏ฑ is negative, ๏ฑ must lie in
quadrants III or IV. The absolute value of
csc ๏ฑ is 2, so the reference angle, ๏ฑ ๏ข must
be 45๏ฐ. The quadrant III angle ๏ฑ equals
180๏ฐ ๏ซ ๏ฑ ๏ข ๏ฝ 180๏ฐ ๏ซ 45๏ฐ ๏ฝ 225๏ฐ. and the
quadrant IV angle ๏ฑ equals
360๏ฐ ๏ญ ๏ฑ ๏ข ๏ฝ 360๏ฐ ๏ญ 45๏ฐ ๏ฝ 315๏ฐ.
72. cot ๏ฑ ๏ฝ ๏ญ1
Because cot ๏ฑ is negative, ๏ฑ must lie in
quadrants II or IV. The absolute value of
cot ๏ฑ is 1, so the reference angle, ๏ฑ ๏ข must be
45๏ฐ. The quadrant II angle ๏ฑ equals
180๏ฐ ๏ญ ๏ฑ ๏ข ๏ฝ 180๏ฐ ๏ญ 45๏ฐ ๏ฝ 135๏ฐ. and the
quadrant IV angle ๏ฑ equals
360๏ฐ ๏ญ ๏ฑ ๏ข ๏ฝ 360๏ฐ ๏ญ 45๏ฐ ๏ฝ 315๏ฐ.
73. 150ยบ is in quadrant II, so the reference angle is
180ยบ โ 150ยบ = 30ยบ.
x
3
๏ฝ3 3
cos 30๏ฐ ๏ฝ ๏ x ๏ฝ r cos 30๏ฐ ๏ฝ 6 ๏
2
r
y
1
and sin 30๏ฐ ๏ฝ ๏ y ๏ฝ r sin 30๏ฐ ๏ฝ 6 ๏ ๏ฝ 3
r
2
Because 150ยบ is in quadrant II, the
x- coordinate will be negative. The
๏จ
๏ฉ
coordinates of P are ๏ญ3 3, 3 .
74. 225ยบ is in quadrant III, so the reference angle
is 225ยบ โ 180ยบ = 45ยบ.
x
2
๏ฝ5 2
cos 45๏ฐ ๏ฝ ๏ x ๏ฝ r cos 45๏ฐ ๏ฝ 10 ๏
2
r
and
y
2
๏ฝ5 2
sin 45๏ฐ ๏ฝ ๏ y ๏ฝ r sin 45๏ฐ ๏ฝ 10 ๏
2
r
Because 225ยบ is in quadrant III, both the
x- and y-coordinates will be negative. The
๏จ
๏ฉ
coordinates of P are ๏ญ5 2, ๏ญ5 2 .
75. For every angle ๏ฑ , sin 2 ๏ฑ ๏ซ cos 2 ๏ฑ ๏ฝ 1 .
Because ๏จ๏ญ0.8๏ฉ ๏ซ ๏จ0.6๏ฉ ๏ฝ 0.64 ๏ซ 0.36 ๏ฝ 1 ,
2
2
there is an angle ๏ฑ for which cos ๏ฑ ๏ฝ 0.6 and
sin ๏ฑ ๏ฝ ๏ญ0.8 . Because cos ๏ฑ ๏พ 0 and
sin ๏ฑ ๏ผ 0 , ๏ฑ lies in quadrant IV.
76. For every angle ๏ฑ , sin 2 ๏ฑ ๏ซ cos 2 ๏ฑ ๏ฝ 1 .
Because
145
๏น 1 , there
๏จ 34 ๏ฉ ๏ซ ๏จ 23 ๏ฉ ๏ฝ 169 ๏ซ 94 ๏ฝ 144
2
2
is no angle ๏ฑ for which cos ๏ฑ ๏ฝ 23 and
sin ๏ฑ ๏ฝ 34 .
Copyright ยฉ 2021 Pearson Education, Inc.
Section 2.3 Approximations of Trigonometric Function Values
77. If ๏ฑ is in the interval ๏จ90๏ฐ,180๏ฐ๏ฉ , then
90๏ฐ ๏ผ ๏ฑ ๏ผ 180๏ฐ ๏ 45๏ฐ ๏ผ
๏ฑ
2
๏ผ 90๏ฐ . Thus
๏ฑ
lies in quadrant I, and cos
2
๏ฑ
2
is positive.
๏ฑ
2
lies in quadrant I, and sin
๏ผ 90๏ฐ . Thus
๏ฑ
2
86. The reference angle for 115ยฐ is
180ยฐ โ 115ยฐ = 65ยฐ. Because 115ยฐ is in
quadrant II the cosine is negative. Cos ๏ฑ
decreases on the interval (90ยฐ, 180ยฐ) from 0 to
โ1. Therefore, cos 115ยฐ is closest to โ0.4.
2
. Sine and
2
cosine are both positive in quadrant I and both
negative in quadrant III. Because
๏ฑ ๏ซ 180๏ฐ ๏ฝ 45๏ฐ ๏ซ 180๏ฐ ๏ฝ 225๏ฐ, 45ยบ is the
quadrant I angle, and 225ยบ is the quadrant III
angle.
87. When ๏ฑ ๏ฝ 45๏ฐ , sin ๏ฑ ๏ฝ cos ๏ฑ ๏ฝ
78. If ๏ฑ is in the interval ๏จ90๏ฐ,180๏ฐ๏ฉ , then
90๏ฐ ๏ผ ๏ฑ ๏ผ 180๏ฐ ๏ 45๏ฐ ๏ผ
131
๏ฑ
2
is positive.
79. If ๏ฑ is in the interval ๏จ90๏ฐ,180๏ฐ๏ฉ , then
90๏ฐ ๏ผ ๏ฑ ๏ผ 180๏ฐ ๏ 270๏ฐ ๏ผ ๏ฑ ๏ซ 180๏ฐ ๏ผ 360๏ฐ .
Thus ๏ฑ ๏ซ 180๏ฐ lies in quadrant IV, and
sec ๏จ๏ฑ ๏ซ 180๏ฐ๏ฉ is positive.
80. If ๏ฑ is in the interval ๏จ90๏ฐ,180๏ฐ๏ฉ , then
90๏ฐ ๏ผ ๏ฑ ๏ผ 180๏ฐ ๏ 270๏ฐ ๏ผ ๏ฑ ๏ซ 180๏ฐ ๏ผ 360๏ฐ .
Thus ๏ฑ ๏ซ 180๏ฐ lies in quadrant IV, and
cot ๏จ๏ฑ ๏ซ 180๏ฐ๏ฉ is negative.
81. If ๏ฑ is in the interval ๏จ90๏ฐ,180๏ฐ๏ฉ , then
90๏ฐ ๏ผ ๏ฑ ๏ผ 180๏ฐ ๏ ๏ญ90๏ฐ ๏พ ๏ญ๏ฑ ๏พ ๏ญ180๏ฐ ๏
๏ญ180๏ฐ ๏ผ ๏ฑ ๏ผ ๏ญ90๏ฐ
Because 180ยบ is coterminal with
โ180ยบ + 360ยบ = 180ยบ and โ90ยบ is coterminal
with โ90ยบ + 360ยบ = 270ยบ, ๏ญ๏ฑ lies in quadrant
III, and sin ๏จ ๏ญ๏ฑ ๏ฉ is negative.
82. If ๏ฑ is in the interval ๏จ90๏ฐ,180๏ฐ๏ฉ , then
90๏ฐ ๏ผ ๏ฑ ๏ผ 180๏ฐ ๏ ๏ญ90๏ฐ ๏พ ๏ญ๏ฑ ๏พ ๏ญ180๏ฐ ๏
๏ญ180๏ฐ ๏ผ ๏ฑ ๏ผ ๏ญ90๏ฐ
Because 180ยบ is coterminal with
โ180ยบ + 360ยบ = 180ยบ and โ90ยบ is coterminal
with โ90ยบ + 360ยบ = 270ยบ, ๏ญ๏ฑ lies in quadrant
III, and cos ๏จ ๏ญ๏ฑ ๏ฉ is negative.
2
. Sine and
2
cosine are opposites in quadrants II and IV.
Thus, 180๏ฐ ๏ญ ๏ฑ ๏ฝ 180๏ฐ ๏ญ 45๏ฐ ๏ฝ 135๏ฐ in
quadrant II, and 360๏ฐ ๏ญ ๏ฑ ๏ฝ 360๏ฐ ๏ญ 45๏ฐ ๏ฝ 315๏ฐ
in quadrant IV.
88. When ๏ฑ ๏ฝ 45๏ฐ , sin ๏ฑ ๏ฝ cos ๏ฑ ๏ฝ
Section 2.3 Approximations of
Trigonometric Function
Values
For Exercises 1โ10, be sure your calculator is in
degree mode.
1. J
2. B
3. E
4. F
5. D
6. I
7. H
8. A
9. G
10. C
For Exercises 11โ40, be sure your calculator is in
degree mode. If your calculator accepts angles in
degrees, minutes, and seconds, it is not necessary to
change angles to decimal degrees. Keystroke
sequences may vary on the type and/or model of
calculator being used. Screens shown will be from a
TI-84 Plus C calculator. To obtain the degree (ยฐ) and
(โฒ) symbols, go to the ANGLE menu (2nd APPS).
83. When an integer multiple of 360ยฐ is added to
๏ฑ , the resulting angle is coterminal with ๏ฑ .
The sine values of coterminal angles are equal.
84. When an integer multiple of 360ยฐ is added to
๏ฑ , the resulting angle is coterminal with ๏ฑ .
The cosine values of coterminal angles are
equal.
85. The reference angle for 115ยฐ is
180ยฐ โ 115ยฐ = 65ยฐ. Because 115ยฐ is in
quadrant II the cosine is negative. Sin ๏ฑ
decreases on the interval (90ยฐ, 180ยฐ) from 1 to
0. Therefore, sin 115ยฐ is closest to 0.9.
For Exercises 11โ40, we include TI-84 screens only
for those exercises involving cotangent, secant, and
cosecant.
11. sin 38๏ฐ42๏ข ๏ป 0.625243
12. cos 41๏ฐ24๏ข ๏ป 0.750111
Copyright ยฉ 2021 Pearson Education, Inc.
132
Chapter 2 Acute Angles and Right Triangles
13. sec13๏ฐ15๏ข ๏ป 1.027349
14. csc145๏ฐ45๏ข ๏ป 1.776815
21.
1
๏ฝ tan 23.4๏ฐ ๏ป 0.432739
cot 23.4๏ฐ
22.
1
๏ฝ cos14.8๏ฐ ๏ป 0.966823
sec14.8๏ฐ
23.
cos 77๏ฐ
๏ฝ cot 77๏ฐ ๏ป 0.230868
sin 77๏ฐ
24.
sin 33๏ฐ
๏ฝ tan 33๏ฐ ๏ป 0.649408
cos 33๏ฐ
25. cot ๏จ90๏ฐ ๏ญ 4.72๏ฐ๏ฉ ๏ฝ tan 4.72๏ฐ ๏ป 0.082566
26. cos ๏จ90๏ฐ ๏ญ 3.69๏ฐ๏ฉ ๏ฝ sin 3.69๏ฐ ๏ป 0.064358
27.
15. cot183๏ฐ48๏ข ๏ป 15.055723
28.
1
๏ฝ cos 51๏ฐ ๏ป 0.629320
csc ๏จ90๏ฐ ๏ญ 51๏ฐ๏ฉ
1
1
๏ฝ
tan ๏จ90๏ฐ ๏ญ 22๏ฐ๏ฉ cot 22๏ฐ
๏ฝ tan 22๏ฐ ๏ป 0.404026
29. tan ๏ฑ ๏ฝ 1.4739716
๏ฑ ๏ฝ tan ๏ญ1 ๏จ1.4739716๏ฉ ๏ป 55.845496๏ฐ
30. tan ๏ฑ ๏ฝ 6.4358841
๏ฑ ๏ฝ tan ๏ญ1 ๏จ6.4358841๏ฉ ๏ป 81.168073๏ฐ
16. tan 421๏ฐ30๏ข ๏ป 1.841771
17. sin ๏จ ๏ญ312๏ฐ12๏ข ๏ฉ ๏ป 0.740805
18. tan ๏จ ๏ญ80๏ฐ06๏ข ๏ฉ ๏ป ๏ญ5.729742
19. csc ๏จ ๏ญ317๏ฐ36๏ข ๏ฉ ๏ป 1.483014
31. sin ๏ฑ ๏ฝ 0.27843196
๏ฑ ๏ฝ sin ๏ญ1 ๏จ0.27843196๏ฉ ๏ป 16.166641๏ฐ
32. sin ๏ฑ ๏ฝ 0.84802194 ๏
๏ฑ ๏ฝ sin ๏ญ1 ๏จ0.84802194๏ฉ ๏ป 57.997172๏ฐ
33. cot ๏ฑ ๏ฝ 1.2575516
1
๏ฆ
๏ถ
๏จ 1.2575516 ๏ธ๏ท
๏ฑ ๏ฝ cot ๏ญ1 ๏จ1.2575516๏ฉ ๏ฝ tan ๏ญ1 ๏ง
๏ป 38.491580๏ฐ
20. cot ๏จ ๏ญ512๏ฐ20๏ข ๏ฉ ๏ป 1.907415
Copyright ยฉ 2021 Pearson Education, Inc.
Section 2.3 Approximations of Trigonometric Function Values
133
34. csc ๏ฑ ๏ฝ 1.3861147
1
๏ฆ
๏ถ
๏จ 1.3861147 ๏ธ๏ท
๏ฑ ๏ฝ csc๏ญ1 ๏จ1.3861147 ๏ฉ ๏ฝ sin ๏ญ1 ๏ง
๏ป 46.173582๏ฐ
40. cot ๏ฑ ๏ฝ 0.21563481 ๏
1
๏ฆ
๏ถ
๏จ 0.21563481 ๏ท๏ธ
๏ฑ ๏ฝ cot ๏ญ1 ๏จ0.21563481๏ฉ ๏ฝ tan ๏ญ1 ๏ง
๏ป 77.831359๏ฐ
35. sec ๏ฑ ๏ฝ 2.7496222
1
๏ฆ
๏ถ
๏จ 2.7496222 ๏ธ๏ท
๏ฑ ๏ฝ sec ๏ญ1 ๏จ2.7496222๏ฉ ๏ฝ cos ๏ญ1 ๏ง
๏ป 68.673241๏ฐ
36. sec ๏ฑ ๏ฝ 1.1606249
๏ฑ ๏ฝ sec ๏ญ1 ๏จ1.1606249๏ฉ ๏ฝ cos ๏ญ1
๏ป 30.502748๏ฐ
1
1.1606249
41. A common mistake is to have the calculator in
radian mode, when it should be in degree
mode (and vice verse).
42. If the calculator allows an angle ๏ฑ where
0๏ฐ ๏ฃ ๏ฑ ๏ผ 360๏ฐ , then we need to find an angle
within this interval that is coterminal with
2000ยบ by subtracting a multiple of 360ยบ:
2000๏ฐ ๏ญ 5 ๏ 360๏ฐ ๏ฝ 2000๏ฐ ๏ญ 1800๏ฐ ๏ฝ 200๏ฐ . Then
find cos 200ยฐ. If the calculator is more
restrictive on evaluating angles (such as
0๏ฐ ๏ฃ ๏ฑ ๏ผ 90๏ฐ ), then reference angles need to
be used.
43. Find tan ๏ญ1 ๏จ1.482560969๏ฉ .
37. cos ๏ฑ ๏ฝ 0.70058013
๏ฑ ๏ฝ cos ๏ญ1 ๏จ0.70058013๏ฉ ๏ป 45.526434๏ฐ
A = 56ยบ.
44. Find the sine of 22ยบ.
A = 0.3746065934ยบ
45. sin 35๏ฐ cos 55๏ฐ ๏ซ cos 35๏ฐ sin 55๏ฐ ๏ฝ 1
46. cos100๏ฐ cos 80๏ฐ ๏ญ sin100๏ฐ sin 80๏ฐ ๏ฝ ๏ญ1
38. cos ๏ฑ ๏ฝ 0.85536428
๏ฑ ๏ฝ cos ๏ญ1 ๏จ0.85536428๏ฉ ๏ป 31.199998๏ฐ
47. sin 2 36๏ฐ ๏ซ cos 2 36๏ฐ ๏ฝ 1
39. csc ๏ฑ ๏ฝ 4.7216543 ๏
48. 2 sin 25๏ฐ13๏ข cos 25๏ฐ13๏ข ๏ญ sin 50๏ฐ26๏ข ๏ฝ 0
1
๏ฆ
๏ถ
๏จ 4.7216543 ๏ธ๏ท
๏ฑ ๏ฝ csc๏ญ1 ๏จ 4.7216543๏ฉ ๏ฝ sin ๏ญ1 ๏ง
๏ป 12.227282๏ฐ
49. cos 75๏ฐ29๏ข cos14๏ฐ31๏ข ๏ญ sin 75๏ฐ29๏ข sin14๏ฐ31๏ข ๏ฝ 0
50. cos 28๏ฐ14๏ข cos 61๏ฐ46๏ข ๏ญ sin 28๏ฐ14๏ข sin 61๏ฐ46๏ข ๏ฝ 1
?
51. sin10๏ฐ ๏ซ sin10๏ฐ ๏ฝ sin 20๏ฐ
Using a calculator gives
sin10๏ฐ ๏ซ sin10๏ฐ ๏ป 0.34729636 and
sin 20๏ฐ ๏ป 0.34202014. Thus, the statement is
false.
Copyright ยฉ 2021 Pearson Education, Inc.
134
Chapter 2 Acute Angles and Right Triangles
?
52. cos 40๏ฐ ๏ฝ 2 cos 20๏ฐ
Using a calculator gives
cos 40๏ฐ ๏ป 0.76604444 and
2 cos 20๏ฐ ๏ป 1.87938524. Thus, the statement is
false.
?
60. tan 2 72๏ฐ25๏ข ๏ซ 1 ๏ฝ sec 2 72๏ฐ25๏ข
Using a calculator gives
tan 2 72๏ฐ25๏ข ๏ซ 1 ๏ป 10.9577102 and
sec 2 72๏ฐ25๏ข ๏ป 10.9577102.
Thus, the statement is true.
?
53. sin 50๏ฐ ๏ฝ 2 sin 25๏ฐ cos 25๏ฐ
Using a calculator gives sin 50๏ฐ ๏ป 0.76604444
and 2 sin 25๏ฐ cos 25๏ฐ ๏ป 0.76604444. Thus, the
statement is true.
?
54. cos 70๏ฐ ๏ฝ 2 cos 2 35๏ฐ ๏ญ 1
Using a calculator gives
cos 70๏ฐ ๏ป 0.34202014 and
2
1 ๏ญ 2 sin 80๏ฐ ๏ป ๏ญ0.93969262. Thus, the
statement is false.
?
56. 2 cos 38๏ฐ22๏ข ๏ฝ cos 76๏ฐ44๏ข
Using a calculator gives
2 cos 38๏ฐ22๏ข ๏ป 1.56810939 and
cos 76๏ฐ44๏ข ๏ป 0.22948353. Thus, the statement
is false.
?
57. sin 39๏ฐ48๏ข ๏ซ cos 39๏ฐ48๏ข ๏ฝ 1
Using a calculator gives
sin 39๏ฐ48๏ข ๏ซ cos 39๏ฐ48๏ข ๏ป 1.40839322 ๏น 1.
Thus, the statement is false.
๏จ40๏ฐ๏ฉ
Thus, the statement is false.
2
Using a calculator gives
cos ๏จ30๏ฐ ๏ซ 20๏ฐ๏ฉ ๏ป 0.64278761 and
63. sin ๏ฑ ๏ฝ 0.92718385
sin ๏ฑ is positive in quadrants I and II.
sin ๏ญ1 ๏จ0.92718385๏ฉ ๏ฝ 68๏ฐ
The angle in quadrant II with the same sine is
180ยฐ โ 68ยฐ = 112ยฐ.
64. sin ๏ฑ ๏ฝ 0.52991926
sin ๏ฑ is positive in quadrants I and II.
sin ๏ญ1 ๏จ0.52991926๏ฉ ๏ฝ 32๏ฐ
The angle in quadrant II with the same sine is
180ยฐ โ 32ยฐ = 148ยฐ.
65. cos ๏ฑ ๏ฝ 0.71933980
cos ๏ฑ is positive in quadrants I and IV.
cos ๏ญ1 ๏จ0.71933980๏ฉ ๏ฝ 44๏ฐ
66. cos ๏ฑ ๏ฝ 0.10452846
cos ๏ฑ is positive in quadrants I and IV.
cos ๏ญ1 ๏จ0.10452846๏ฉ ๏ฝ 84๏ฐ
sin 12 ๏จ40๏ฐ๏ฉ ๏ป 0.34202014.
?
62. cos ๏จ30๏ฐ ๏ซ 20๏ฐ๏ฉ ๏ฝ cos 30๏ฐ ๏ซ cos 20๏ฐ
The angle in quadrant IV with the same cosine
is 360ยฐ โ 44ยฐ = 316ยฐ.
Using a calculator gives
1
sin 40๏ฐ ๏ป 0.32139380 and
2
2
cos 30๏ฐ cos 20๏ฐ ๏ญ sin 30๏ฐ sin 20๏ฐ ๏ป 0.64278761.
Thus, the statement is true.
cos 30๏ฐ ๏ซ cos 20๏ฐ ๏ป 1.8057180. Thus, the
statement is false.
?
55. cos 40๏ฐ ๏ฝ 1 ๏ญ 2 sin 2 80๏ฐ
Using a calculator gives
cos 40๏ฐ ๏ป 0.76604444 and
?
1
sin 40๏ฐ ๏ฝ sin 12
2
Using a calculator gives
cos ๏จ30๏ฐ ๏ซ 20๏ฐ๏ฉ ๏ป 0.64278761 and
?
2 cos 2 35๏ฐ ๏ญ 1 ๏ป 0.34202014. Thus, the
statement is true.
58.
?
61. cos ๏จ30๏ฐ ๏ซ 20๏ฐ๏ฉ ๏ฝ cos 30๏ฐ cos 20๏ฐ ๏ญ sin 30๏ฐ sin 20๏ฐ
59. 1 ๏ซ cot 42.5๏ฐ ๏ฝ csc 42.5๏ฐ
Using a calculator gives
1 ๏ซ cot 2 42.5๏ฐ ๏ป 2.1909542 and
csc2 42.5๏ฐ ๏ป 2.1909542.
Thus, the statement is true.
The angle in quadrant IV with the same cosine
is 360ยฐ โ 84ยฐ = 276ยฐ.
67. tan ๏ฑ ๏ฝ 1.2348971
tan ๏ฑ is positive in quadrants I and III.
tan ๏ญ1 ๏จ1.2348971๏ฉ ๏ฝ 51๏ฐ
The angle in quadrant III with the same
tangent is 180ยฐ + 51ยฐ = 231ยฐ.
Copyright ยฉ 2021 Pearson Education, Inc.
Section 2.3 Approximations of Trigonometric Function Values
68. tan ๏ฑ ๏ฝ 0.70020753
tan ๏ฑ is positive in quadrants I and III.
tan ๏ญ1 ๏จ0.70020753๏ฉ ๏ฝ 35๏ฐ
The angle in quadrant III with the same
tangent is 180ยฐ + 35ยฐ = 215ยฐ.
69. F ๏ฝ W sin ๏ฑ
F ๏ฝ 2100 sin1.8๏ฐ ๏ป 65.96 ๏ป 70 lb
70. F ๏ฝ W sin ๏ฑ
F ๏ฝ 2400 sin ๏จ ๏ญ2.4๏ฐ๏ฉ ๏ป ๏ญ100.5 ๏ป ๏ญ100 lb
F is negative because the car is traveling
downhill.
71.
๏ญ130
๏ฝ sin ๏ฑ ๏
2600
๏ญ0.05 ๏ฝ sin ๏ฑ ๏ ๏ฑ ๏ฝ sin ๏ญ1 ๏จ ๏ญ0.05๏ฉ ๏ป ๏ญ2.9๏ฐ
72.
3ยบ
0.0523
0.0524
0.0524
3.5ยบ
0.0610
0.0612
0.0611
4ยบ
0.0698
0.0699
0.0698
180
๏ฐ๏ฑ
180
.
W ๏ฐ๏ฑ
180
4
๏ฝ 0.04
100
F ๏ป W tan ๏ฑ ๏ฝ 2000(0.04) ๏ฝ 80 lb
(c) tan ๏ฑ ๏ฝ
W ๏ฐ๏ฑ
from part (b). Let
180
๏ฑ ๏ฝ 3.75 and W = 1800.
1800๏ฐ (3.75)
F๏ป
๏ป 118 lb
180
F ๏ฝ W sin ๏ฑ
(d) Use F ๏ป
F ๏ฝ W sin ๏ฑ
77. 45 mph = 66 ft/sec, V ๏ฝ 66 , ๏ฑ ๏ฝ 3๏ฐ, g ๏ฝ 32.2,
f ๏ฝ 0.14
120
๏ฝW ๏
sin(2.7๏ฐ)
W ๏ป 2547 ๏ป 2500 lb
120 ๏ฝ W sin(2.7๏ฐ) ๏
V2
662
๏ฝ
g ๏จ f ๏ซ tan ๏ฑ ๏ฉ 32.2(0.14 ๏ซ tan 3๏ฐ)
๏ป 703 ft
R๏ฝ
F ๏ฝ W sin ๏ฑ
๏ญ145
๏ฝW ๏
sin(๏ญ3๏ฐ)
W ๏ป 2771 ๏ป 2800 lb
๏ญ145 ๏ฝ W sin(๏ญ3๏ฐ) ๏
75. F ๏ฝ W sin ๏ฑ
F ๏ฝ 2200 sin 2๏ฐ ๏ป 76.77889275 lb
F ๏ฝ 2000 sin 2.2๏ฐ ๏ป 76.77561818 lb
The 2200-lb car on a 2ยฐ uphill grade has the
greater grade resistance.
76.
tan ๏ฑ
(b) F ๏ฝ W sin ๏ฑ ๏ป W tan ๏ฑ ๏ป
150
๏ฝ sin ๏ฑ ๏
3000
0.05 ๏ฝ sin ๏ฑ ๏ ๏ฑ ๏ฝ sin ๏ญ1 ๏จ0.05๏ฉ ๏ป 2.9๏ฐ
74.
sin ๏ฑ
sin ๏ฑ ๏ป tan ๏ฑ ๏ป
150 ๏ฝ 3000 sin ๏ฑ ๏
73.
๏ฐ๏ฑ
๏ฑ
(a) From the table, we see that if ๏ฑ is small,
F ๏ฝ W sin ๏ฑ
๏ญ130 ๏ฝ 2600 sin ๏ฑ ๏
135
๏ฐ๏ฑ
๏ฑ
sin ๏ฑ
tan ๏ฑ
0ยบ
0.0000
0.0000
0.0000
0.5ยบ
0.0087
0.0087
0.0087
1ยบ
0.0175
0.0175
0.0175
1.5ยบ
0.0262
0.0262
0.0262
2ยบ
0.0349
0.0349
0.0349
2.5ยบ
0.0436
0.0437
0.0436
180
78. There are 5280 ft in one mile and 3600 sec in
one min.
1 hr
5280 ft
70 mph ๏ฝ 70 mph ๏
ยท
3600 sec 1 mi
2
๏ฝ 102 ft per sec
3
๏ป 102.67 ft per sec
V ๏ฝ 102.67 , ๏ฑ ๏ฝ 3๏ฐ, g ๏ฝ 32.2, f ๏ฝ 0.14
V2
102.67 2
๏ป
g ๏จ f ๏ซ tan ๏ฑ ๏ฉ 32.2 ๏จ0.14 ๏ซ tan 3๏ฐ๏ฉ
๏ป 1701 ft
R๏ฝ
Copyright ยฉ 2021 Pearson Education, Inc.
136
Chapter 2 Acute Angles and Right Triangles
79. Intuitively, increasing ๏ฑ would make it easier
to negotiate the curve at a higher speed much
like is done at a race track. Mathematically, a
larger value of ๏ฑ (acute) will lead to a larger
value for tan ๏ฑ . If tan ๏ฑ increases, then the
ratio determining R will decrease. Thus, the
radius can be smaller and the curve sharper if
๏ฑ is increased.
V2
662
R๏ฝ
๏ฝ
g ๏จ f ๏ซ tan ๏ฑ ๏ฉ 32.2 ๏จ0.14 ๏ซ tan 4๏ฐ๏ฉ
๏ป 644 ft
V2
102.67 2
R๏ฝ
๏ป
g ๏จ f ๏ซ tan ๏ฑ ๏ฉ 32.2 ๏จ0.14 ๏ซ tan 4๏ฐ๏ฉ
๏ป 1559 ft
As predicted, both values are less.
80. From Exercises 77 amd 78,
V2
. Solving for V we have
R๏ฝ
g ๏จ f ๏ซ tan ๏ฑ ๏ฉ
R๏ฝ
(b) ๏ฑ1 ๏ฝ 39๏ฐ, ๏ฑ 2 ๏ฝ 28๏ฐ, c1 ๏ฝ 3 ๏ด 108 m per sec
c1 sin ๏ฑ1
c sin ๏ฑ 2
๏ฝ
๏ c2 ๏ฝ 1
๏
c2 sin ๏ฑ 2
sin ๏ฑ1
82. (a) ๏ฑ1 ๏ฝ 40๏ฐ, c2 ๏ฝ 1.5 ๏ด 108 m per sec, and
c1 ๏ฝ 3 ๏ด 108 m per sec
c1 sin ๏ฑ1
c sin ๏ฑ1
๏ฝ
๏ sin ๏ฑ 2 ๏ฝ 2
๏
c2 sin ๏ฑ 2
c1
3 ๏ด 108
๏ฉ 1.5 ๏ด 108 ๏จsin 40๏ฐ๏ฉ ๏น
๏บ ๏ป 19๏ฐ
๏ฑ 2 ๏ฝ sin ๏ญ1 ๏ช
๏ช
๏บ
3 ๏ด 108
๏ซ
๏ป
๏จ
V ๏ฝ Rg ๏จ f ๏ซ tan ๏ฑ ๏ฉ
๏ฝ 1150 ๏จ32.2๏ฉ๏จ0.14 ๏ซ tan 2.1๏ฐ๏ฉ ๏ป 80.9 ft/sec
80.9 ft/sec ยท 3600 sec/hr ยท 1 mi/5280 ft ๏ป 55 mph,
The speed limit should be 55 mph.
81. (a) ๏ฑ1 ๏ฝ 46๏ฐ, ๏ฑ 2 ๏ฝ 31๏ฐ, c1 ๏ฝ 3 ๏ด 108 m per sec
c1 ๏ฝ 3 ๏ด 108 m per sec
c1 sin ๏ฑ1
c sin ๏ฑ1
๏ฝ
๏ sin ๏ฑ 2 ๏ฝ 2
๏
c2 sin ๏ฑ 2
c1
8
sin 46๏ฐ
Because c1 is only given to one
significant digit, c2 can only be given to
one significant digit. The speed of light in
the second medium is about 2 ๏ด 108 m
per sec.
๏จ2.6 ๏ด 10 ๏ฉ ๏จsin 62๏ฐ๏ฉ ๏
8
sin ๏ฑ 2 ๏ฝ
3 ๏ด 108
๏ฉ 2.6 ๏ด 108 ๏จsin 62๏ฐ๏ฉ ๏น
๏บ ๏ป 50๏ฐ
๏ฑ 2 ๏ฝ sin ๏ญ1 ๏ช
๏ช
๏บ
3 ๏ด 108
๏ซ
๏ป
๏จ
8
2
๏ฉ
(b) ๏ฑ1 ๏ฝ 62๏ฐ, c2 ๏ฝ 2.6 ๏ด 108 m per sec and
c1 sin ๏ฑ1
c sin ๏ฑ 2
๏ฝ
๏ c2 ๏ฝ 1
๏
c2 sin ๏ฑ 2
sin ๏ฑ1
๏จ3 ๏ด 10 ๏ฉ ๏จsin 31๏ฐ๏ฉ ๏ป 2 ๏ด 10
c ๏ฝ
๏จ1.5 ๏ด 10 ๏ฉ ๏จsin 40๏ฐ๏ฉ ๏
8
sin ๏ฑ 2 ๏ฝ
V
๏ V 2 ๏ฝ Rg ๏จ f ๏ซ tan ๏ฑ ๏ฉ ๏
g ๏จ f ๏ซ tan ๏ฑ ๏ฉ
V ๏ฝ Rg ๏จ f ๏ซ tan ๏ฑ ๏ฉ
8
sin 39๏ฐ
Because c1 is only given to one
significant digit, c2 can only be given to
one significant digit. The speed of light in
the second medium is about 2 ๏ด 108 m
per sec.
2
R ๏ฝ 1150 , ๏ฑ ๏ฝ 2.1๏ฐ, g ๏ฝ 32.2, f ๏ฝ 0.14
๏จ3 ๏ด 10 ๏ฉ ๏จsin 28๏ฐ๏ฉ ๏ป 2 ๏ด 10
8
c2 ๏ฝ
๏ฉ
83. ๏ฑ1 ๏ฝ 90๏ฐ, c1 ๏ฝ 3 ๏ด 108 m per sec, and
c2 ๏ฝ 2.254 ๏ด 108
c1 sin ๏ฑ1
c sin ๏ฑ1
๏ฝ
๏ sin ๏ฑ 2 ๏ฝ 2
c2 sin ๏ฑ 2
c1
๏จ2.254 ๏ด 10 ๏ฉ ๏จsin 90๏ฐ๏ฉ
8
sin ๏ฑ 2 ๏ฝ
๏ฝ
3 ๏ด 108
2.254 ๏ด 108 ๏จ1๏ฉ
8
3 ๏ด 10
๏ญ1 ๏ฆ 2.254 ๏ถ
๏ฑ 2 ๏ฝ sin ๏ง
๏จ
Copyright ยฉ 2021 Pearson Education, Inc.
3
๏ฝ
2.254
๏
3
๏ท๏ธ ๏ป 48.7๏ฐ
Section 2.3 Approximations of Trigonometric Function Values
84. ๏ฑ1 ๏ฝ 90๏ฐ ๏ญ 29.6๏ฐ ๏ฝ 60.4๏ฐ, c1 ๏ฝ 3 ๏ด 108 m per
8
8
sec, and c2 ๏ฝ 2.254 ๏ด 10 c1 ๏ฝ 3 ๏ด 10 m per
sec
c1 sin ๏ฑ1
c sin ๏ฑ1
๏ฝ
๏ sin ๏ฑ 2 ๏ฝ 2
c2 sin ๏ฑ 2
c1
D๏ฝ
200 ๏ฝ
๏จ
1.05 V12 ๏ญ V2 2
๏ฉ
64.4 ๏จ K1 ๏ซ K 2 ๏ซ sin ๏ฑ ๏ฉ
๏จ
1.05 1322 ๏ญ V2 2
๏ฉ
64.4 ๏ฉ๏ซ0.4 ๏ซ 0.02 ๏ซ sin ๏จ ๏ญ3.5๏ฐ๏ฉ๏น๏ป
๏จ
๏ฉ
๏จ2.254 ๏ด 10 ๏ฉ ๏จsin 60.4๏ฐ๏ฉ
sin ๏ฑ ๏ฝ
200 ๏ฝ
2.254
๏จsin 60.4๏ฐ๏ฉ ๏
3
๏ฆ 2.254
๏ฑ 2 ๏ฝ sin ๏ญ1 ๏ง
๏จsin 60.4๏ฐ๏ฉ ๏ถ๏ท๏ธ ๏ป 40.8๏ฐ
๏จ 3
Light from the object is refracted at an angle
of 40.8ยฐ from the vertical. Light from the
horizon is refracted at an angle of 48.7ยฐ from
the vertical. Therefore, the fish thinks the
object lies at an angle of 48.7ยฐ โ 40.8ยฐ = 7.9ยฐ
above the horizon.
4624 ๏ฝ 18, 295.2 ๏ญ 1.05V2 2
๏ญ13, 671.2 ๏ฝ ๏ญ1.05V2 2
๏ญ13, 671.2
V2 2 ๏ฝ
๏ญ1.05
V2 2 ๏ฝ 13020.19048
V2 ๏ป 114.106
V2 ๏ป 114 ft/sec ยท 3600 sec/hr ยท 1 mi/5280 ft
๏ป 78 mph
8
2
3 ๏ด 108
๏ฝ
85. V1 ๏ฝ 55 mph ๏ฝ 55 mph ๏
1 hr
5280 ft
ยท
3600 sec 1 mi
2
ft per sec ๏ป 80.67 ft per sec,
3
1 hr
5280 ft
ยท
V2 ๏ฝ 30 mph ๏ฝ 30 mph ๏
3600 sec 1 mi
๏ฝ 44 ft per sec
๏ฑ ๏ฝ 3.5๏ฐ, K1 ๏ฝ 0.4, K 2 ๏ฝ 0.02.
๏ฝ 80
D๏ฝ
๏ฝ
๏จ
1.05 V12 ๏ญ V2 2
๏ฉ
64.4 ๏จ K1 ๏ซ K 2 ๏ซ sin ๏ฑ ๏ฉ
๏จ
1.05 80.67 2 ๏ญ 442
๏ฉ
64.4 ๏จ0.4 ๏ซ 0.02 ๏ซ sin 3.5๏ฐ๏ฉ
๏ป 155 ft
86. V1 ๏ป 80.67 ft per sec, V2 ๏ฝ 44 ft per sec,
๏ฑ ๏ฝ ๏ญ2๏ฐ, K1 ๏ฝ 0.4, and K 2 ๏ฝ 0.02.
D๏ฝ
๏ฝ
๏จ
1.05 V12 ๏ญ V2 2
๏ฉ
64.4 ๏จ K1 ๏ซ K 2 ๏ซ sin ๏ฑ ๏ฉ
๏จ
1.05 80.67 2 ๏ญ 442
๏ฉ
64.4 ๏ฉ๏ซ0.4 ๏ซ 0.02 ๏ซ sin ๏จ ๏ญ2๏ฐ๏ฉ๏น๏ป
๏ป 194 ft
87. Negative values of ๏ฑ require greater distances
for slowing down than positive values.
1.05 1322 ๏ญ 1.05V2 2
23.12
200 ๏จ 23.12๏ฉ ๏ฝ 18, 295.2 ๏ญ 1.05V2 2
89. For Auto A, calculate 70 ๏ cos10๏ฐ ๏ป 68.94.
Auto Aโs reading is approximately 69 mph.
For Auto B, calculate 70 ๏ cos 20๏ฐ ๏ป 65.78.
Auto Bโs reading is approximately 66 mph.
90. The figure for this exercise indicates a right
triangle. Because we are not considering the
time involved in detecting the speed of the car,
we will consider the speeds as sides of the
r
right triangle. Given angle ๏ฑ , cos ๏ฑ ๏ฝ .
a
Thus, the speed that the radar detects is
r ๏ฝ a cos ๏ฑ . This confirms the โcosine effectโ
that reduces the radar reading.
91. h = 1.9 ft, ๏ก ๏ฝ 0.9๏ฐ, ๏ฑ1 ๏ฝ ๏ญ3๏ฐ, ๏ฑ 2 ๏ฝ 4๏ฐ,
S = 336 ft:
L๏ฝ
๏ 4 ๏ญ (๏ญ3)๏ 3362
200 ๏จ1.9 ๏ซ 336 tan .9๏ฐ๏ฉ
๏ฝ 132 ft per sec
๏ฝ 550 ft
92. h = 1.9 ft, ๏ก ๏ฝ 1.5๏ฐ, ๏ฑ1 ๏ฝ ๏ญ3๏ฐ, ๏ฑ 2 ๏ฝ 4๏ฐ,
S = 336 ft:
L๏ฝ
๏ 4 ๏ญ (๏ญ3)๏ 3362
200 ๏จ1.9 ๏ซ 336 tan1.5๏ฐ๏ฉ
88. Using the values for K1 and K 2 from Exercise
73, determine V2 when D = 200, ๏ฑ ๏ฝ ๏ญ3.5๏ฐ,
V1 ๏ฝ 90 mph ๏ฝ 90 mph ๏
137
1 hr
5280 ft
ยท
3600 sec 1 mi
Copyright ยฉ 2021 Pearson Education, Inc.
๏ฝ 369 ft
138
Chapter 2 Acute Angles and Right Triangles
5. 180ยบ โ 135ยบ = 45ยบ, so the reference angle is
45ยบ. The original angle (135ยบ) lies in quadrant
II, so the sine and cosecant are positive, while
the remaining trigonometric functions are
negative.
2
2
; cos135๏ฐ ๏ฝ ๏ญ
sin135๏ฐ ๏ฝ
2
2
tan135๏ฐ ๏ฝ ๏ญ1 ; cot135๏ฐ ๏ฝ ๏ญ1
sec135๏ฐ ๏ฝ ๏ญ 2 ; csc135๏ฐ ๏ฝ 2
Chapter 2 Quiz
(Sections 2.1โ2.3)
sin A ๏ฝ
1.
side opposite 24 3
๏ฝ
๏ฝ
hypotenuse
40 5
side adjacent 32 4
๏ฝ
๏ฝ
hypotenuse
40 5
side opposite 24 3
tan A ๏ฝ
๏ฝ
๏ฝ
side adjacent 32 4
side adjacent 32 4
cot A ๏ฝ
๏ฝ
๏ฝ
side opposite 24 3
hypotenuse
40 5
sec A ๏ฝ
๏ฝ
๏ฝ
side adjacent 32 4
hypotenuse
40 5
csc A ๏ฝ
๏ฝ
๏ฝ
side opposite 24 3
cos A ๏ฝ
2. ๏ฑ
sin ๏ฑ
cos ๏ฑ
tan ๏ฑ
cot ๏ฑ
sec ๏ฑ
csc ๏ฑ
30๏ฐ
1
2
3
2
3
3
3
2 3
3
2
45๏ฐ
2
2
1
1
2
2
60๏ฐ
3
2
2
2
1
2
3
3
3
2
2 3
3
1
w
๏ w ๏ฝ 36 sin 30๏ฐ ๏ฝ 36 ๏ ๏ฝ 18
36
2
3
x
cos 30๏ฐ ๏ฝ
๏ x ๏ฝ 36 cos 30๏ฐ ๏ฝ 36 ๏
๏ฝ 18 3
36
2
18
w
tan 45๏ฐ ๏ฝ ๏ 1 ๏ฝ
๏ y ๏ฝ 18
y
y
2 18
36
w
sin 45๏ฐ ๏ฝ ๏
๏ฝ
๏z๏ฝ
๏ฝ 18 2
2
z
z
2
3. sin 30๏ฐ ๏ฝ
4. The height of one of the six equilateral
triangles from the solar cell is
h
sin ๏ฑ ๏ฝ ๏ h ๏ฝ x sin ๏ฑ .
x
Thus, the area of each of the triangles is
๏ ๏ฝ 12 bh ๏ฝ 12 x 2 sin ๏ฑ . So, the area of the solar
cell is ๏ ๏ฝ 6 ๏ 12 x 2 sin ๏ฑ ๏ฝ 3x 2 sin ๏ฑ .
6. โ150ยบ is coterminal with 360ยบ โ 150ยบ = 210ยบ.
This lies in quadrant III, so the reference angle
is 210ยบ โ 180ยบ = 30ยบ. In quadrant III, the
tangent and cotangent functions are positive,
while the remaining trigonometric functions
are negative.
1
sin ๏จ ๏ญ150๏ฐ๏ฉ ๏ฝ ๏ญ sin 30๏ฐ ๏ฝ ๏ญ
2
3
cos ๏จ ๏ญ150๏ฐ๏ฉ ๏ฝ ๏ญ cos 30๏ฐ ๏ฝ ๏ญ
2
3
3
cot ๏จ ๏ญ150๏ฐ๏ฉ ๏ฝ cot 30๏ฐ ๏ฝ 3
tan ๏จ ๏ญ150๏ฐ๏ฉ ๏ฝ tan 30๏ฐ ๏ฝ
2 3
3
csc ๏จ ๏ญ150๏ฐ๏ฉ ๏ฝ ๏ญ csc 30๏ฐ ๏ฝ ๏ญ2
sec ๏จ ๏ญ150๏ฐ๏ฉ ๏ฝ ๏ญ sec 30๏ฐ ๏ฝ ๏ญ
7. 1020ยบ is coterminal with 1020ยบ โ 720ยบ = 300ยบ.
This lies in quadrant IV, so the reference angle
is 360ยบ โ 300ยบ = 60ยบ. In quadrant IV, the
cosine and secant are positive, while the
remaining trigonometric functions are
negative.
3
sin1020๏ฐ ๏ฝ ๏ญ sin 60๏ฐ ๏ฝ ๏ญ
2
1
cos1020๏ฐ ๏ฝ cos 60๏ฐ ๏ฝ
2
tan1020๏ฐ ๏ฝ ๏ญ tan 60๏ฐ ๏ฝ ๏ญ 3
3
cot1020๏ฐ ๏ฝ ๏ญ cot 60๏ฐ ๏ฝ ๏ญ
3
sec1020๏ฐ ๏ฝ sec 60๏ฐ ๏ฝ 2
2 3
csc1020๏ฐ ๏ฝ ๏ญ csc 60๏ฐ ๏ฝ ๏ญ
3
3
2
Because sin ๏ฑ is positive, ๏ฑ must lie in
quadrants I or II, and the reference angle, ๏ฑ ๏ข,
is 60ยฐ. The angle in quadrant I is 60ยบ, while
the angle in quadrant II is
180๏ฐ ๏ญ ๏ฑ ๏ข ๏ฝ 180๏ฐ ๏ญ 60๏ฐ ๏ฝ 120๏ฐ .
8. sin ๏ฑ ๏ฝ
Copyright ยฉ 2021 Pearson Education, Inc.
Section 2.4 Solutions and Applications of Right Triangles
9. sec ๏ฑ ๏ฝ ๏ญ 2
Because sec ๏ฑ is negative, ๏ฑ must lie in
quadrants II or III. The absolute value of
sec ๏ฑ is 2, so the reference angle, ๏ฑ ๏ข must
be 45๏ฐ. The quadrant II angle ๏ฑ equals
180๏ฐ ๏ญ ๏ฑ ๏ข ๏ฝ 180๏ฐ ๏ญ 45๏ฐ ๏ฝ 135๏ฐ, and the
quadrant III angle ๏ฑ equals
180๏ฐ ๏ซ ๏ฑ ๏ข ๏ฝ 180๏ฐ ๏ซ 45๏ฐ ๏ฝ 225๏ฐ.
10. sin 42๏ฐ18๏ข ๏ป 0.673013
11. sec ๏จ ๏ญ212๏ฐ12๏ข ๏ฉ ๏ป ๏ญ1.181763
12. tan ๏ฑ ๏ฝ 2.6743210 ๏ ๏ฑ ๏ป 69.497888๏ฐ
139
A ๏ซ B ๏ฝ 90๏ฐ ๏ B ๏ฝ 90๏ฐ ๏ญ A ๏
B ๏ฝ 90๏ฐ ๏ญ 36๏ฐ20๏ข
๏ฝ 89๏ฐ60๏ข ๏ญ 36๏ฐ20๏ข ๏ฝ 53๏ฐ40๏ข
a
a
sin A ๏ฝ ๏ sin 36๏ฐ 20๏ข ๏ฝ
๏
964
c
a ๏ฝ 964 sin 36๏ฐ20๏ข ๏ป 571m (rounded to
three significant digits)
b
b
cos A ๏ฝ ๏ cos 36๏ฐ 20๏ข ๏ฝ
๏
c
964
b ๏ฝ 964 cos 36๏ฐ 20๏ข ๏ป 777 m (rounded to
three significant digits)
14. X = 47.8ยฐ, z = 89.6 cm
13. csc ๏ฑ ๏ฝ 2.3861147 ๏ ๏ฑ ๏ป 24.777233๏ฐ
14. The statement is false.
sin ๏จ60๏ฐ ๏ซ 30๏ฐ๏ฉ ๏ฝ sin 90๏ฐ ๏ฝ 1 , while
sin 60๏ฐ ๏ซ sin 30๏ฐ ๏ฝ
3 1
๏ซ ๏ฝ
2
2
3 ๏ซ1
.
2
15. The statement is true. Using the cofunction
identity, tan ๏จ90๏ฐ ๏ญ 35๏ฐ๏ฉ ๏ฝ cot 35๏ฐ .
Section 2.4
Solutions and Applications
of Right Triangles
1. B
2. D
3. A
4. F
5. C
6. E
Y ๏ซ X ๏ฝ 90๏ฐ ๏ Y ๏ฝ 90๏ฐ ๏ญ X ๏
Y ๏ฝ 90๏ฐ ๏ญ 47.8๏ฐ ๏ฝ 42.2๏ฐ
x
x
sin X ๏ฝ ๏ sin 47.8๏ฐ ๏ฝ
๏
89.6
z
x ๏ฝ 89.6 sin 47.8๏ฐ ๏ป 66.4 cm (rounded to
three significant digits)
y
y
๏ cos 47.8๏ฐ ๏ฝ
๏
89.6
z
y ๏ฝ 89.6 cos 47.8๏ฐ ๏ป 60.2 cm (rounded to
three significant digits)
cos X ๏ฝ
7. 23.865 to 23.875
15. N = 51.2ยฐ, m = 124 m
8. 28,999.5 to 29,000.5
9. 8959.5 to 8960.5
10. No. Points scored in basketball are exact
numbers and cannot take on values that are not
whole numbers.
11. If h is the actual height of a building and the
height is measure as 58.6 ft, then
h ๏ญ 58.6 ๏ฃ 0.05.
12. If w is the actual weight of a car and the
weight is measure as 1542 lb, then
w ๏ญ 1542 ๏ฃ 0.5.
13. A ๏ฝ 36๏ฐ20๏ข, c = 964 m
M ๏ซ N ๏ฝ 90๏ฐ ๏ M ๏ฝ 90๏ฐ ๏ญ N ๏
M ๏ฝ 90๏ฐ ๏ญ 51.2๏ฐ ๏ฝ 38.8๏ฐ
n
n
tan N ๏ฝ ๏ tan 51.2๏ฐ ๏ฝ
๏
124
m
n ๏ฝ 124 tan 51.2๏ฐ ๏ป 154 m (rounded to
three significant digits)
m
124
cos N ๏ฝ ๏ cos 51.2๏ฐ ๏ฝ
๏
p
p
124
p๏ฝ
๏ป 198 m (rounded to three
cos 51.2๏ฐ
significant digits)
Copyright ยฉ 2021 Pearson Education, Inc.
140
Chapter 2 Acute Angles and Right Triangles
16. A ๏ฝ 31๏ฐ40๏ข, a ๏ฝ 35.9 km
a
a
๏ cos 68.5142๏ฐ ๏ฝ
๏
c
3579.42
a ๏ฝ 3579.42 cos 68.5142๏ฐ ๏ป 1311.04 m
(rounded to six significant digits)
cos B ๏ฝ
19. a ๏ฝ 12.5, b ๏ฝ 16.2
A ๏ซ B ๏ฝ 90๏ฐ ๏ B ๏ฝ 90๏ฐ ๏ญ A ๏
B ๏ฝ 90๏ฐ ๏ญ 31๏ฐ40๏ข
๏ฝ 89๏ฐ60๏ข ๏ญ 31๏ฐ40๏ข ๏ฝ 58๏ฐ20๏ข
a
35.9
sin A ๏ฝ ๏ sin 31๏ฐ40๏ข ๏ฝ
๏
c
c
35.9
c๏ฝ
๏ป 68.4 km (rounded to
sin 31๏ฐ40๏ข
three significant digits)
a
35.9
tan A ๏ฝ ๏ tan 31๏ฐ40๏ข ๏ฝ
๏
b
b
35.9
b๏ฝ
๏ป 58.2 km (rounded to
tan 31๏ฐ40๏ข
three significant digits)
17. B ๏ฝ 42.0892๏ฐ, b ๏ฝ 56.851
A ๏ซ B ๏ฝ 90๏ฐ ๏ A ๏ฝ 90๏ฐ ๏ญ B ๏
A ๏ฝ 90๏ฐ ๏ญ 42.0892๏ฐ ๏ฝ 47.9108๏ฐ
b
56.851
sin B ๏ฝ ๏ sin 42.0892๏ฐ ๏ฝ
๏
c
c
56.851
c๏ฝ
๏ป 84.816 cm
sin 42.0892๏ฐ
(rounded to five significant digits)
b
56.851
tan B ๏ฝ ๏ tan 42.0892๏ฐ ๏ฝ
๏
a
a
56.851
a๏ฝ
๏ป 62.942 cm
tan 42.0892๏ฐ
(rounded to five significant digits)
18. B ๏ฝ 68.5142๏ฐ, c ๏ฝ 3579.42
A ๏ซ B ๏ฝ 90๏ฐ ๏ A ๏ฝ 90๏ฐ ๏ญ B ๏
A ๏ฝ 90๏ฐ ๏ญ 68.5142๏ฐ ๏ฝ 21.4858๏ฐ
b
b
sin B ๏ฝ ๏ sin 68.5142๏ฐ ๏ฝ
c
3579.42
b ๏ฝ 3579.42 sin 68.5142๏ฐ ๏ป 3330.68 m
(rounded to six significant digits)
Using the Pythagorean theorem, we have
a 2 ๏ซ b 2 ๏ฝ c 2 ๏ 12.52 ๏ซ 16.22 ๏ฝ c 2 ๏
418.69 ๏ฝ c 2 ๏ c ๏ป 20.5 ft (rounded to three
significant digits)
a
12.5
tan A ๏ฝ ๏ tan A ๏ฝ
๏
b
16.2
12.5
A ๏ฝ tan ๏ญ1
๏ป 37.6540๏ฐ
16.2
๏ป 37๏ฐ ๏ซ ๏จ0.6540 ๏ 60๏ฉ๏ข ๏ป 37๏ฐ39๏ข ๏ป 37๏ฐ40๏ข
(rounded to three significant digits)
b
16.2
tan B ๏ฝ ๏ tan B ๏ฝ
๏
12.5
a
16.2
B ๏ฝ tan ๏ญ1
๏ป 52.3460๏ฐ
12.5
๏ป 52๏ฐ ๏ซ ๏จ0.3460 ๏ 60๏ฉ๏ข ๏ป 52๏ฐ21๏ข
๏ป 52๏ฐ20๏ข (rounded to three significant
digits)
20. a ๏ฝ 4.80, c ๏ฝ 15.3
Using the Pythagorean theorem, we have
a 2 ๏ซ b 2 ๏ฝ c 2 ๏ 4.802 ๏ซ b 2 ๏ฝ 15.32 ๏
4.802 ๏ซ b 2 ๏ฝ 15.32
b 2 ๏ฝ 15.32 ๏ญ 4.802 ๏ฝ 211.05
b ๏ป 14.5 m (rounded to three
significant digits)
a
4.80
๏
sin A ๏ฝ ๏ sin A ๏ฝ
b
15.3
4.80
๏ป 18.2839๏ฐ
A ๏ฝ sin ๏ญ1
15.3
๏ป 18๏ฐ ๏ซ ๏จ0.2839 ๏ 60๏ฉ๏ข ๏ป 18๏ฐ17 ๏ข ๏ป 18๏ฐ20๏ข
(rounded to three significant digits)
Copyright ยฉ 2021 Pearson Education, Inc.
(continued on next page)
Section 2.4 Solutions and Applications of Right Triangles
141
26. B = 46.0ยฐ, c = 29.7 m
(continued)
a
4.80
๏ cos B ๏ฝ
๏
c
15.3
4.80
๏ป 71.7161๏ฐ
B ๏ฝ cos ๏ญ1
15.3
๏ป 71๏ฐ ๏ซ ๏จ0.7161 ๏ 60๏ฉ๏ข ๏ป 71๏ฐ43๏ข ๏ป 71๏ฐ40๏ข
cos B ๏ฝ
(rounded to three significant digits)
21. No. You need to have at least one side to solve
the triangle. There are infinitely many similar
right triangles satisfying the given conditions.
22. If we are given an acute angle and a side in a
right triangle, the unknown part of the triangle
requiring the least work to find is the other
acute angle. It may be found by subtracting
the given acute angle from 90ยฐ.
23. Answers will vary. If you know one acute
angle, the other acute angle may be found by
subtracting the given acute angle from 90ยฐ. If
you know one of the sides, then choose two of
the trigonometric ratios involving sine, cosine
or tangent that involve the known side in order
to find the two unknown sides.
24. If you know the lengths of two sides, the
Pythagorean theorem can be used to find the
length of the remaining side. Then an inverse
trigonometric function can be used to find one
of the acute angles. The other acute angle may
be found by subtracting the calculated acute
angle from 90ยฐ.
25. A = 28.0ยฐ, c = 17.4 ft
A ๏ซ B ๏ฝ 90๏ฐ
B ๏ฝ 90๏ฐ ๏ญ A
B ๏ฝ 90๏ฐ ๏ญ 28.0๏ฐ ๏ฝ 62.0๏ฐ
a
a
sin A ๏ฝ ๏ sin 28.0๏ฐ ๏ฝ
๏
c
17.4
a ๏ฝ 17.4 sin 28.0๏ฐ ๏ป 8.17 ft (rounded to
three significant digits)
b
b
cos A ๏ฝ ๏ cos 28.00๏ฐ ๏ฝ
๏
c
17.4
b ๏ฝ 17.4 cos 28.00๏ฐ ๏ป 15.4 ft (rounded to
three significant digits)
A ๏ซ B ๏ฝ 90๏ฐ
A ๏ฝ 90๏ฐ ๏ญ B
A ๏ฝ 90๏ฐ ๏ญ 46.0๏ฐ ๏ฝ 44.0๏ฐ
a
a
cos B ๏ฝ ๏ cos 46.0๏ฐ ๏ฝ
๏
c
29.7
a ๏ฝ 29.7 cos 46.0๏ฐ ๏ป 20.6 m (rounded to
three significant digits)
b
b
sin B ๏ฝ ๏ sin 46.0๏ฐ ๏ฝ
๏
c
29.7
b ๏ฝ 29.7 sin 46.0๏ฐ ๏ป 21.4 m (rounded to
three significant digits)
27. Solve the right triangle with B = 73.0ยฐ,
b = 128 in. and C = 90ยฐ
A ๏ซ B ๏ฝ 90๏ฐ ๏ A ๏ฝ 90๏ฐ ๏ญ B ๏
A ๏ฝ 90๏ฐ ๏ญ 73.0๏ฐ ๏ฝ 17.0๏ฐ
128
b
tan B๏ฐ ๏ฝ ๏ tan 73.0๏ฐ ๏ฝ
๏
a
a
128
a๏ฝ
๏ a ๏ฝ 39.1 in (rounded to
tan 73.0๏ฐ
three significant digits)
128
b
sin B๏ฐ ๏ฝ ๏ sin 73.0๏ฐ ๏ฝ
๏
c
c
128
c๏ฝ
๏ c ๏ฝ 134 in (rounded to
sin 73.0๏ฐ
three significant digits)
28. A = 62.5ยบ, a = 12.7 m
A ๏ซ B ๏ฝ 90๏ฐ ๏ B ๏ฝ 90๏ฐ ๏ญ A ๏
B ๏ฝ 90๏ฐ ๏ญ 62.5๏ฐ ๏ฝ 27.5๏ฐ
a
12.7
tan A ๏ฝ ๏ tan 62.5๏ฐ ๏ฝ
๏
b
b
12.7
b๏ฝ
๏ป 6.61 m (rounded to
tan 62.5๏ฐ
three significant digits)
(continued on next page)
Copyright ยฉ 2021 Pearson Education, Inc.
142
Chapter 2 Acute Angles and Right Triangles
(continued)
a
12.7
๏ sin 62.5๏ฐ ๏ฝ
๏
c
c
12.7
c๏ฝ
๏ป 14.3 m (rounded to
sin 62.5๏ฐ
three significant digits)
sin A ๏ฝ
29.
A = 61.0ยบ, b = 39.2 cm
A ๏ซ B ๏ฝ 90๏ฐ ๏ B ๏ฝ 90๏ฐ ๏ญ A ๏
B ๏ฝ 90๏ฐ ๏ญ 61.0๏ฐ ๏ฝ 29.0๏ฐ
a
a
tan A ๏ฝ ๏ tan 61.0๏ฐ ๏ฝ
๏
b
39.2
a ๏ฝ 39.2 tan 61.0 ๏ป 70.7 cm
(rounded to three significant
digits)
b
39.2
cos A ๏ฝ ๏ cos 61.0๏ฐ ๏ฝ
๏
c
c
39.2
c๏ฝ
๏ป 80.9 cm
cos 61.0๏ฐ
(rounded to three significant
digits)
39.2 cm
c 2 ๏ฝ a 2 ๏ซ b 2 ๏ 222 ๏ฝ 132 ๏ซ b 2 ๏
484 ๏ฝ 169 ๏ซ b 2 ๏ 315 ๏ฝ b 2 ๏ b ๏ป 18 m
(rounded to two significant digits)
We will determine the measurements of both
A and B by using the sides of the right
triangle. In practice, once you find one of the
measurements, subtract it from 90๏ฐ to find the
other.
13
a
๏
sin A ๏ฝ ๏ sin A ๏ฝ
22
c
๏ฆ 13 ๏ถ
A ๏ป sin ๏ญ1 ๏ง ๏ท ๏ป 36.2215๏ฐ ๏ป 36๏ฐ (rounded
๏จ 22 ๏ธ
to two significant digits)
13
b
๏
cos B ๏ฝ ๏ cos B ๏ฝ
22
c
๏ฆ 13 ๏ถ
B ๏ป cos ๏ญ1 ๏ง ๏ท ๏ป 53.7784๏ฐ ๏ป 54๏ฐ
๏จ 22 ๏ธ
(rounded to two significant digits)
32. b = 32 ft, c = 51 ft
30. B = 51.7ยบ, a = 28.1 ft
A ๏ซ B ๏ฝ 90๏ฐ ๏ B ๏ฝ 90๏ฐ ๏ญ B ๏
A ๏ฝ 90๏ฐ ๏ญ 51.7๏ฐ ๏ฝ 38.3๏ฐ
b
b
tan B ๏ฝ ๏ tan 51.7๏ฐ ๏ฝ
๏
a
28.1
b ๏ฝ 28.1tan 51.7๏ฐ ๏ป 35.6 ft (rounded to
three significant digits)
a
28.1
cos B ๏ฝ ๏ cos 51.7๏ฐ ๏ฝ
๏
c
c
28.1
c๏ฝ
๏ป 45.3 ft (rounded to
cos 51.7๏ฐ
three significant digits)
31. a = 13 m, c = 22m
c 2 ๏ฝ a 2 ๏ซ b 2 ๏ 512 ๏ฝ a 2 ๏ซ 322 ๏
2601 ๏ฝ a 2 ๏ซ 1024 ๏ 1577 ๏ฝ a 2 ๏ a ๏ป 40 ft
(rounded to two significant digits)
We will determine the measurements of both
A and B by using the sides of the right
triangle. In practice, once you find one of the
measurements, subtract it from 90๏ฐ to find the
other.
b
32
cos A ๏ฝ ๏ cos A ๏ฝ
๏
c
51
๏ฆ 32 ๏ถ
A ๏ป cos ๏ญ1 ๏ง ๏ท ๏ป 51.1377๏ฐ ๏ป 51๏ฐ
๏จ 51 ๏ธ
(rounded to two significant digits)
32
b
๏
sin B ๏ฝ ๏ sin B ๏ฝ
51
c
๏ฆ 32 ๏ถ
B ๏ป sin ๏ญ1 ๏ง ๏ท ๏ป 38.8623๏ฐ ๏ป 39๏ฐ (rounded
๏จ 51 ๏ธ
to two significant digits)
Copyright ยฉ 2021 Pearson Education, Inc.
Section 2.4 Solutions and Applications of Right Triangles
We will determine the measurements of both A
and B by using the sides of the right triangle.
In practice, once you find one of the
measurements, subtract it from 90๏ฐ to find the
other.
a
958
tan A ๏ฝ ๏ tan A ๏ฝ
๏
b
489
๏ฆ 958 ๏ถ
A ๏ป tan ๏ญ1 ๏ง
๏ป 62.9585๏ฐ
๏จ 489 ๏ท๏ธ
๏ป 63๏ฐ ๏ซ ๏จ0.9585 ๏ 60๏ฉ๏ข ๏ป 62๏ฐ58๏ข ๏ป 63๏ฐ00๏ข
33. a = 76.4 yd, b = 39.3 yd
c 2 ๏ฝ a 2 ๏ซ b2 ๏ c ๏ฝ a 2 ๏ซ b2
๏ฝ
143
๏จ76.4๏ฉ2 ๏ซ ๏จ39.3๏ฉ2 ๏ฝ 5836.96 ๏ซ 1544.49
๏ฝ 7381.45 ๏ป 85.9 yd (rounded to three
significant digits)
We will determine the measurements of both A
and B by using the sides of the right triangle.
In practice, once you find one of the
measurements, subtract it from 90๏ฐ to find the
other.
a
76.4
๏
tan A ๏ฝ ๏ tan A ๏ฝ
39.3
b
๏ฆ 76.4 ๏ถ
๏ป 62.7788๏ฐ
A ๏ป tan ๏ญ1 ๏ง
๏จ 39.3 ๏ท๏ธ
๏ป 62๏ฐ ๏ซ ๏จ0.7788 ๏ 60๏ฉ๏ข ๏ป 62๏ฐ47 ๏ข ๏ป 62๏ฐ50๏ข
(rounded to three significant digits)
b
39.3
tan B ๏ฝ ๏ tan B ๏ฝ
๏
a
76.4
๏ฆ 39.3 ๏ถ
๏ป 27.2212๏ฐ
B ๏ป tan ๏ญ1 ๏ง
๏จ 76.4 ๏ท๏ธ
๏ป 27๏ฐ ๏ซ ๏จ0.2212 ๏ 60๏ฉ๏ข ๏ป 27๏ฐ13๏ข ๏ป 27๏ฐ10๏ข
(rounded to three significant digits)
34. a = 958 m, b = 489 m
(rounded to three significant digits)
b
489
tan B ๏ฝ ๏ tan B ๏ฝ
๏
a
958
๏ฆ 489 ๏ถ
B ๏ป tan ๏ญ1 ๏ง
๏ป 27.0415๏ฐ
๏จ 958 ๏ท๏ธ
๏ป 27๏ฐ ๏ซ ๏จ0.0415 ๏ 60๏ฉ๏ข ๏ป 27๏ฐ02๏ข ๏ป 27๏ฐ00๏ข
(rounded to three significant digits)
35. a = 18.9 cm, c = 46.3 cm
c 2 ๏ฝ a 2 ๏ซ b 2 ๏ 46.32 ๏ฝ 18.92 ๏ซ b 2 ๏
2143.69 ๏ฝ 357.21 ๏ซ b 2 ๏ 1786.48 ๏ฝ b 2 ๏
b ๏ป 42.3 cm (rounded to three
significant digits)
a
18.9
๏ sin A ๏ฝ
๏
c
46.3
๏ฆ 18.9 ๏ถ
A ๏ป sin ๏ญ1 ๏ง
๏ป 24.09227๏ฐ
๏จ 46.3 ๏ท๏ธ
๏ป 24๏ฐ ๏ซ ๏จ0.09227 ๏ 60๏ฉ๏ข ๏ป 24๏ฐ06๏ข ๏ป 24๏ฐ10๏ข
sin A ๏ฝ
(rounded to three significant digits)
a
18.9
๏
cos B ๏ฝ ๏ cos B ๏ฝ
c
46.3
๏ฆ 18.9 ๏ถ
B ๏ป cos ๏ญ1 ๏ง
๏ป 65.9077๏ฐ
๏จ 46.3 ๏ท๏ธ
๏ป 65๏ฐ ๏ซ ๏จ0.9077 ๏ 60๏ฉ๏ข ๏ป 65๏ฐ54๏ข ๏ป 65๏ฐ50๏ข
(rounded to three significant digits)
c 2 ๏ฝ a 2 ๏ซ b 2 ๏ c ๏ฝ a 2 ๏ซ b 2 ๏ฝ 9582 ๏ซ 4892
๏ฝ 917, 764 ๏ซ 239,121 ๏ฝ 1,156,885
๏ป 1075.565887 ๏ป 1080 m (rounded to three
significant digits)
Copyright ยฉ 2021 Pearson Education, Inc.
144
36.
Chapter 2 Acute Angles and Right Triangles
b = 219 cm, c = 647 m
c2 ๏ฝ a 2 ๏ซ b2
647 2 ๏ฝ a 2 ๏ซ 2192
418, 609 ๏ฝ a 2 ๏ซ 47, 961
370, 648 ๏ฝ a 2
a ๏ป 609 m
(rounded to three significant digits)
b
219
๏ cos A ๏ฝ
๏
c
647
๏ฆ 219 ๏ถ
A ๏ป cos ๏ญ1 ๏ง
๏ป 70.2154๏ฐ
๏จ 647 ๏ท๏ธ
๏ป 70๏ฐ ๏ซ ๏จ0.2154 ๏ 60๏ฉ๏ข ๏ป 70๏ฐ13๏ข ๏ป 70๏ฐ10๏ข
cos A ๏ฝ
(rounded to three significant digits)
b
219
๏
sin B ๏ฝ ๏ sin B ๏ฝ
c
647
๏ฆ 219 ๏ถ
B ๏ป sin ๏ญ1 ๏ง
๏ป 19.7846๏ฐ
๏จ 647 ๏ท๏ธ
๏ป 19๏ฐ ๏ซ ๏จ0.7846 ๏ 60๏ฉ๏ข ๏ป 19๏ฐ47 ๏ข ๏ป 19๏ฐ50๏ข
(rounded to three significant digits)
37.
A = 53ยบ24โฒ, c = 387.1 ft
A ๏ซ B ๏ฝ 90๏ฐ
B ๏ฝ 90๏ฐ ๏ญ A
B ๏ฝ 90๏ฐ ๏ญ 53๏ฐ24๏ข
๏ฝ 89๏ฐ60๏ข ๏ญ 53๏ฐ24๏ข
๏ฝ 36๏ฐ36๏ข
a
a
๏ sin 53๏ฐ24๏ข ๏ฝ
๏
387.1
c
a ๏ฝ 387.1sin 53๏ฐ24๏ข ๏ป 310.8 ft (rounded
to four significant digits)
b
b
cos A ๏ฝ ๏ cos 53๏ฐ24๏ข ๏ฝ
๏
387.1
c
b ๏ฝ 387.1cos 53๏ฐ24๏ข ๏ป 230.8 ft (rounded
to four significant digits)
sin A ๏ฝ
38.
39.
B = 39ยบ09โฒ, c = 0.6231 m
A ๏ซ B ๏ฝ 90๏ฐ
A ๏ฝ 90๏ฐ ๏ญ B
A ๏ฝ 90๏ฐ ๏ญ 39๏ฐ09๏ข
๏ฝ 89๏ฐ60๏ข ๏ญ 39๏ฐ09๏ข
๏ฝ 50๏ฐ51๏ข
b
b
๏ sin 39๏ฐ09๏ข ๏ฝ
๏
c
0.6231
b ๏ฝ 0.6231sin 39๏ฐ09๏ข ๏ป 0.3934 m (rounded
to four significant digits)
sin B ๏ฝ
a
a
๏ cos 39๏ฐ09๏ข ๏ฝ
๏
c
0.6231
a ๏ฝ 0.6231cos 39๏ฐ09๏ข ๏ป 0.4832 m (rounded
to four significant digits)
cos B ๏ฝ
40. B = 82ยบ51โฒ, c = 4.825 cm
A ๏ซ B ๏ฝ 90๏ฐ ๏ A ๏ฝ 90๏ฐ ๏ญ B ๏
A ๏ฝ 90๏ฐ ๏ญ 82๏ฐ51๏ข ๏ฝ 89๏ฐ60๏ข ๏ญ 82๏ฐ51๏ข
๏ฝ 7๏ฐ09๏ข
b
b
sin B ๏ฝ ๏ sin 82๏ฐ51๏ข ๏ฝ
๏
c
4.825
b ๏ฝ 4.825sin 82๏ฐ51๏ข ๏ป 4.787 cm (rounded
to four significant digits)
a
a
๏ cos 82๏ฐ51๏ข ๏ฝ
๏
c
4.825
a ๏ฝ 4.825 cos 82๏ฐ51๏ข ๏ป 0.6006 cm (rounded
to four significant digits)
cos B ๏ฝ
41. If B is a point above point A as shown in the
figure, the angle of elevation from A to B is
the acute angle formed by the horizontal line
through A and the line of sight from A to B.
A = 13ยบ47โฒ, c = 1285 m
A ๏ซ B ๏ฝ 90๏ฐ ๏ B ๏ฝ 90๏ฐ ๏ญ A ๏
B ๏ฝ 90๏ฐ ๏ญ 13๏ฐ47 ๏ข ๏ฝ 89๏ฐ60๏ข ๏ญ 13๏ฐ47 ๏ข
๏ฝ 76๏ฐ13๏ข
a
a
sin A ๏ฝ ๏ sin13๏ฐ47 ๏ข ๏ฝ
๏
1285
c
a ๏ฝ 1285sin13๏ฐ47 ๏ข ๏ป 306.2 m (rounded
to four significant digits)
b
b
cos A ๏ฝ ๏ cos13๏ฐ47 ๏ข ๏ฝ
๏
1285
c
b ๏ฝ 1285 cos13๏ฐ47 ๏ข ๏ป 1248 m (rounded
to four significant digits)
42. No. An angle of elevation (and also an angle
of depression) must be an acute angle.
43. Angles DAB and ABC are alternate interior
angle formed by the transversal AB
intersecting parallel lines AD and BC. Thus
they have the same measure.
44. An angle of depression (and also an angle of
elevation) is measured from a horizontal line
to the line of sight. Angle CAB is formed by
the line of sight and vertical line AC.
Copyright ยฉ 2021 Pearson Education, Inc.
Section 2.4 Solutions and Applications of Right Triangles
d
13.5
d ๏ฝ 13.5sin 43๏ฐ50 ‘ ๏ป 9.3496000
The ladder goes up the wall 9.35 m. (rounded
to three significant digits)
45. sin 43๏ฐ50 ‘ ๏ฝ
145
48. Let x = the diameter of the sun.
46. T = 32ยฐ 10๏ข and S = 57๏ฐ50๏ข
1
๏จ32๏ข ๏ฉ ๏ฝ 16๏ข.
2
We will use this angle, d, and half of the
diameter to set up the following equation.
1
x
2
๏ฝ tan16๏ข ๏
92, 919,800
x ๏ฝ 2 ๏จ92, 919,800๏ฉ๏จ tan16๏ข ๏ฉ
๏ป 864, 943.0189
The diameter of the sun is about 864,900 mi.
(rounded to four significant digits)
The included angle is 32๏ข, so
53.1 m
Because
S ๏ซ T ๏ฝ 32๏ฐ 10๏ข ๏ซ 57๏ฐ50๏ข ๏ฝ 89๏ฐ60๏ข ๏ฝ 90๏ฐ,
triangle RST is a right triangle. Thus, we have
RS
tan 32๏ฐ10๏ข ๏ฝ
53.1
RS ๏ฝ 53.1tan 32๏ฐ10๏ข ๏ป 33.395727
The distance across the lake is 33.4 m.
(rounded to three significant digits)
47. Let x represent the horizontal distance between
the two buildings and y represent the height of
the portion of the building across the street
that is higher than the window.
49. The altitude of an isosceles triangle bisects the
base as well as the angle opposite the base.
The two right triangles formed have interior
angles which have the same measure. The
lengths of the corresponding sides also have
the same measure. The altitude bisects the
base, so each leg (base) of the right triangles is
42.36
๏ฝ 21.18 in.
2
Let x = the length of each of the two equal
sides of the isosceles triangle.
30.0
30.3
๏x๏ฝ
๏ป 82.4
x
tan 20.0๏ฐ
y
tan 50.0๏ฐ ๏ฝ ๏
x
๏ฆ 30.0 ๏ถ
y ๏ฝ x tan 50.0๏ฐ ๏ฝ ๏ง
tan 50.0๏ฐ
๏จ tan 20.0๏ฐ ๏ท๏ธ
height = y ๏ซ 30.0
๏ฆ 30.0 ๏ถ
tan 50.0๏ฐ ๏ซ 30.0
๏ฝ๏ง
๏จ tan 20.0๏ฐ ๏ท๏ธ
๏ป 128.2295
The height of the building across the street is
about 128 ft. (rounded to three significant
digits)
tan 20.0๏ฐ ๏ฝ
21.18
๏ x cos 38.12๏ฐ ๏ฝ 21.18 ๏
x
21.18
x๏ฝ
๏ป 26.921918
cos 38.12๏ฐ
The length of each of the two equal sides of
the triangle is 26.92 in. (rounded to four
significant digits)
cos 38.12๏ฐ ๏ฝ
Copyright ยฉ 2021 Pearson Education, Inc.
146
Chapter 2 Acute Angles and Right Triangles
50. The altitude of an isosceles triangle bisects the
base as well as the angle opposite the base.
The two right triangles formed have interior
angles which have the same measure. The
lengths of the corresponding sides also have
the same measure. The altitude bisects the
base, so each leg (base) of the right triangles
are 184.2
๏ฝ 92.10 cm. Each angle opposite to
2
the base of the right triangles measures
1
68๏ฐ44๏ข ๏ฉ ๏ฝ 34๏ฐ22๏ข .
2๏จ
Let h = the altitude.
In triangle ABC,
92.10
๏ h tan 34๏ฐ22๏ข ๏ฝ 92.10 ๏
tan 34๏ฐ22๏ข ๏ฝ
h
92.10
h๏ฝ
๏ป 134.67667
tan 34๏ฐ22๏ข
The altitude of the triangle is 134.7 cm.
(rounded to four significant digits)
51. Let h represent the height of the tower. In
triangle ABC we have
h
tan 34.6๏ฐ ๏ฝ
40.6
h ๏ฝ 40.6 tan 34.6๏ฐ ๏ป 28.0081
The height of the tower is 28.0 m. (rounded to
three significant digits)
In triangle ABC,
252
sin 32๏ฐ30๏ข ๏ฝ
d
252
d๏ฝ
๏ป 469.0121
sin 32๏ฐ30๏ข
The distance from the top of the building to
the point on the ground is 469 m. (rounded to
three significant digits)
53. Let x = the length of the shadow.
5.75
tan 23.4๏ฐ ๏ฝ
x
x tan 23.4๏ฐ ๏ฝ 5.75
5.75
๏ป 13.2875
x๏ฝ
tan 23.4๏ฐ
The length of the shadow is 13.3 ft. (rounded
to three significant digits)
54. Let x = the horizontal distance that the
plane must fly to be directly over the tree.
10, 500
x
x tan13๏ฐ50๏ข ๏ฝ 10, 500
10, 500
x๏ฝ
๏ป 42, 641.2351
tan13๏ฐ50๏ข
The horizontal distance that the plane must
fly to be directly over the tree is 42,600 ft.
(rounded to three significant digits)
tan13๏ฐ50๏ข ๏ฝ
55. Let ๏ฑ ๏ฝ the angle of depression.
52. Let d = the distance from the top B of the
building to the point on the ground A.
39.82
๏ฆ 39.82 ๏ถ
๏ ๏ฑ ๏ฝ tan ๏ญ1 ๏ง
๏จ 51.74 ๏ธ๏ท
51.74
๏ฑ ๏ป 37.58๏ฐ ๏ป 37๏ฐ35๏ข
tan ๏ฑ ๏ฝ
Copyright ยฉ 2021 Pearson Education, Inc.
Section 2.4 Solutions and Applications of Right Triangles
56. Let x = the height of the taller building;
h = the difference in height between the
shorter and taller buildings; d = the distance
between the buildings along the ground.
28.0
๏ฝ tan14๏ฐ10๏ข ๏ 28.0 ๏ฝ d tan14๏ฐ10๏ข ๏
d
28.0
๏ป 110.9262493 m
d๏ฝ
tan14๏ฐ10๏ข
(We hold on to these digits for the
intermediate steps.) To find h, solve
h
๏ฝ tan 46๏ฐ40๏ข
d
h ๏ฝ d tan 46๏ฐ40๏ข ๏ป ๏จ110.9262493 ๏ฉ tan 46๏ฐ40๏ข
๏ป 117.5749
Thus, the value of h rounded to three
significant digits is 118 m.
x ๏ฝ h ๏ซ 28.0 ๏ฝ 118 ๏ซ 28.0 ๏ป 146 m, so the
height of the taller building is 146 m.
57. Let ๏ฑ ๏ฝ the angle of elevation of the sun.
147
59. In order to find the angle of elevation, ๏ฑ , we
need to first find the length of the diagonal of
the square base. The diagonal forms two
isosceles right triangles. Each angle formed by
a side of the square and the diagonal measures
45ห.
By the Pythagorean theorem,
7002 ๏ซ 7002 ๏ฝ d 2 ๏ 2 ๏ 7002 ๏ฝ d 2 ๏
d ๏ฝ 2 ๏ 7002 ๏ d ๏ฝ 700 2
Thus, length of the diagonal is 700 2 ft. To
to find the angle, ๏ฑ , we consider the
following isosceles triangle.
34.09
๏ฆ 34.09 ๏ถ
๏ ๏ฑ ๏ฝ tan ๏ญ1 ๏ง
๏จ 37.62 ๏ท๏ธ
37.62
๏ฑ ๏ป 42.18๏ฐ
tan ๏ฑ ๏ฝ
58. Let ๏ฑ ๏ฝ the angle of elevation of the sun.
The height of the pyramid bisects the base of
this triangle and forms two right triangles. We
can use one of these triangles to find the angle
of elevation, ๏ฑ .
200
๏
tan ๏ฑ ๏ฝ
350 2
๏ฆ 200 ๏ถ
๏ฑ ๏ป tan ๏ญ1 ๏ง
๏ป 22.0017
๏จ 350 2 ๏ท๏ธ
Rounding this figure to two significant digits,
we have ๏ฑ ๏ป 22๏ฐ.
55.20
๏ฆ 55.20 ๏ถ
๏ ๏ฑ ๏ฝ tan ๏ญ1 ๏ง
๏จ 27.65 ๏ธ๏ท
27.65
๏ฑ ๏ป 63.39๏ฐ
tan ๏ฑ ๏ฝ
Copyright ยฉ 2021 Pearson Education, Inc.
148
Chapter 2 Acute Angles and Right Triangles
60. Let y = the height of the spotlight (this
measurement starts 6 feet above ground)
y
tan 30.0๏ฐ ๏ฝ
1000
y ๏ฝ 1000 ๏ tan 30.0๏ฐ ๏ป 577.3502
Rounding this figure to three significant digits,
we have y ๏ป 577.
However, the observerโs eye-height is 6 feet
from the ground, so the cloud ceiling is
577 ๏ซ 6 ๏ฝ 583 ft.
61. (a) Let x = the height of the peak above
14,545 ft.
The diagonal of the right triangle formed
is in miles, so we must first convert this
measurement to feet. Because there are
5280 ft in one mile, we have the length of
the diagonal is 27.0134 ๏จ5280๏ฉ ๏ฝ
142, 630.752. Find the value of x by
x
solving sin 5.82๏ฐ ๏ฝ
.
142, 630.752
x ๏ฝ 142, 630.752 sin 5.82๏ฐ
๏ป 14, 463.2674
Thus, the value of x rounded to five
significant digits is 14,463 ft. Thus, the
total height is about
14,545 + 14,463 = 29,008 โ 29,000 ft.
(b) The curvature of the earth would make
the peak appear shorter than it actually is.
Initially the surveyors did not think Mt.
Everest was the tallest peak in the
Himalayas. It did not look like the tallest
peak because it was farther away than the
other large peaks.
62. Let x = the distance from the assigned target.
In triangle ABC, we have
x
tan 0๏ฐ0๏ข 30๏ข๏ข ๏ฝ
234, 000
x ๏ฝ 234, 000 tan 0๏ฐ0๏ข 30๏ข๏ข ๏ป 34.0339
The distance from the assigned target is 34.0
mi. (rounded to three significant digits)
Section 2.5 Further Applications of
Right Triangles
1. C
2. D
3. A
4. G
5. B
6. H
7. F
8. J
9. I
10. E
11. (โ4, 0)
The bearing of the airplane measured in a
clockwise direction from due north is 270ยฐ.
The bearing can also be expressed as
N 90ยฐ W, or S 90ยฐ W.
12. (5, 0)
The bearing of the airplane measured in a
clockwise direction from due north is 90ยฐ. The
bearing can also be expressed as N 90ยฐ E, or
S 90ยฐ E.
Copyright ยฉ 2021 Pearson Education, Inc.
Section 2.5 Further Applications of Right Triangles
13. (0, 4)
149
16. (โ3, โ3)
The bearing of the airplane measured in a
clockwise direction from due north is 0ยฐ. The
bearing can also be expressed as N 0ยฐ E or
N 0ยบ W.
The bearing of the airplane measured in a
clockwise direction from due north is 225ยฐ.
The bearing can also be expressed as S 45ยฐ W.
17. (2, โ2)
14. (0, โ2)
The bearing of the airplane measured in a
clockwise direction from due north is 180ยฐ.
The bearing can also be expressed as S 0ยฐ E or
S 0ยบ W.
The bearing of the airplane measured in a
clockwise direction from due north is 135ยฐ.
The bearing can also be expressed as S 45ยฐ E.
18. (2, 2)
15. (โ5, 5)
The bearing of the airplane measured in a
clockwise direction from due north is 45ยฐ. The
bearing can also be expressed as N 45ยฐ E.
The bearing of the airplane measured in a
clockwise direction from due north is 315ยฐ.
The bearing can also be expressed as
N 45ยฐ W.
19. Let x = the distance the plane is from its
starting point. In the figure, the measure of
angle ACB is
38๏ฐ ๏ซ ๏จ180๏ฐ ๏ญ 128๏ฐ๏ฉ ๏ฝ 38๏ฐ ๏ซ 52๏ฐ ๏ฝ 90ยฐ.
Therefore, triangle ACB is a right triangle.
(continued on next page)
Copyright ยฉ 2021 Pearson Education, Inc.
150
Chapter 2 Acute Angles and Right Triangles
(continued)
Because d ๏ฝ rt , the distance traveled in 1.5 hr
is (1.5 hr)(110 mph) = 165 mi. The distance
traveled in 1.3 hr is
(1.3 hr)(110 mph) = 143 mi.
Using the Pythagorean theorem, we have
x 2 ๏ฝ 1652 ๏ซ 1432 ๏ x 2 ๏ฝ 27, 225 ๏ซ 20, 449 ๏
x 2 ๏ฝ 47, 674 ๏ x ๏ป 218.3438
The plane is 220 mi from its starting point.
(rounded to two significant digits)
20. Let x = the distance from the starting point.
In the figure, the measure of angle ACB is
27๏ฐ ๏ซ ๏จ180๏ฐ ๏ญ 117๏ฐ๏ฉ ๏ฝ 27๏ฐ ๏ซ 63๏ฐ ๏ฝ 90๏ฐ.
Applying the Pythagorean theorem, we have
x 2 ๏ฝ 27 2 ๏ซ 392 ๏ x 2 ๏ฝ 729 ๏ซ 1521 ๏
x 2 ๏ฝ 2250 ๏ x ๏ฝ 2250 ๏ป 47.4342
The ships are 47 nautical mi apart (rounded to
2 significant digits).
22. Let x = distance the ships are apart.
In the figure, the measure of angle BCA is
360๏ฐ ๏ญ 322๏ฐ ๏ซ 52๏ฐ ๏ฝ 90๏ฐ. Therefore, triangle
BCA is a right triangle.
Because d ๏ฝ rt , the distance traveled by the
first ship in 2.5 hr is (2.5 hr)(17 knots) = 42.5
nautical mi and the second ship is
(2.5hr)(22 knots) = 55 nautical mi.
Therefore, triangle ACB is a right triangle.
Applying the Pythagorean theorem, we have
x 2 ๏ฝ 552 ๏ซ 1402 ๏ x 2 ๏ฝ 3025 ๏ซ 19, 600 ๏
x 2 ๏ฝ 22, 625 ๏ x ๏ฝ 22, 625 ๏ป 150.4161
The distance of the end of the trip from the
starting point is about 150 km. (rounded to
two significant digits)
21. Let x = distance the ships are apart.
In the figure, the measure of angle CAB is
130๏ฐ ๏ญ 40๏ฐ ๏ฝ 90๏ฐ. Therefore, triangle CAB is
a right triangle.
Because d ๏ฝ rt , the distance traveled by the
first ship in 1.5 hr is (1.5 hr)(18 knots) = 27
nautical mi and the second ship is
(1.5hr)(26 knots) = 39 nautical mi.
x
Applying the Pythagorean theorem, we have
x 2 ๏ฝ 42.52 ๏ซ 552 ๏ x 2 ๏ฝ 4831.25 ๏
x ๏ฝ 4831.25 ๏ป 69.5072
The ships are 70 nautical mi apart (rounded to
2 significant digits).
23. Let b = the distance from dock A to the coral
reef C.
In the figure, the measure of angle CAB is
90๏ฐ ๏ญ 58๏ฐ22๏ข ๏ฝ 31๏ฐ38๏ข, and the measure of
angle CBA is 328๏ฐ22๏ข ๏ญ 270๏ฐ ๏ฝ 58๏ฐ22๏ข .
Because 31๏ฐ38๏ข ๏ซ 58๏ฐ22๏ข ๏ฝ 90๏ฐ, ABC is a right
triangle.
b
cos A ๏ฝ
2587
b
cos 31๏ฐ38๏ข ๏ฝ
๏ b ๏ฝ 2587 cos 31๏ฐ38๏ข
2587
b ๏ป 2203 ft
Copyright ยฉ 2021 Pearson Education, Inc.
Section 2.5 Further Applications of Right Triangles
24.
Let C = the location of the
ship, and let c = the distance
between the lighthouses.
m๏BAC ๏ฝ 180๏ฐ ๏ญ 129๏ฐ43๏ข
๏ฝ 179๏ฐ60๏ข ๏ญ 129๏ฐ43๏ข
๏ฝ 50๏ฐ17 ๏ข
50๏ฐ17 ๏ข ๏ซ 39๏ฐ43๏ข ๏ฝ 90๏ฐ, so we have a right
triangle. Thus,
3742
sin 39๏ฐ43๏ข ๏ฝ
๏ c sin 39๏ฐ43๏ข ๏ฝ 3742 ๏
c
3742
c๏ฝ
๏ป 5856.1020
sin 39๏ฐ43๏ข
The distance between the lighthouses is 5856
m (rounded to four significant digits).
151
The measure of angle CBA is
90๏ฐ ๏ญ 53๏ฐ40๏ข ๏ฝ 89๏ฐ60๏ข ๏ญ 53๏ฐ40๏ข ๏ฝ 36๏ฐ20๏ข .
The measure of angle CAB is
90๏ฐ ๏ญ 36๏ฐ20๏ข ๏ฝ 89๏ฐ60๏ข ๏ญ 36๏ฐ20๏ข ๏ฝ 53๏ฐ40๏ข .
A + B = 90ยฐ, so C = 90ยฐ. Thus, we have
a
a
sin A ๏ฝ
๏ sin 53๏ฐ40๏ข ๏ฝ
๏
2.50
2.50
a ๏ฝ 2.50 sin 53๏ฐ40๏ข ๏ป 2.0140
The distance of the transmitter from B is 2.01
mi. (rounded to 3 significant digits)
27. Let b = the distance from A to C and let c = the
distance from A to B.
25. Let x = distance between the two ships.
The angle between the bearings of the ships is
180ยฐ ๏ญ ๏จ 28ยฐ10๏ข + 61ยฐ50๏ข ๏ฉ ๏ฝ 90ยฐ. The triangle
formed is a right triangle. The distance
traveled at 24.0 mph is
(4 hr) (24.0 mph) = 96 mi. The distance
traveled at 28.0 mph is
(4 hr)(28.0 mph) = 112 mi.
Applying the Pythagorean theorem we have
x 2 ๏ฝ 962 ๏ซ 1122 ๏ x 2 ๏ฝ 9216 ๏ซ 12, 544 ๏
x 2 ๏ฝ 21, 760 ๏ x ๏ฝ 21, 760 ๏ป 147.5127
The ships are 148 mi apart. (rounded to three
significant digits)
26. Let C = the location of the transmitter;
a = the distance of the transmitter from B.
Because the bearing from A to B is N 84ยฐ E,
the measure of angle ABD is 180ยฐ โ 84ยฐ = 96ยฐ.
The bearing from B to C is 38ยฐ, so the
measure of angle ABC = 180ยฐ โ (96ยฐ + 38ยฐ) =
46ยฐ. The bearing of A to C is 52ยฐ, so the
measure of angle BAC is 180ยฐ โ (52ยฐ + 84ยฐ) =
44ยฐ. The measure of angle C is 180ยฐ โ (44ยฐ +
46ยฐ) = 90ยฐ, so triangle ABC is a right triangle.
The distance from A to B, labeled c, is
2.4(250) = 600 miles.
b
b
sin 46๏ฐ ๏ฝ ๏ฝ
c 600
b ๏ฝ 600 sin 46๏ฐ ๏ป 430 mi
28. The information in the example gives
m๏DAC ๏ฝ 64๏ฐ, m๏EAB ๏ฝ 82๏ฐ, and
m๏GBC ๏ฝ 26๏ฐ. The sum of the measures of
angles EAB and FBA is 180ยบ because they are
interior angles on the same side of a
transversal.
(continued on next page)
Copyright ยฉ 2021 Pearson Education, Inc.
152
Chapter 2 Acute Angles and Right Triangles
(continued)
So
m๏FBA ๏ฝ 180๏ฐ ๏ญ m๏EAB ๏ฝ 180๏ฐ ๏ญ 82๏ฐ ๏ฝ 98๏ฐ .
m๏CAB ๏ฝ 180๏ฐ ๏ญ ๏จ64๏ฐ ๏ซ 82๏ฐ๏ฉ ๏ฝ 34๏ฐ and
m๏ABC ๏ฝ 180๏ฐ ๏ญ ๏จ98๏ฐ ๏ซ 26๏ฐ๏ฉ ๏ฝ 56๏ฐ . Thus,
angle C is a right angle.
It takes 1.8 hours at 350 mph to fly from A to
B, so AB ๏ฝ c ๏ฝ 1.8 ๏ 350 ๏ฝ 630 mi . To find the
distance from B to C, use cos B .
a
cos ๏ABC ๏ฝ
๏ a ๏ฝ 630 cos 56๏ฐ ๏ป 350 mi
630
29. Draw triangle WDG with W representing
Winston-Salem, D representing Danville, and
G representing Goldsboro. Name any point X
on the line due south from D.
The line from Atlanta to Macon makes an
angle of 27ยฐ + 63ยฐ ๏ฝ 90ยฐ, with the line from
Macon to Augusta. Because d ๏ฝ rt , the
distance from Atlanta to Macon is
๏จ ๏ฉ
60 1 14 ๏ฝ 75 mi. The distance from Macon to
๏จ ๏ฉ
Augusta is 60 1 34 ๏ฝ 105 mi.
Use the Pythagorean theorem to find x:
x 2 ๏ฝ 752 ๏ซ 1052 ๏ x 2 ๏ฝ 5625 ๏ซ 11, 025 ๏
x 2 ๏ฝ 16, 650 ๏ป 129.0349
The distance from Atlanta to Augusta is 130
mi. (rounded to two significant digits)
31. Let x = the distance from the closer point on
the ground to the base of height h of the
pyramid.
42ยฐ
The bearing from W to D is 42ยฐ (equivalent to
N 42๏ฐ E), so angle WDX measures 42ยฐ.
Because angle XDG measures 48ยฐ, the
measure of angle D is 42ยฐ + 48ยฐ = 90ยฐ. Thus,
triangle WDG is a right triangle.
Using d = rt and the Pythagorean theorem, we
have
WG ๏ฝ
๏จWD ๏ฉ2 ๏ซ ๏จ DG ๏ฉ2
2
๏ฝ ๏ฉ๏ซ65 ๏จ1.1๏ฉ๏น๏ป ๏ซ ๏ฉ๏ซ 65 ๏จ1.8๏ฉ๏น๏ป
2
WG ๏ฝ 71.52 ๏ซ 117 2 ๏ฝ 5112.25 ๏ซ 13, 689
๏ฝ 18,801.25 ๏ป 137
The distance from Winston-Salem to
Goldsboro is approximately 140 mi. (rounded
to two significant digits)
30. Let x = the distance from Atlanta to Augusta.
In the larger right triangle, we have
h
tan 21๏ฐ10 ‘ ๏ฝ
๏ h ๏ฝ ๏จ135 ๏ซ x ๏ฉ tan 21๏ฐ10 ‘
135 ๏ซ x
In the smaller right triangle, we have
h
tan 35๏ฐ30 ‘ ๏ฝ ๏ h ๏ฝ x tan 35๏ฐ30 ‘.
x
Substitute for h in this equation, and solve for
x to obtain the following.
๏จ135 ๏ซ x ๏ฉ tan 21๏ฐ10 ‘ ๏ฝ x tan 35๏ฐ30 ‘
135 tan 21๏ฐ10 ‘๏ซ x tan 21๏ฐ10 ‘ ๏ฝ x tan 35๏ฐ30 ‘
135 tan 21๏ฐ10 ‘ ๏ฝ x tan 35๏ฐ30 ‘๏ญ x tan 21๏ฐ10 ‘
135 tan 21๏ฐ10 ‘ ๏ฝ x ๏จ tan 35๏ฐ30 ‘๏ญ tan 21๏ฐ10 ‘๏ฉ
135 tan 21๏ฐ10 ‘
๏ฝx
tan 35๏ฐ30 ‘๏ญ tan 21๏ฐ10 ‘
Substitute for x in the equation for the smaller
triangle.
135 tan 21๏ฐ10 ‘
h๏ฝ
tan 35๏ฐ30๏ข
tan 35๏ฐ30 ‘๏ญ tan 21๏ฐ10 ‘
๏ป 114.3427
The height of the pyramid is 114 ft. (rounded
to three significant digits)
Copyright ยฉ 2021 Pearson Education, Inc.
Section 2.5 Further Applications of Right Triangles
32. Let x = the distance traveled by the whale as it
approaches the tower; y = the distance from
the tower to the whale as it turns.
68.7
๏ฝ tan 35๏ฐ40๏ข ๏ 68.7 ๏ฝ y tan 35๏ฐ40๏ข ๏
y
68.7
68.7
y๏ฝ
๏ฝ tan15๏ฐ50๏ข
and
x๏ซ y
tan 35๏ฐ40๏ข
68.7 ๏ฝ ๏จ x ๏ซ y ๏ฉ tan15๏ฐ50๏ข
68.7
68.7
x๏ซ y ๏ฝ
๏x๏ฝ
๏ญy
tan15๏ฐ50๏ข
tan15๏ฐ50๏ข
68.7
68.7
x๏ฝ
๏ญ
๏ป 146.5190
tan15๏ฐ50๏ข tan 35๏ฐ40๏ข
The whale traveled 147 m as it approached the
lighthouse. (rounded to three significant
digits)
33. Let x = the height of the antenna; h = the
height of the house.
153
In triangle ABC
x
y ๏ซ 7.00
๏จ y ๏ซ 7.00๏ฉ tan10๏ฐ50 ‘ ๏ฝ x
y tan10๏ฐ50 ‘๏ซ 7.00 tan10๏ฐ50 ‘ ๏ฝ x
x ๏ญ 7.00 tan10๏ฐ50 ‘
๏ฝ y (2)
tan10๏ฐ50 ‘
Setting equations 1 and 2 equal, we have
x
x ๏ญ 7.00 tan10๏ฐ50๏ข
๏ฝ
tan 22๏ฐ40๏ข
tan10๏ฐ50๏ข
x tan10๏ฐ50๏ข ๏ฝ x tan 22๏ฐ40๏ข
๏ญ 7.00 ๏จ tan10๏ฐ50๏ข ๏ฉ๏จ tan 22๏ฐ40๏ข ๏ฉ
7.00 ๏จ tan10๏ฐ50๏ข ๏ฉ๏จ tan 22๏ฐ40๏ข ๏ฉ
๏ฝ x tan 22๏ฐ40๏ข ๏ญ x tan10๏ฐ50๏ข
7.00 ๏จ tan10๏ฐ50๏ข ๏ฉ๏จ tan 22๏ฐ40๏ข ๏ฉ
๏ฝ x ๏จ tan 22๏ฐ40 ‘๏ญ tan10๏ฐ50 ‘๏ฉ
7.00 ๏จ tan10๏ฐ50๏ข ๏ฉ๏จ tan 22๏ฐ40๏ข ๏ฉ
x๏ฝ
tan 22๏ฐ40๏ข ๏ญ tan10๏ฐ50๏ข
x ๏ป 2.4725
The height of the top of Mt. Whitney above
road level is 2.47 km. (rounded to three
significant digits)
tan10๏ฐ50 ‘ ๏ฝ
35. Algebraic solution:
Let x = the side adjacent to 49.2ยบ in the smaller
triangle.
In the smaller right triangle, we have
h
tan18๏ฐ10๏ข ๏ฝ
๏ h ๏ฝ 28 tan18๏ฐ10๏ข .
28
In the larger right triangle, we have
x๏ซh
tan 27๏ฐ10๏ข ๏ฝ
๏ x ๏ซ h ๏ฝ 28 tan 27๏ฐ10๏ข ๏
28
x ๏ฝ 28 tan 27๏ฐ10๏ข ๏ญ h
x ๏ฝ 28 tan 27๏ฐ10๏ข ๏ญ 28 tan18๏ฐ10๏ข
๏ป 5.1816
The height of the antenna is 5.18 m. (rounded
to three significant digits)
34. Let x = the height of Mt. Whitney above the
level of the road; y = the distance shown in the
figure below.
In triangle ADC,
x
tan 22๏ฐ40 ‘ ๏ฝ ๏ y tan 22๏ฐ40 ‘ ๏ฝ x ๏
y
x
y๏ฝ
. (1)
tan 22๏ฐ40 ‘
In the larger right triangle, we have
h
tan 29.5๏ฐ ๏ฝ
๏ h ๏ฝ ๏จ392 ๏ซ x ๏ฉ tan 29.5๏ฐ .
392 ๏ซ x
In the smaller right triangle, we have
h
tan 49.2๏ฐ ๏ฝ ๏ h ๏ฝ x tan 49.2๏ฐ .
x
Substituting, we have
x tan 49.2๏ฐ ๏ฝ ๏จ392 ๏ซ x ๏ฉ tan 29.5๏ฐ
x tan 49.2๏ฐ ๏ฝ 392 tan 29.5๏ฐ
๏ซ x tan 29.5๏ฐ
x tan 49.2๏ฐ ๏ญ x tan 29.5๏ฐ ๏ฝ 392 tan 29.5๏ฐ
x ๏จ tan 49.2๏ฐ ๏ญ tan 29.5๏ฐ๏ฉ ๏ฝ 392 tan 29.5๏ฐ
392 tan 29.5๏ฐ
x๏ฝ
tan 49.2๏ฐ ๏ญ tan 29.5๏ฐ
Now substitute this expression for x in the
equation for the smaller triangle to obtain
h ๏ฝ x tan 49.2๏ฐ
392 tan 29.5๏ฐ
๏ tan 49.2๏ฐ
h๏ฝ
tan 49.2๏ฐ ๏ญ tan 29.5๏ฐ
๏ป 433.4762 ๏ป 433 ft (rounded to three
significant digits.
(continued on next page)
Copyright ยฉ 2021 Pearson Education, Inc.
154
Chapter 2 Acute Angles and Right Triangles
Graphing calculator solution:
Graph y1 ๏ฝ ๏จ tan 41.2๏ฐ๏ฉ x and
(continued)
Graphing calculator solution:
Graph y1 ๏ฝ ๏จ tan 29.5๏ฐ๏ฉ x and
y2 ๏ฝ ๏จ tan 52.5๏ฐ๏ฉ๏จ x ๏ญ 168๏ฉ in the window
y2 ๏ฝ ๏จ tan 29.5๏ฐ๏ฉ๏จ x ๏ญ 392๏ฉ in the window
[0, 800] ร [0, 600]. Then find the intersection.
[0, 1000] ร [0, 500]. Then find the
intersection.
The height of the triangle is 448 m (rounded to
three significant digits.
The height of the triangle is 433 ft (rounded to
three significant digits.
37. Let x = the minimum distance that a plant
needing full sun can be placed from the fence.
36. Algebraic solution:
Let x = the side adjacent to 52.5ยบ in the smaller
triangle.
4.65
๏ x tan 23๏ฐ20๏ข ๏ฝ 4.65 ๏
x
4.65
x๏ฝ
๏ป 10.7799
tan 23๏ฐ20๏ข
The minimum distance is 10.8 ft. (rounded to
three significant digits)
tan 23๏ฐ20๏ข ๏ฝ
In the larger right triangle, we have
h
๏ h ๏ฝ ๏จ168 ๏ซ x ๏ฉ tan 41.2๏ฐ .
tan 41.2๏ฐ ๏ฝ
168 ๏ซ x
In the smaller right triangle, we have
h
tan 52.5๏ฐ ๏ฝ ๏ h ๏ฝ x tan 52.5๏ฐ.
x
Substituting, we have
x tan 52.5๏ฐ ๏ฝ ๏จ168 ๏ซ x ๏ฉ tan 41.2๏ฐ
x tan 52.5๏ฐ ๏ฝ 168 tan 41.2๏ฐ
๏ซ x tan 41.2๏ฐ
x tan 52.5๏ฐ ๏ญ x tan 41.2๏ฐ ๏ฝ 168 tan 41.2๏ฐ
x ๏จ tan 52.5๏ฐ ๏ญ tan 41.2๏ฐ๏ฉ ๏ฝ 168 tan 41.2๏ฐ
168 tan 41.2๏ฐ
x๏ฝ
tan 52.5๏ฐ ๏ญ tan 41.2๏ฐ
Now substitute this expression for x in the
equation for the smaller triangle to obtain
h ๏ฝ x tan 52.5๏ฐ
168 tan 41.2๏ฐ
๏ tan 52.5๏ฐ
h๏ฝ
tan 52.5๏ฐ ๏ญ tan 41.2๏ฐ
๏ป 448.0432 ๏ป 448 m (rounded to three
significant digits.
38.
1.0837
๏ป 0.7261944649
1.4923
A ๏ป tan ๏ญ1 ๏จ0.7261944649๏ฉ ๏ป 35.987๏ฐ
๏ป 35๏ฐ59.2๏ข ๏ป 35๏ฐ59๏ข 10๏ข๏ข
1.4923
tan B ๏ฝ
๏ป 1.377041617
1.0837
B ๏ป tan ๏ญ1 ๏จ1.377041617 ๏ฉ ๏ป 54.013๏ฐ
๏ป 54๏ฐ00.8๏ข ๏ป 54๏ฐ00๏ข 50๏ข๏ข
tan A ๏ฝ
Copyright ยฉ 2021 Pearson Education, Inc.
Section 2.5 Further Applications of Right Triangles
39. Let h = the minimum height above the surface of
Earth so a pilot at A can see an object on the
horizon at C.
Using the Pythagorean theorem, we have
๏จ4.00 ๏ด 10 ๏ซ h๏ฉ ๏ฝ ๏จ4.00 ๏ด 10 ๏ฉ ๏ซ 125
2
3
3 2
2
๏จ4000 ๏ซ h๏ฉ2 ๏ฝ 40002 ๏ซ 1252
๏จ4000 ๏ซ h๏ฉ2 ๏ฝ 16, 000, 000 ๏ซ 15, 625
๏จ4000 ๏ซ h๏ฉ2 ๏ฝ 16, 015, 625
4000 ๏ซ h ๏ฝ 16, 015, 625
h ๏ฝ 16, 015, 625 ๏ญ 4000
๏ป 4001.9526 ๏ญ 4000 ๏ฝ 1.9526
The minimum height above the surface of Earth would be 1.95 mi. (rounded to 3 significant digits)
40. Let y = the common hypotenuse of the two right triangles.
cos 30๏ฐ50๏ข ๏ฝ
198.4
198.4
๏ y๏ฝ
๏ป 231.0571948
y
cos 30๏ฐ50๏ข
To find x, first find the angle opposite x in the right triangle:
52๏ฐ20๏ข ๏ญ 30๏ฐ50๏ข ๏ฝ 51๏ฐ80๏ข ๏ญ 30๏ฐ50๏ข ๏ฝ 21๏ฐ30๏ข
x
x
sin 21๏ฐ30๏ข ๏ฝ ๏ sin 21๏ฐ30๏ข ๏ป
๏ x ๏ป 231.0571948 sin 21๏ฐ30๏ข ๏ป 84.6827
y
231.0571948
The length x is approximate 84.7 m. (rounded)
41. (a)
PQ ๏ฝ d ๏ฝ
๏ก b
๏ข b๏ฆ ๏ก
๏ข๏ถ
b
cot ๏ซ cot ๏ฝ ๏ง cot ๏ซ cot ๏ท
2
2 2
2 2๏จ
2
2๏ธ
(b) Using the result of part (a), let ๏ก ๏ฝ 37 ๏ข48๏ข๏ข, ๏ข ๏ฝ 42๏ข 03๏ข๏ข, and b = 2.000
๏ข๏ถ
b๏ฆ ๏ก
๏ง cot ๏ซ cot ๏ท๏ธ ๏
2๏จ
2
2
2.000 ๏ฆ
37 ๏ข48๏ข๏ข
42๏ข 03๏ข๏ข ๏ถ
d๏ฝ
๏ซ cot
๏ง๏จ cot
๏ท ๏ฝ cot 0.315๏ฐ ๏ซ cot 0.3504166667๏ฐ ๏ป 345.3951
2
2
2 ๏ธ
The distance between the two points P and Q is about 345.4 cm.
d๏ฝ
Copyright ยฉ 2021 Pearson Education, Inc.
155
156
Chapter 2 Acute Angles and Right Triangles
42. D ๏ฝ
v 2 sin ๏ฑ cos ๏ฑ ๏ซ v cos ๏ฑ
๏จv sin ๏ฑ ๏ฉ2 ๏ซ 64h
32
All answers are rounded to four significant digits.
(a) v ๏ฝ 44 ft per sec and h ๏ฝ 7 ft, so D ๏ฝ
442 sin ๏ฑ cos ๏ฑ ๏ซ 44 cos ๏ฑ
๏จ44 sin ๏ฑ ๏ฉ2 ๏ซ 64 ๏ 7
32
1936 sin 40 cos 40 ๏ซ 44 cos 40 ๏จ 44 sin 40๏ฉ ๏ซ 448
2
If ๏ฑ ๏ฝ 40๏ฐ, D ๏ฝ
32
1936 sin 42 cos 42 ๏ซ 44 cos 42 ๏จ 44 sin 42๏ฉ ๏ซ 448
๏ป 67.00 ft.
2
If ๏ฑ ๏ฝ 42๏ฐ, D ๏ฝ
32
1936 sin 45 cos 45 ๏ซ 44 cos 45 ๏จ 44 sin 45๏ฉ ๏ซ 448
๏ป 67.14 ft
2
If ๏ฑ ๏ฝ 45๏ฐ, D ๏ฝ
32
As ๏ฑ increases, D increases and then decreases.
๏ป 66.84 ft
v 2 sin 42 cos 42 ๏ซ v cos 42 ๏จv sin 42๏ฉ ๏ซ 64 ๏ 7
2
(b) h ๏ฝ 7 ft and ๏ฑ ๏ฝ 42๏ฐ, so D ๏ฝ
32
43 sin 42 cos 42 ๏ซ 43cos 42 ๏จ 43sin 42๏ฉ ๏ซ 448
2
2
If v ๏ฝ 43, D ๏ฝ
32
442 sin 42 cos 42 ๏ซ 44 cos 42 ๏จ 44 sin 42๏ฉ ๏ซ 448
๏ป 64.40 ft
2
If v ๏ฝ 44, D ๏ฝ
32
452 sin 42 cos 42 ๏ซ 45 cos 42 ๏จ 45sin 42๏ฉ ๏ซ 448
๏ป 67.14 ft
2
If v ๏ฝ 45, D ๏ฝ
32
๏ป 69.93 ft
As v increases, D increases.
(c) The velocity affects the distance more. The shot-putter should concentrate on achieving as large a value
of v as possible.
43. (a) If ๏ฑ ๏ฝ 37๏ฐ, then
๏ฑ
2
๏ฝ
37๏ฐ
๏ฝ 18.5๏ฐ.
2
To find the distance between P and Q, d,
we first note that angle QPC is a right
angle. Hence, triangle QPC is a right
triangle and we can solve
d
tan18.5๏ฐ ๏ฝ
965
d ๏ฝ 965 tan18.5๏ฐ ๏ป 322.8845
The distance between P and Q, is 320 ft.
(rounded to two significant digits)
(b) We are dealing with a circle, so the
distance between M and C is R. If we let x
be the distance from N to M, then the
distance from C to N will be R ๏ญ x.
Triangle CNP is a right triangle, so we
can set up the following equation.
๏ฑ R๏ญx
๏ฑ
๏ R cos ๏ฝ R ๏ญ x ๏
cos ๏ฝ
2
R
2
๏ฑ
๏ฑ๏ถ
๏ฆ
x ๏ฝ R ๏ญ R cos ๏ x ๏ฝ R ๏ง1 ๏ญ cos ๏ท
๏จ
2
2๏ธ
Copyright ยฉ 2021 Pearson Education, Inc.
Section 2.5 Further Applications of Right Triangles
57.3S 57.3 ๏จ336๏ฉ
๏ฝ
๏ฝ 32.088๏ฐ
R
600
๏ฑ๏ถ
๏ฆ
d ๏ฝ R ๏ง1 ๏ญ cos ๏ท
๏จ
2๏ธ
๏ฝ 600 ๏จ1 ๏ญ cos16.044๏ฐ๏ฉ ๏ป 23.3702 ft
The distance is 23 ft. (rounded to two
significant digits)
44. (a) ๏ฑ ๏ป
57.3S 57.3 ๏จ 485๏ฉ
๏ฝ
๏ฝ 46.3175๏ฐ
600
R
๏ฑ๏ถ
๏ฆ
d ๏ฝ R ๏ง1 ๏ญ cos ๏ท
๏จ
2๏ธ
๏ฝ 600 ๏จ1 ๏ญ cos 23.15875๏ฐ๏ฉ ๏ป 48.3488
The distance is 48 ft. (rounded to two
significant digits)
(b) ๏ฑ ๏ป
(c) The faster the speed, the more land needs
to be cleared on the inside of the curve.
45. y ๏ฝ tan ๏ฑ ๏จ x ๏ญ a ๏ฉ ๏ y ๏ฝ tan 35๏ฐ ๏จ x ๏ญ 25๏ฉ
46. y ๏ฝ tan ๏ฑ ๏จ x ๏ญ a ๏ฉ ๏ y ๏ฝ tan15๏ฐ ๏จ x ๏ญ 5๏ฉ
47.
157
49. All points whose bearing from the origin is
240ยบ lie in quadrant III.
The reference angle, ๏ฑ ๏ข , is 30ยบ. For any point,
x
(x, y) on the ray ๏ฝ ๏ญ cos ๏ฑ ๏ข and
r
y
๏ฝ ๏ญ sin ๏ฑ ๏ข, where r is the distance from the
r
point to the origin. Let r = 2, so
x
๏ฝ ๏ญ cos ๏ฑ ๏ข
r
x ๏ฝ ๏ญ r cos ๏ฑ ๏ข ๏ฝ ๏ญ2 cos 30๏ฐ ๏ฝ ๏ญ2 ๏ 23 ๏ฝ ๏ญ 3
y
๏ฝ ๏ญ sin ๏ฑ ๏ข
r
y ๏ฝ ๏ญ r sin ๏ฑ ๏ข ๏ฝ ๏ญ2 sin 30๏ฐ ๏ฝ ๏ญ2 ๏ 12 ๏ฝ ๏ญ1
๏จ
๏ฉ
Thus, a point on the ray is ๏ญ 3, ๏ญ1 . The ray
contains the origin, the equation is of the form
๏จ
๏ฉ
y = mx. Substituting the point ๏ญ 3, ๏ญ1 , we
๏จ
๏ฉ
have ๏ญ1 ๏ฝ m ๏ญ 3 ๏
The line that bisects quadrants I and III passes
through the origin, so a = 0. In addition,
๏ฑ ๏ฝ 45๏ฐ because the line bisects the angle
formed by the axes. tan 45๏ฐ ๏ฝ 1, so an
equation of the line is y ๏ฝ tan 45๏ฐ ๏จ x ๏ฉ or
y = x.
m ๏ฝ ๏ญ1 ๏ฝ 1 ๏
๏ญ 3
3
3
๏ฝ 33 . Thus, an equation of
3
the ray is y ๏ฝ 33 x, x ๏ฃ 0 (because the ray lies
in quadrant III).
50. All points whose bearing from the origin is
150ยบ lie in quadrant IV.
48.
The line that bisects quadrants II and IV passes
through the origin, so a = 0. In addition,
๏ฑ ๏ฝ 135๏ฐ because the line bisects the angle
formed by the axes and the reference angle ๏ฑ ๏ข
is 45ยฐ. tan135๏ฐ ๏ฝ ๏ญ1, so an equation of the
line is y ๏ฝ tan135๏ฐ ๏จ x ๏ฉ or y = โx.
The reference angle, ๏ฑ ๏ข , is 60ยบ. For any point,
x
y
(x, y) on the ray ๏ฝ cos ๏ฑ ๏ข and ๏ฝ ๏ญ sin ๏ฑ ๏ข,
r
r
where r is the distance from the point to the
origin.
(continued on next page)
Copyright ยฉ 2021 Pearson Education, Inc.
158
Chapter 2 Acute Angles and Right Triangles
4. sec ๏จ 2๏ฑ ๏ซ 10๏ฐ๏ฉ ๏ฝ csc ๏จ 4๏ฑ ๏ซ 20๏ฐ๏ฉ
(continued)
Let r = 2, so
x
๏ฝ cos ๏ฑ ๏ข ๏ x ๏ฝ r cos ๏ฑ ๏ข ๏ฝ 2 cos 60๏ฐ ๏ฝ 2 ๏ 12 ๏ฝ 1
r
y
๏ฝ ๏ญ sin ๏ฑ ๏ข
r
y ๏ฝ ๏ญ r sin ๏ฑ ๏ข ๏ฝ ๏ญ2 sin 60๏ฐ ๏ฝ ๏ญ2 ๏ 23 ๏ฝ ๏ญ 3
๏จ
๏ฉ
Thus, a point on the ray is 1, ๏ญ 3 .
The ray contains the origin, so the equation is
of the form y = mx. Substituting the point
๏จ1, ๏ญ 3 ๏ฉ , we have ๏ญ 3 ๏ฝ m ๏จ๏ญ1๏ฉ ๏ m ๏ฝ ๏ญ 3 .
Thus, an equation of the ray is
y ๏ฝ ๏ญ 3 x, x ๏ณ 0 (because the ray lies in
quadrant IV).
Chapter 2
Review Exercises
side opposite 60
๏ฝ
hypotenuse
61
side adjacent 11
cos A ๏ฝ
๏ฝ
hypotenuse
61
side opposite 60
tan A ๏ฝ
๏ฝ
side adjacent 11
side adjacent 11
cot A ๏ฝ
๏ฝ
side opposite 60
hypotenuse
61
๏ฝ
sec A ๏ฝ
side adjacent 11
hypotenuse
61
๏ฝ
csc A ๏ฝ
side opposite 60
1. sin A ๏ฝ
Secant and cosecant are cofunctions, so the
sum of the angles is 90ยบ.
๏จ2๏ฑ ๏ซ 10๏ฐ๏ฉ ๏ซ ๏จ4๏ฑ ๏ซ 20๏ฐ๏ฉ ๏ฝ 90๏ฐ
6๏ฑ ๏ซ 30๏ฐ ๏ฝ 90๏ฐ
6๏ฑ ๏ฝ 60๏ฐ ๏ ๏ฑ ๏ฝ 10๏ฐ
5. tan ๏จ5 x ๏ซ 11๏ฐ๏ฉ ๏ฝ cot ๏จ6 x ๏ซ 2๏ฐ๏ฉ
Tangent and cotangent are cofunctions, so the
sum of the angles is 90ยบ.
๏จ5 x ๏ซ 11๏ฐ๏ฉ ๏ซ ๏จ6 x ๏ซ 2๏ฐ๏ฉ ๏ฝ 90๏ฐ
11x ๏ซ 13๏ฐ ๏ฝ 90๏ฐ
11x ๏ฝ 77๏ฐ ๏ x ๏ฝ 7๏ฐ
๏ฆ 3๏ฑ
๏ถ
๏ฆ 7๏ฑ
๏ถ
6. cos ๏ง
๏ซ 11๏ฐ ๏ท ๏ฝ sin ๏ง
๏ซ 40๏ฐ ๏ท
๏จ 5
๏ธ
๏จ 10
๏ธ
Sine and cosine are cofunctions, so the sum of
the angles is 90ยบ.
๏ฆ 3๏ฑ
๏ถ ๏ฆ 7๏ฑ
๏ถ
๏ซ 11๏ฐ ๏ท ๏ซ ๏ง
๏ซ 40๏ฐ ๏ท ๏ฝ 90๏ฐ
๏ง๏จ
๏ธ
๏จ
๏ธ
5
10
๏ฆ 6๏ฑ
๏ถ ๏ฆ 7๏ฑ
๏ถ
๏ซ 11๏ฐ ๏ท ๏ซ ๏ง
๏ซ 40๏ฐ ๏ท ๏ฝ 90๏ฐ
๏ง๏จ
๏ธ ๏จ 10
๏ธ
10
13๏ฑ
13๏ฑ
๏ซ 51๏ฐ ๏ฝ 90๏ฐ ๏
๏ฝ 39๏ฐ
10
10
10
๏ฑ ๏ฝ 39๏ฐ ๏ ๏ฝ 30๏ฐ
13
7. sin 46๏ฐ ๏ผ sin 58๏ฐ
In the interval from 0ยบ to 90ยบ, as the angle
increases, so does the sine of the angle, so
sin 46ยบ < sin 58ยบ is true.
side opposite 40 20
2. sin A ๏ฝ
๏ฝ
๏ฝ
hypotenuse
58 29
side adjacent 42 21
๏ฝ
๏ฝ
cos A ๏ฝ
hypotenuse
58 29
side opposite 40 20
๏ฝ
๏ฝ
tan A ๏ฝ
side adjacent 42 21
side adjacent 42 21
cot A ๏ฝ
๏ฝ
๏ฝ
side opposite 40 20
hypotenuse
58 29
๏ฝ
๏ฝ
sec A ๏ฝ
side adjacent 42 21
hypotenuse
58 29
๏ฝ
๏ฝ
csc A ๏ฝ
side opposite 40 20
3. sin 4 ๏ข ๏ฝ cos 5 ๏ข
Sine and cosine are cofunctions, so the sum of
the angles is 90ยบ.
4 ๏ข ๏ซ 5 ๏ข ๏ฝ 90๏ฐ ๏ 9 ๏ข ๏ฝ 90๏ฐ ๏ ๏ข ๏ฝ 10๏ฐ
8. cos 47๏ฐ ๏ผ cos 58๏ฐ
In the interval from 0ยบ to 90ยบ, as the angle
increases, the cosine of the angle decreases, so
cos 47๏ฐ ๏ผ cos 58๏ฐ is false.
9. tan 60๏ฐ ๏ณ cot 40๏ฐ
Using the cofunction identity,
cot 40๏ฐ ๏ฝ tan ๏จ90๏ฐ ๏ญ 40๏ฐ๏ฉ ๏ฝ tan 50๏ฐ . In
quadrant I, the tangent function is increasing.
Thus cot 40๏ฐ ๏ฝ tan 50๏ฐ ๏ผ tan 60๏ฐ, and the
statement is true.
10. csc 22๏ฐ ๏ฃ csc 68๏ฐ
In quadrant I, the cosecant function is
decreasing. Thus csc 22๏ฐ ๏ณ csc 68๏ฐ, and the
statement is false.
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2 Review Exercises
11.
cos A ๏ฝ bc and sin B ๏ฝ bc , so cos A ๏ฝ sin B.
This is an example of equality of cofunctions
of complementary angles.
12. If ๏ฑ ๏ฝ 135๏ฐ, ๏ฑ ๏ข ๏ฝ 180๏ฐ ๏ญ 135๏ฐ ๏ฝ 45๏ฐ.
If ๏ฑ ๏ฝ ๏ญ45๏ฐ, ๏ฑ ๏ข ๏ฝ 45๏ฐ.
If ๏ฑ ๏ฝ 300๏ฐ, ๏ฑ ๏ข ๏ฝ 360๏ฐ ๏ญ 300๏ฐ ๏ฝ 60๏ฐ.
If ๏ฑ ๏ฝ 140๏ฐ, ๏ฑ ๏ข ๏ฝ 180๏ฐ ๏ญ 140๏ฐ ๏ฝ 40๏ฐ.
Of these reference angles, 40ยฐ is the only one
which is not a special angle, so D, tan 140ยฐ, is
the only one which cannot be determined
exactly using the methods of this chapter.
13. 1020ยบ is coterminal with
1020๏ฐ ๏ญ 2 ๏ 360๏ฐ ๏ฝ 300๏ฐ . The reference angle is
360๏ฐ ๏ญ 300๏ฐ ๏ฝ 60๏ฐ. Because 1020ยฐ lies in
quadrant IV, the sine, tangent, cotangent, and
cosecant are negative.
3
sin1020๏ฐ ๏ฝ ๏ญ sin 60๏ฐ ๏ฝ ๏ญ
2
1
cos1020๏ฐ ๏ฝ cos 60๏ฐ ๏ฝ
2
tan1020๏ฐ ๏ฝ ๏ญ tan 60๏ฐ ๏ฝ ๏ญ 3
3
cot1020๏ฐ ๏ฝ ๏ญ cot 60๏ฐ ๏ฝ ๏ญ
3
sec1020๏ฐ ๏ฝ sec 60๏ฐ ๏ฝ 2
2 3
csc1020๏ฐ ๏ฝ ๏ญ csc 60๏ฐ ๏ฝ ๏ญ
3
14. A 120ยบ angle lies in quadrant II, so the
reference angle is 180๏ฐ ๏ญ 120๏ฐ ๏ฝ 60๏ฐ. Because
120ยฐ is in quadrant II, the cosine, tangent,
cotangent, and secant are negative.
3
sin120๏ฐ ๏ฝ sin 60๏ฐ ๏ฝ
2
1
cos120๏ฐ ๏ฝ ๏ญ cos 60๏ฐ ๏ฝ ๏ญ
2
tan120๏ฐ ๏ฝ ๏ญ tan 60๏ฐ ๏ฝ ๏ญ 3
1
3
๏ฝ๏ญ
cot120๏ฐ ๏ฝ ๏ญ cot 60๏ฐ ๏ฝ ๏ญ
3
3
sec120๏ฐ ๏ฝ ๏ญ sec 60๏ฐ ๏ฝ ๏ญ2
2
2 3
๏ฝ
csc120๏ฐ ๏ฝ csc 60๏ฐ ๏ฝ
3
3
159
15. โ1470ยฐ is coterminal with
๏ญ1470๏ฐ ๏ซ 5 ๏ 360๏ฐ ๏ฝ 330๏ฐ. This angle lies in
quadrant IV. The reference angle is
360๏ฐ ๏ญ 330๏ฐ ๏ฝ 30๏ฐ. Because โ1470ยฐ is in
quadrant IV, the sine, tangent, cotangent, and
cosecant are negative.
1
sin(๏ญ1470๏ฐ) ๏ฝ ๏ญ sin 30๏ฐ ๏ฝ ๏ญ
2
3
cos(๏ญ1470๏ฐ) ๏ฝ cos 30๏ฐ ๏ฝ
2
3
tan(๏ญ1470๏ฐ) ๏ฝ ๏ญ tan 30๏ฐ ๏ฝ ๏ญ
3
cot(๏ญ1470๏ฐ) ๏ฝ ๏ญ cot 30๏ฐ ๏ฝ ๏ญ 3
2 3
sec(๏ญ1470๏ฐ) ๏ฝ sec 30๏ฐ ๏ฝ
3
csc(๏ญ1470๏ฐ) ๏ฝ ๏ญ csc 30๏ฐ ๏ฝ ๏ญ2
16. โ225ยฐ is coterminal with โ225ยฐ + 360ยฐ = 135ยฐ.
This angle lies in quadrant II. The reference
angle is 180๏ฐ ๏ญ 135๏ฐ ๏ฝ 45๏ฐ. Because โ225ยฐ is
in quadrant II, the cosine, tangent, cotangent,
and secant are negative.
2
sin(๏ญ225๏ฐ) ๏ฝ sin 45๏ฐ ๏ฝ
2
2
cos(๏ญ225๏ฐ) ๏ฝ ๏ญ cos 45๏ฐ ๏ฝ ๏ญ
2
tan(๏ญ225๏ฐ) ๏ฝ ๏ญ tan 45๏ฐ ๏ฝ ๏ญ1
cot(๏ญ225๏ฐ) ๏ฝ ๏ญ cot 45๏ฐ ๏ฝ ๏ญ1
sec(๏ญ225๏ฐ) ๏ฝ ๏ญ sec 45๏ฐ ๏ฝ ๏ญ 2
csc(๏ญ225๏ฐ) ๏ฝ csc 45๏ฐ ๏ฝ 2
1
2
Because cos ๏ฑ is negative, ๏ฑ must lie in
quadrants II or III. The absolute value of
1
cos ๏ฑ is , so the reference angle, ๏ฑ ๏ข must
2
be 60๏ฐ. The quadrant II angle ๏ฑ equals
180๏ฐ ๏ญ ๏ฑ ๏ข ๏ฝ 180๏ฐ ๏ญ 60๏ฐ ๏ฝ 120๏ฐ, and the
quadrant III angle ๏ฑ equals
180๏ฐ ๏ซ ๏ฑ ๏ข ๏ฝ 180๏ฐ ๏ซ 60๏ฐ ๏ฝ 240๏ฐ.
17. cos ๏ฑ ๏ฝ ๏ญ
1
2
Because sin ๏ฑ is negative, ๏ฑ must lie in
quadrants III or IV. The absolute value of
1
sin ๏ฑ is , so the reference angle, ๏ฑ ๏ข, is 30ยบ.
2
The angle in quadrant III will be
180๏ฐ ๏ซ ๏ฑ ๏ข ๏ฝ 180๏ฐ ๏ซ 30๏ฐ ๏ฝ 210๏ฐ , and the
quadrant IV angle is
360๏ฐ ๏ญ ๏ฑ ๏ข ๏ฝ 360๏ฐ ๏ญ 30๏ฐ ๏ฝ 330๏ฐ .
18. sin ๏ฑ ๏ฝ ๏ญ
Copyright ยฉ 2021 Pearson Education, Inc.
160
Chapter 2 Acute Angles and Right Triangles
2 3
3
Because sec ๏ฑ is negative, ๏ฑ must lie in
quadrants II or III. The absolute value of
2 3
, so the reference angle, ๏ฑ ๏ข
sec ๏ฑ is
3
must be 30ยบ. The quadrant II angle ๏ฑ equals
180๏ฐ ๏ญ ๏ฑ ๏ข ๏ฝ 180๏ฐ ๏ญ 30๏ฐ ๏ฝ 150๏ฐ, and the
quadrant III angle ๏ฑ equals
180๏ฐ ๏ซ ๏ฑ ๏ข ๏ฝ 180๏ฐ ๏ซ 30๏ฐ ๏ฝ 210๏ฐ.
19. sec ๏ฑ ๏ฝ ๏ญ
20. cot ๏ฑ ๏ฝ ๏ญ1
Because cot ๏ฑ is negative, ๏ฑ must lie in
quadrants II or IV. The absolute value of
cot ๏ฑ is 1, so the reference angle, ๏ฑ ๏ข must be
45๏ฐ. The quadrant II angle ๏ฑ equals
180๏ฐ ๏ญ ๏ฑ ๏ข ๏ฝ 180๏ฐ ๏ญ 45๏ฐ ๏ฝ 135๏ฐ. and the
quadrant IV angle ๏ฑ equals
360๏ฐ ๏ญ ๏ฑ ๏ข ๏ฝ 360๏ฐ ๏ญ 45๏ฐ ๏ฝ 315๏ฐ.
๏ฆ 3๏ถ
๏ญ 2๏ง
๏ท
๏จ 3 ๏ธ
2 3
๏ฝ 3๏ญ
3
๏จ
21. tan 2 120๏ฐ ๏ญ 2 cot 240๏ฐ ๏ฝ ๏ญ 3
๏ฉ
2
2
1
1 1
๏ฆ1๏ถ
22. cos 60๏ฐ ๏ซ 2 sin 30๏ฐ ๏ฝ ๏ซ 2 ๏ง ๏ท ๏ฝ ๏ซ ๏ฝ 1
๏จ
๏ธ
2
2
2 2
2
๏ฆ
3๏ถ
23. sec 300๏ฐ ๏ญ 2 cos 150๏ฐ ๏ฝ 2 ๏ญ 2 ๏ง ๏ญ
๏ท
๏จ 2 ๏ธ
3 5
๏ฝ 4๏ญ ๏ฝ
2 2
2
2
(b)
๏จ1, ๏ญ 3 ๏ฉ
The distance from the origin is r:
r ๏ฝ x2 ๏ซ y 2 ๏ฝ
24. (a) (โ3, โ3)
2
๏ฝ 1๏ซ 3 ๏ฝ 4 ๏ฝ 2
y ๏ญ 3
3
๏ฝ
๏ฝ๏ญ
r
2
2
x 1
cos ๏ฑ ๏ฝ ๏ฝ
r 2
sin ๏ฑ ๏ฝ
tan ๏ฑ ๏ฝ
y ๏ญ 3
๏ฝ
๏ฝ๏ญ 3
x
1
For the exercises in this section, be sure your
calculator is in degree mode.
25. sec 222๏ฐ30๏ข ๏ฝ
1
๏ป ๏ญ1.356342
cos 222๏ฐ30๏ข
26. sin 72๏ฐ30๏ข ๏ป 0.953717
27. csc 78๏ฐ21๏ข ๏ฝ
1
๏ป 1.021034
sin 78๏ฐ21๏ข
28. cot 305.6๏ฐ ๏ฝ
1
๏ป ๏ญ0.715930
tan 305.6๏ฐ
2
2
๏จ1๏ฉ2 ๏ซ ๏จ๏ญ 3 ๏ฉ
29. tan11.7689๏ฐ ๏ป 0.208344
30. sec 58.9041๏ฐ ๏ฝ
1
๏ป 1.936213
cos 58.9041๏ฐ
31. sin ๏ฑ ๏ฝ 0.8254121
๏ฑ ๏ฝ sin ๏ญ1 ๏จ0.8254121๏ฉ ๏ป 55.673870๏ฐ
32. cot ๏ฑ ๏ฝ 1.1249386
The distance from the origin is r:
r ๏ฝ x2 ๏ซ y 2 ๏ r ๏ฝ
๏จ๏ญ3๏ฉ2 ๏ซ ๏จ๏ญ3๏ฉ2 ๏
r ๏ฝ 9 ๏ซ 9 ๏ r ๏ฝ 18 ๏ r ๏ฝ 3 2
sin ๏ฑ ๏ฝ
y
3
1
2
2
๏ฝ๏ญ
๏ฝ๏ญ
๏
๏ฝ๏ญ
2
r
3 2
2
2
x
3
1
2
2
๏ฝ๏ญ
๏ฝ๏ญ
๏
๏ฝ๏ญ
2
r
3 2
2
2
y ๏ญ3
tan ๏ฑ ๏ฝ ๏ฝ
๏ฝ1
x ๏ญ3
cos ๏ฑ ๏ฝ
1
๏ฆ
๏ถ
๏จ 1.1249386 ๏ท๏ธ
๏ฑ ๏ฝ cot ๏ญ1 ๏จ1.1249386๏ฉ ๏ฝ tan ๏ญ1 ๏ง
๏ป 41.635092๏ฐ
33. cos ๏ฑ ๏ฝ 0.97540415
๏ฑ ๏ฝ cos ๏ญ1 ๏จ0.97540415๏ฉ ๏ป 12.733938๏ฐ
34. sec ๏ฑ ๏ฝ 1.2637891
1
๏ฆ
๏ถ
๏จ 1.2637891 ๏ธ๏ท
๏ฑ ๏ฝ sec๏ญ1 ๏จ1.2637891๏ฉ ๏ฝ cos ๏ญ1 ๏ง
๏ป 37.695528๏ฐ
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2 Review Exercises
35. tan ๏ฑ ๏ฝ 1.9633124
๏ฑ ๏ฝ tan ๏ญ1 ๏จ1.9633124๏ฉ ๏ป 63.008286๏ฐ
161
44. We must find an angle having secant equal to
1
10, which means that its cosine is 10
.
To find sec๏ญ1 10, on a calculator, enter
36. csc ๏ฑ ๏ฝ 9.5670466
1
๏ฆ
๏ถ
๏จ 9.5670466 ๏ท๏ธ
๏ฑ ๏ฝ csc๏ญ1 ๏จ9.5670466๏ฉ ๏ฝ sin ๏ญ1 ๏ง
๏ป 5.9998273๏ฐ
๏จ ๏ฉ
1
cos ๏ญ1 10
.
37. sin ๏ฑ ๏ฝ 0.73135370
๏ฑ ๏ฝ sin ๏ญ1 ๏จ0.73135370๏ฉ ๏ป 47๏ฐ
The value of sin ๏ฑ is positive in quadrants I
and II, so the two angles in ๏ 0๏ฐ, 360๏ฐ๏ฉ are 47ยฐ
and 180ยฐ โ 47ยฐ = 133ยฐ.
๏จ ๏ฉ
1
sec๏ญ1 10 ๏ฝ cos ๏ญ1 10
๏ป 84.26082952๏ฐ
38. tan ๏ฑ ๏ฝ 1.3763819
๏ฑ ๏ฝ tan ๏ญ1 ๏จ1.3763819๏ฉ ๏ป 54๏ฐ
The value of tan ๏ฑ is positive in quadrants I
and III, so the two angles in ๏ 0๏ฐ, 360๏ฐ๏ฉ are 54ยบ
and 180ยบ + 54ยบ = 234ยบ.
?
39. sin 50๏ฐ ๏ซ sin 40๏ฐ ๏ฝ sin 90๏ฐ
Using a calculator gives
sin 50๏ฐ ๏ซ sin 40๏ฐ ๏ฝ 1.408832053 while
sin 90ยบ = 1. Thus, the statement is false.
?
40. 1 ๏ซ tan 2 60๏ฐ ๏ฝ sec 2 60๏ฐ
1 ๏ซ tan 2 60๏ฐ ๏ฝ 1 ๏ซ
๏จ 3๏ฉ ๏ฝ 1๏ซ 3 ๏ฝ 4
2
46. a = 129.7, b = 368.1
sec 2 60๏ฐ ๏ฝ 22 ๏ฝ 4
Thus, the statement is true.
?
41. sin 240๏ฐ ๏ฝ 2 sin120๏ฐ cos120๏ฐ
sin 240๏ฐ ๏ฝ ๏ญ sin 60๏ฐ ๏ฝ ๏ญ 23 and
2 sin120๏ฐ cos120๏ฐ ๏ฝ 2 sin 60๏ฐ ๏จ๏ญ cos 60๏ฐ๏ฉ
๏ฝ2
๏จ ๏ฉ๏จ ๏ฉ ๏ฝ ๏ญ
3
2
1
2
3
2
Thus, the statement is true.
?
45. A ๏ฝ 58๏ฐ 30๏ข, c ๏ฝ 748
A ๏ซ B ๏ฝ 90๏ฐ ๏ B ๏ฝ 90๏ฐ ๏ญ A ๏
B ๏ฝ 90๏ฐ ๏ญ 58๏ฐ30๏ข ๏ฝ 89๏ฐ60๏ข ๏ญ 58๏ฐ30๏ข
๏ฝ 31๏ฐ30๏ข
a
a
๏
sin A ๏ฝ ๏ sin 58๏ฐ30๏ข ๏ฝ
c
748
a ๏ฝ 748sin 58๏ฐ30๏ข ๏ป 638 (rounded to three
significant digits)
b
b
๏
cos A ๏ฝ ๏ cos 58๏ฐ30๏ข ๏ฝ
c
748
b ๏ฝ 748 cos 58๏ฐ30๏ข ๏ป 391 (rounded to three
significant digits)
42. sin 42๏ฐ ๏ซ sin 42๏ฐ ๏ฝ sin 84๏ฐ
Using a calculator gives
sin 42๏ฐ ๏ซ sin 42๏ฐ ๏ฝ 1.338261213 while
sin 84ยบ = 0.9945218954. Thus, the statement is
false.
43. No, this will result in an angle having tangent
equal to 25. The function tan ๏ญ1 is not the
reciprocal of the tangent (the cotangent), but is
the inverse tangent function. To find cot 25ยฐ,
the student must find the reciprocal of tan 25ยฐ.
1
cot 25๏ฐ ๏ฝ
๏น tan ๏ญ1 25๏ฐ.
tan 25๏ฐ
c ๏ฝ a 2 ๏ซ b 2 ๏ c ๏ฝ 129.7 2 ๏ซ 368.12
๏ป 390.3 (rounded to four
significant digits)
a 129.7
tan A ๏ฝ ๏ฝ
๏
b 368.1
๏ฆ 129.70 ๏ถ
A ๏ฝ tan ๏ญ1 ๏ง
๏ป 19.41๏ฐ
๏จ 368.10 ๏ท๏ธ
๏ป 19๏ฐ ๏ซ ๏จ0.41 ๏ 60๏ฉ๏ข ๏ป 19๏ฐ25๏ข
b 368.1
๏ฝ
๏
a 129.7
๏ฆ 368.1 ๏ถ
B ๏ฝ tan ๏ญ1 ๏ง
๏ป 70.59๏ฐ
๏จ 129.7 ๏ท๏ธ
๏ป 70๏ฐ ๏ซ ๏จ0.59 ๏ 60๏ฉ๏ข ๏ป 70๏ฐ35๏ข
tan B ๏ฝ
Copyright ยฉ 2021 Pearson Education, Inc.
162
Chapter 2 Acute Angles and Right Triangles
47. A ๏ฝ 39.72๏ฐ, b ๏ฝ 38.97 m
49. Let x = the height of the tree.
A ๏ซ B ๏ฝ 90๏ฐ ๏ B ๏ฝ 90๏ฐ ๏ญ A ๏
B ๏ฝ 90๏ฐ ๏ญ 39.72๏ฐ ๏ฝ 50.28๏ฐ
a
a
๏
tan A ๏ฝ ๏ tan 39.72๏ฐ ๏ฝ
b
38.97
a ๏ฝ 38.97 tan 39.72๏ฐ ๏ป 32.38 m (rounded to
four significant digits)
b
38.97
๏ cos 39.72๏ฐ ๏ฝ
๏
c
c
c cos 39.72๏ฐ ๏ฝ 38.97 ๏
38.97
c๏ฝ
๏ป 50.66 m
cos 39.72๏ฐ
(rounded to five significant digits)
c os A ๏ฝ
tan 70๏ฐ ๏ฝ
x
๏ x ๏ฝ 50 tan 70๏ฐ ๏ป 137 ft
50
50. r ๏ฝ 122 ๏ซ 52 ๏ฝ 144 ๏ซ 25 ๏ฝ 169 ๏ฝ 13
5
๏ฆ5๏ถ
tan ๏ฑ ๏ฝ
๏ ๏ฑ ๏ฝ tan ๏ญ1 ๏ง ๏ท ๏ป 23๏ฐ
๏จ 12 ๏ธ
12
51. Let x = height of the tower.
48. B ๏ฝ 47๏ฐ53๏ข, b ๏ฝ 298.6 m
x
93.2
x ๏ฝ 93.2 tan 38๏ฐ20๏ข
x ๏ป 73.6930
The height of the tower is 73.7 ft. (rounded to
three significant digits)
tan 38๏ฐ20๏ข ๏ฝ
A ๏ซ B ๏ฝ 90๏ฐ ๏ A ๏ฝ 90๏ฐ ๏ญ B ๏
A ๏ฝ 90๏ฐ ๏ญ 47๏ฐ53๏ข ๏ฝ 89๏ฐ60๏ข ๏ญ 47๏ฐ53๏ข
๏ฝ 42๏ฐ07 ๏ข
b
298.6
๏
tan B ๏ฝ ๏ tan 47๏ฐ53๏ข ๏ฝ
a
a
a tan 47๏ฐ53๏ข ๏ฝ 298.6 ๏
298.6
a๏ฝ
๏ป 270.0 m
tan 47๏ฐ53๏ข
(rounded to four significant digits)
b
298.6
๏
sin B ๏ฝ ๏ sin 47๏ฐ53๏ข ๏ฝ
c
c
c sin 47๏ฐ53๏ข ๏ฝ 298.6 ๏
298.6
c๏ฝ
๏ป 402.5 m
sin 47๏ฐ53๏ข
(rounded to four significant digits)
52. Let h = height of the tower.
h
36.0
h ๏ฝ 36.0 tan 29.5๏ฐ ๏ป 20.3678
The height of the tower is 20.4 m. (rounded to
three significant digits)
tan 29.5๏ฐ ๏ฝ
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2 Review Exercises
53. Let x = length of the diagonal
15.24
x
15.24
x๏ฝ
๏ป 18.7548
cos 35.65๏ฐ
The length of the diagonal is 18.75 cm
(rounded to three significant digits).
cos 35.65๏ฐ ๏ฝ
54. Let x = the length of the equal sides of an
isosceles triangle.
Divide the isosceles triangle into two
congruent right triangles
1
๏จ49.28๏ฉ ๏ฝ 24.64 and
2
1
๏ฑ ๏ฝ ๏จ58.746๏ฐ๏ฉ ๏ฝ 29.373๏ฐ
2
24.64
d
๏
sin ๏ฑ ๏ฝ ๏ sin 29.373๏ฐ ๏ฝ
s
s
24.64
๏ป 50.2352
s๏ฝ
sin 29.373๏ฐ
Each side is 50.24 m long (rounded to 4
significant digits).
163
Angle ACB = 344ยฐ โ 254ยฐ = 90ยฐ, so ABC is a
right triangle.
Angle BAX = 32ยฐ because it is an alternate
interior angle to 32ยฐ.
Angle YCA = 360ยฐ โ 344ยฐ = 16ยฐ
Angle XAC = 16ยฐ because it is an alternate
interior angle to angle YCA.
Angle BAC = 32ยฐ + 16ยฐ = 48ยฐ.
In triangle ABC,
780
AC
cos A ๏ฝ
๏ cos 48๏ฐ ๏ฝ
๏
AB
AB
780
AB cos 48๏ฐ ๏ฝ 780 ๏ AB ๏ฝ
๏ป 1165.6917
cos 48๏ฐ
The distance from A to B is 1200 m. (rounded
to two significant digits)
56. Draw triangle ABC and extend north-south
lines from points A and B. Angle ABX is 55ยฐ
(alternate interior angles of parallel lines cut
by a transversal have the same measure) so
Angle ABC is 55ยฐ + 35ยฐ = 90ยฐ.
d๏ฝ
55. Draw triangle ABC and extend the north-south
lines to a point X south of A and S to a point Y,
north of C.
Angle ABC is a right angle, so use the
Pythagorean theorem to find the distance from
A to C.
๏จ AC ๏ฉ2 ๏ฝ 812 ๏ซ 742 ๏ ๏จ AC ๏ฉ2 ๏ฝ 6561 ๏ซ 5476 ๏
๏จ AC ๏ฉ2 ๏ฝ 12, 037 ๏ AC ๏ฝ 12, 037 ๏ป 109.7133
It is 110 km from A to C. (rounded to two
significant digits)
57. Suppose A is the car heading south at 55 mph,
B is the car heading west, and point C is the
intersection from which they start. After two
hours, using d = rt, AC = 55(2) = 110. Angle
ACB is a right angle, so triangle ACB is a right
triangle. The bearing of A from B is 324ยบ, so
angle CAB = 360ยบ โ 324ยบ = 36ยบ.
(continued on next page)
Copyright ยฉ 2021 Pearson Education, Inc.
164
Chapter 2 Acute Angles and Right Triangles
(continued)
110
AC
๏ cos 36๏ฐ ๏ฝ
๏
AB
AB
110
AB ๏ฝ
๏ป 135.9675
cos 36๏ฐ
The distance from A to B is about 140 mi
(rounded to two significant digits).
cos ๏CAB ๏ฝ
58. Let x = the leg opposite angle A
x
๏ x ๏ฝ k tan A and
k
h๏ซx
tan B ๏ฝ
๏ x ๏ฝ k tan B ๏ญ h . So,
k
k tan A ๏ฝ k tan B ๏ญ h
h ๏ฝ k tan B ๏ญ k tan A ๏ฝ k ๏จ tan B ๏ญ tan A๏ฉ
tan A ๏ฝ
59. Answers will vary. Sample answer:
Find the value of x.
60. Answers will vary. Sample answer:
Find the value of ๏ฑ .
(b) Let R = 3955 mi, T = 30 min, P = 140
min.
๏ฆ
๏ถ
1
๏ญ
h ๏ฝ R๏ง
1
๏ท
๏ง๏จ cos 180T
๏ท๏ธ
P
๏ฆ
๏ถ
1
๏ญ
h ๏ฝ 3955 ๏ง
1
๏ท ๏ป 1103.6349
๏ง๏จ cos 180๏30
๏ท๏ธ
140
The height of the satellite is
approximately 1104 mi.
๏จ ๏ฉ
๏จ
62. (a) From the figure, we see that
xQ ๏ญ xP
๏ xQ ๏ฝ xP ๏ซ d sin ๏ฑ .
sin ๏ฑ ๏ฝ
d
Similarly, we have
yQ ๏ญ yP
๏ yQ ๏ฝ yP ๏ซ d cos ๏ฑ .
cos ๏ฑ ๏ฝ
d
(b) Let ๏จ xP , yP ๏ฉ ๏ฝ ๏จ123.62, 337.95๏ฉ ,
๏ฑ ๏ฝ 17๏ฐ19๏ข 22๏ข๏ข, and d = 193.86 ft.
xQ ๏ฝ xP ๏ซ d sin ๏ฑ ๏
xQ ๏ฝ 123.62 ๏ซ 193.86 sin17๏ฐ19๏ข 22๏ข๏ข
๏ป 181.3427
yQ ๏ฝ yP ๏ซ d cos ๏ฑ ๏
yQ ๏ฝ 337.95 ๏ซ 193.86 cos17๏ฐ19๏ข 22๏ข๏ข
๏ป 523.0170
Thus, the coordinates of Q are
(181.34, 523.02), rounded to five
significant digits.
Chapter 2
๏จ ๏ฉ
(a) Let R = 3955 mi, T = 25 min, P = 140
min.
๏ฆ
๏ถ
1
h ๏ฝ R๏ง
๏ญ
1
๏ท
๏ง๏จ cos 180T
๏ท๏ธ
P
๏ฆ
๏ถ
1
h ๏ฝ 3955 ๏ง
๏ญ
1
๏ท ๏ป 715.9424
๏ง๏จ cos 180๏25
๏ท๏ธ
140
The height of the satellite is
approximately 716 mi.
๏จ ๏ฉ
๏จ
๏ฉ
Test
side opposite 12
๏ฝ
hypotenuse
13
side adjacent 5
cos A ๏ฝ
๏ฝ
hypotenuse 13
side opposite 12
tan A ๏ฝ
๏ฝ
side adjacent
5
side adjacent
5
cot A ๏ฝ
๏ฝ
side opposite 12
hypotenuse 13
sec A ๏ฝ
๏ฝ
side adjacent 5
hypotenuse
13
csc A ๏ฝ
๏ฝ
side opposite 12
1. sin A ๏ฝ
๏ฆ
๏ถ
1
1
๏ญ
61. h ๏ฝ R ๏ง
๏ท
๏ง๏จ cos 180T
๏ท๏ธ
P
๏ฉ
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2 Test
2. Apply the relationships between the lengths of
the sides of a 30๏ฐ ๏ญ 60๏ฐ right triangle first to
the triangle on the right to find the values of y
and w. In the 30๏ฐ ๏ญ 60๏ฐ right triangle, the side
opposite the 60๏ฐ angle is 3 times as long as
the side opposite to the 30๏ฐ angle. The length
of the hypotenuse is 2 times as long as the
shorter leg (opposite the 30๏ฐ angle).
165
5. A 240ยบ angle lies in quadrant III, so the
reference angle is 240๏ฐ ๏ญ 180๏ฐ ๏ฝ 60๏ฐ. Because
240ยฐ is in quadrant III, the sine, cosine, secant,
and cosecant are negative.
3
sin 240๏ฐ ๏ฝ ๏ญ sin 60๏ฐ ๏ฝ ๏ญ
2
1
cos 240๏ฐ ๏ฝ ๏ญ cos 60๏ฐ ๏ฝ ๏ญ
2
tan 240๏ฐ ๏ฝ tan 60๏ฐ ๏ฝ 3
1
3
๏ฝ
3
3
sec 240๏ฐ ๏ฝ ๏ญ sec 60๏ฐ ๏ฝ ๏ญ2
2
2 3
csc 240๏ฐ ๏ฝ ๏ญ csc 60๏ฐ ๏ฝ ๏ญ
๏ฝ๏ญ
3
3
cot 240๏ฐ ๏ฝ cot 60๏ฐ ๏ฝ
Thus, we have y ๏ฝ 4 3 and w ๏ฝ 2 ๏จ 4๏ฉ ๏ฝ 8 .
Apply the relationships between the lengths of
the sides of a 45๏ฐ ๏ญ 45๏ฐ right triangle next to
the triangle on the left to find the values of x
and z. In the 45๏ฐ ๏ญ 45๏ฐ right triangle, the sides
opposite the 45๏ฐ angles measure the same.
The hypotenuse is 2 times the measure of a
leg. Thus, we have x ๏ฝ 4 and z ๏ฝ 4 2
3. sin ๏จ๏ฑ ๏ซ 15๏ฐ๏ฉ ๏ฝ cos ๏จ2๏ฑ ๏ซ 30๏ฐ๏ฉ
Sine and cosine are cofunctions, so the sum of
the angles is 90ยบ. So,
๏จ๏ฑ ๏ซ 15๏ฐ๏ฉ ๏ซ ๏จ2๏ฑ ๏ซ 30๏ฐ๏ฉ ๏ฝ 90๏ฐ
3๏ฑ ๏ซ 45๏ฐ ๏ฝ 90๏ฐ
3๏ฑ ๏ฝ 45๏ฐ ๏ ๏ฑ ๏ฝ 15๏ฐ
4. (a) sin 24๏ฐ ๏ผ sin 48๏ฐ
In the interval from 0ยบ to 90ยบ, as the angle
increases, so does the sine of the angle, so
sin 24ยบ < sin 48ยบ is true.
(b) cos 24๏ฐ ๏ผ cos 48๏ฐ
In the interval from 0ยบ to 90ยบ, as the angle
increases, so the cosine of the angle
decreases, so cos 24ยบ < cos 48ยบ is false.
(c) cos ๏จ60๏ฐ ๏ซ 30๏ฐ๏ฉ
๏ฝ cos 60๏ฐ cos 30๏ฐ ๏ญ sin 60๏ฐ sin 30๏ฐ
cos ๏จ60๏ฐ ๏ซ 30๏ฐ๏ฉ ๏ฝ cos 90๏ฐ ๏ฝ 0
cos 60๏ฐ cos 30๏ฐ ๏ญ sin 60๏ฐ sin 30๏ฐ
1๏ฆ 3๏ถ
3 ๏ฆ1๏ถ
๏ฝ ๏ง
๏ญ
๏ง ๏ท๏ฝ0
๏ท
2 ๏จ 2 ๏ธ 2 ๏จ2๏ธ
Thus, the statement is true.
6. โ135ยฐ is coterminal with โ135ยฐ + 360ยฐ = 225ยฐ.
This angle lies in quadrant III. The reference
angle is 225๏ฐ ๏ญ 180๏ฐ ๏ฝ 45๏ฐ. Because โ135ยฐ is
in quadrant III, the sine, cosine, secant, and
cosecant are negative.
2
sin(๏ญ135๏ฐ) ๏ฝ ๏ญ sin 45๏ฐ ๏ฝ ๏ญ
2
2
cos(๏ญ35๏ฐ) ๏ฝ ๏ญ cos 45๏ฐ ๏ฝ ๏ญ
2
tan(๏ญ135๏ฐ) ๏ฝ tan 45๏ฐ ๏ฝ 1
cot(๏ญ135๏ฐ) ๏ฝ cot 45๏ฐ ๏ฝ 1
sec(๏ญ135๏ฐ) ๏ฝ ๏ญ sec 45๏ฐ ๏ฝ ๏ญ 2
csc(๏ญ135๏ฐ) ๏ฝ ๏ญ csc 45๏ฐ ๏ฝ ๏ญ 2
7. 990ยบ is coterminal with 990๏ฐ ๏ญ 2 ๏ 360๏ฐ ๏ฝ 270๏ฐ ,
which is the reference angle.
sin 990๏ฐ ๏ฝ sin 270๏ฐ ๏ฝ ๏ญ1
cos 990๏ฐ ๏ฝ cos 270๏ฐ ๏ฝ 0
tan 990๏ฐ ๏ฝ tan 270๏ฐ undefined
cot 990๏ฐ ๏ฝ cot 270๏ฐ ๏ฝ 0
sec 990๏ฐ ๏ฝ sec 270๏ฐ undefined
csc 990๏ฐ ๏ฝ csc 270๏ฐ ๏ฝ ๏ญ1
2
2
Because cos ๏ฑ is negative, ๏ฑ must lie in
quadrant II or quadrant III. The absolute value
2
, so ๏ฑ ๏ข ๏ฝ 45๏ฐ . The quadrant II
of cos ๏ฑ is
2
angle ๏ฑ equals 180๏ฐ ๏ญ ๏ฑ ๏ข ๏ฝ 180๏ฐ ๏ญ 45๏ฐ ๏ฝ 135๏ฐ,
and the quadrant III angle ๏ฑ equals
180๏ฐ ๏ซ ๏ฑ ๏ข ๏ฝ 180๏ฐ ๏ซ 45๏ฐ ๏ฝ 225๏ฐ.
8. cos ๏ฑ ๏ฝ ๏ญ
Copyright ยฉ 2021 Pearson Education, Inc.
166
Chapter 2 Acute Angles and Right Triangles
2 3
3
Because csc ๏ฑ is negative, ๏ฑ must lie in
quadrant III or quadrant IV. The absolute
2 3
value of csc ๏ฑ is
, so ๏ฑ ๏ข ๏ฝ 60๏ฐ . The
3
quadrant III angle ๏ฑ equals
180๏ฐ ๏ซ ๏ฑ ๏ข ๏ฝ 180๏ฐ ๏ซ 60๏ฐ ๏ฝ 240๏ฐ, and the
quadrant IV angle ๏ฑ equals
360๏ฐ ๏ญ ๏ฑ ๏ข ๏ฝ 360๏ฐ ๏ญ 60๏ฐ ๏ฝ 300๏ฐ.
9. csc ๏ฑ ๏ฝ ๏ญ
10. tan ๏ฑ ๏ฝ 1 ๏ ๏ฑ ๏ฝ 45๏ฐ or ๏ฑ ๏ฝ 225๏ฐ
11. tan ๏ฑ ๏ฝ 1.6778490
1
๏ญ1
cot ๏ฑ ๏ฝ
๏ฝ ๏จ tan ๏ฑ ๏ฉ , so we can use
tan ๏ฑ
division or the inverse key (multiplicative
inverse).
A ๏ซ B ๏ฝ 90๏ฐ ๏ B ๏ฝ 90๏ฐ ๏ญ A ๏
B ๏ฝ 90๏ฐ ๏ญ 58๏ฐ30๏ข ๏ฝ 31๏ฐ30๏ข
a
748
tan A ๏ฝ ๏ tan 58๏ฐ30๏ข ๏ฝ
๏
b
b
748
๏ป 458 (rounded to three
b๏ฝ
tan 58๏ฐ30๏ข
significant digits
a
748
๏
sin A ๏ฝ ๏ sin 58๏ฐ30๏ข ๏ฝ
c
c
748
๏ป 877 (rounded to three
c๏ฝ
sin 58๏ฐ30๏ข
significant digits
15. Let ๏ฑ = the measure of the angle that the guy
wire makes with the ground.
sin ๏ฑ ๏ฝ
71.3
77.4
๏ฆ 71.3 ๏ถ
๏ป 67.1๏ฐ ๏ป 67๏ฐ10๏ข
๏จ 77.4 ๏ท๏ธ
๏ฑ ๏ฝ sin ๏ญ1 ๏ง
16. Let x = the height of the flagpole.
12. (a) sin 78๏ฐ21๏ข ๏ป 0.979399
(b) tan117.689๏ฐ ๏ป ๏ญ1.905608
(c) sec 58.9041๏ฐ ๏ฝ
1
๏ป 1.936213
cos 58.9041๏ฐ
13. sin ๏ฑ ๏ฝ 0.27843196
๏ฑ ๏ฝ sin ๏ญ1 ๏จ0.27843196๏ฉ ๏ป 16.166641๏ฐ
14. A ๏ฝ 58๏ฐ30๏ข, a ๏ฝ 748
x
24.7
x ๏ฝ 24.7 tan 32๏ฐ10๏ข ๏ป 15.5344
The flagpole is approximately 15.5 ft high.
(rounded to three significant digits)
tan 32๏ฐ10๏ข ๏ฝ
17. Let h = the height of the top of mountain
above the cabin. Then 2000 + h = the height of
the mountain.
h
๏ h ๏ป 6800 (rounded to two
14, 000
significant digits). Thus, the height of the
mountain is about 6800 + 2000 = 8800 ft.
tan 26๏ฐ ๏ฝ
Copyright ยฉ 2021 Pearson Education, Inc.
Chapter 2 Test
18. Let x = distance the ships are apart.
In the figure, the measure of angle CAB is
122๏ฐ ๏ญ 32๏ฐ ๏ฝ 90๏ฐ. Therefore, triangle CAB is
a right triangle.
167
Angle ACB is a right angle, so use the
Pythagorean theorem to find the distance from
A to B.
๏จ AB ๏ฉ2 ๏ฝ 752 ๏ซ 532 ๏ ๏จ AB ๏ฉ2 ๏ฝ 5625 ๏ซ 2809 ๏
๏จ AB ๏ฉ2 ๏ฝ 8434 ๏ AB ๏ฝ 8434 ๏ป 91.8368
It is 92 km from the pier to the boat, rounded
to two significant digits.
20. Let x = the side adjacent to 52.5ยฐ in the smaller
triangle.
Because d = rt, the distance traveled by the
first ship in 2.5 hr is
(2.5 hr)(16 knots) = 40 nautical mi and the
second ship is
(2.5hr)(24 knots) = 60 nautical mi.
Applying the Pythagorean theorem, we have
x 2 ๏ฝ 402 ๏ซ 602 ๏ x 2 ๏ฝ 1600 ๏ซ 3600 ๏
x 2 ๏ฝ 5200 ๏ x ๏ฝ 5200 ๏ป 72.111
The ships are 72 nautical mi apart (rounded to
2 significant digits).
19. Draw triangle ACB and extend north-south
lines from points A and C. Angle ACD is 62ยฐ
(alternate interior angles of parallel lines cut
by a transversal have the same measure), so
Angle ACB is 62ยฐ + 28ยฐ = 90ยฐ.
In the larger triangle, we have
h
tan 41.2๏ฐ ๏ฝ
๏ h ๏ฝ ๏จ168 ๏ซ x ๏ฉ tan 41.2๏ฐ.
168 ๏ซ x
In the smaller triangle, we have
h
tan 52.5๏ฐ ๏ฝ ๏ h ๏ฝ x tan 52.5๏ฐ.
x
Substitute for h in this equation to solve for x.
๏จ168 ๏ซ x ๏ฉ tan 41.2๏ฐ ๏ฝ x tan 52.5๏ฐ
168 tan 41.2๏ฐ ๏ซ x tan 41.2๏ฐ ๏ฝ x tan 52.5๏ฐ
168 tan 41.2๏ฐ ๏ฝ x tan 52.5๏ฐ ๏ญ x tan 41.2๏ฐ
168 tan 41.2๏ฐ ๏ฝ x ๏จ tan 52.5๏ฐ ๏ญ tan 41.2๏ฐ๏ฉ
168 tan 41.2๏ฐ
๏ฝx
tan 52.5๏ฐ ๏ญ tan 41.2๏ฐ
Substituting for x in the equation for the
smaller triangle gives
h ๏ฝ x tan 52.5๏ฐ
168 tan 41.2๏ฐ tan 52.5๏ฐ
h๏ฝ
๏ป 448.0432
tan 52.5๏ฐ ๏ญ tan 41.2๏ฐ
The height of the triangle is approximately
448 m (rounded to three significant digits).
Copyright ยฉ 2021 Pearson Education, Inc.
Document Preview (53 of 533 Pages)
User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.
-37%
Solution Manual for Trigonometry, 12th Edition
$18.99 $29.99Save:$11.00(37%)
24/7 Live Chat
Instant Download
100% Confidential
Store
William Taylor
0 (0 Reviews)
Best Selling
The World Of Customer Service, 3rd Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Chemistry: Principles And Reactions, 7th Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Test Bank for Hospitality Facilities Management and Design, 4th Edition
$18.99 $29.99Save:$11.00(37%)
Solution Manual for Designing the User Interface: Strategies for Effective Human-Computer Interaction, 6th Edition
$18.99 $29.99Save:$11.00(37%)
Data Structures and Other Objects Using C++ 4th Edition Solution Manual
$18.99 $29.99Save:$11.00(37%)
2023-2024 ATI Pediatrics Proctored Exam with Answers (139 Solved Questions)
$18.99 $29.99Save:$11.00(37%)