Solution Manual for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry, 4th Edition
Preview Extract
Chapter 2
Linear and Quadratic Functions
10. False. The y-intercept is 8. The average rate of
change is 2 (the slope).
Section 2.1
1. From the equation y ๏ฝ 2 x ๏ญ 3 , we see that the yintercept is ๏ญ3 . Thus, the point ๏จ 0, ๏ญ3๏ฉ is on the
11. a
graph. We can obtain a second point by choosing
a value for x and finding the corresponding value
for y. Let x ๏ฝ 1 , then y ๏ฝ 2 ๏จ1๏ฉ ๏ญ 3 ๏ฝ ๏ญ1 . Thus,
12. d
13.
f ๏จ x ๏ฉ ๏ฝ 2x ๏ซ 3
the point ๏จ1, ๏ญ1๏ฉ is also on the graph. Plotting
a.
Slope = 2; y-intercept = 3
the two points and connecting with a line yields
the graph below.
b. Plot the point (0, 3). Use the slope to find
an additional point by moving 1 unit to the
right and 2 units up.
๏จ๏ฑ๏ฌ๏ญ๏ฑ๏ฉ
๏จ๏ฐ๏ฌ๏ญ๏ณ๏ฉ
2. m ๏ฝ
3.
y2 ๏ญ y1
3 ๏ญ 5 ๏ญ2 2
๏ฝ
๏ฝ
๏ฝ
x2 ๏ญ x1 ๏ญ1 ๏ญ 2 ๏ญ3 3
average rate of change = 2
d.
increasing
14. g ๏จ x ๏ฉ ๏ฝ 5 x ๏ญ 4
f (2) ๏ฝ 3(2) 2 ๏ญ 2 ๏ฝ 10
2
f (4) ๏ฝ 3(4) ๏ญ 2 ๏ฝ 46
๏y f (4) ๏ญ f (2) 46 ๏ญ 10 36
๏ฝ
๏ฝ
๏ฝ
๏ฝ 18
๏x
4๏ญ2
4๏ญ2
2
a.
Slope = 5; y-intercept = ๏ญ4
b. Plot the point (0, ๏ญ4) . Use the slope to find
an additional point by moving 1 unit to the
right and 5 units up.
4. 60 x ๏ญ 900 ๏ฝ ๏ญ15 x ๏ซ 2850
75 x ๏ญ 900 ๏ฝ 2850
75 x ๏ฝ 3750
x ๏ฝ 50
The solution set is {50}.
5.
c.
f ๏จ ๏ญ2 ๏ฉ ๏ฝ ๏จ ๏ญ2 ๏ฉ ๏ญ 4 ๏ฝ 4 ๏ญ 4 ๏ฝ 0
2
6. True
7. slope; y-intercept
c.
average rate of change = 5
d.
increasing
8. positive
9. True
149
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
15. h ๏จ x ๏ฉ ๏ฝ ๏ญ3x ๏ซ 4
a. Slope = ๏ญ3 ; y-intercept = 4
b. Plot the point (0, 4). Use the slope to find
an additional point by moving 1 unit to the
right and 3 units down.
c.
d.
c.
average rate of change =
d.
increasing
1
4
2
18. h ๏จ x ๏ฉ ๏ฝ ๏ญ x ๏ซ 4
3
2
a. Slope = ๏ญ ; y-intercept = 4
3
b. Plot the point (0, 4). Use the slope to find
an additional point by moving 3 units to the
right and 2 units down.
average rate of change = ๏ญ3
decreasing
16. p ๏จ x ๏ฉ ๏ฝ ๏ญ x ๏ซ 6
a. Slope = ๏ญ1 ; y-intercept = 6
b. Plot the point (0, 6). Use the slope to find
an additional point by moving 1 unit to the
right and 1 unit down.
c.
average rate of change = ๏ญ
d.
decreasing
2
3
19. F ๏จ x ๏ฉ ๏ฝ 4
a. Slope = 0; y-intercept = 4
b. Plot the point (0, 4) and draw a horizontal
line through it.
c.
d.
17.
average rate of change = ๏ญ1
decreasing
1
x ๏ญ3
4
1
a. Slope = ; y-intercept = ๏ญ3
4
b. Plot the point (0, ๏ญ3) . Use the slope to find
an additional point by moving 4 units to the
right and 1 unit up.
f ๏จ x๏ฉ ๏ฝ
c.
d.
average rate of change = 0
constant
150
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.1: Properties of Linear Functions and Linear Models
20. G ๏จ x ๏ฉ ๏ฝ ๏ญ2
23.
a.
b.
Slope = 0; y-intercept = ๏ญ2
Plot the point (0, ๏ญ2) and draw a horizontal
line through it.
c.
d.
average rate of change = 0
constant
zero: 0 ๏ฝ ๏ญ5 x ๏ซ 10 : y-intercept = 10
x๏ฝ2
b. Plot the points 1 unit to the right and 5 units
down.
a.
21. g ๏จ x ๏ฉ ๏ฝ 2 x ๏ญ 8
a.
b.
f ๏จ x ๏ฉ ๏ฝ ๏ญ5 x ๏ซ 10
24.
zero: 0 ๏ฝ 2 x ๏ญ 8 : y-intercept = ๏ญ8
x๏ฝ4
Plot the points (4, 0), (0, ๏ญ8) .
f ๏จ x ๏ฉ ๏ฝ ๏ญ6 x ๏ซ 12
a.
b.
22. g ๏จ x ๏ฉ ๏ฝ 3 x ๏ซ 12
a. zero: 0 ๏ฝ 3x ๏ซ 12 : y-intercept = 12
x ๏ฝ ๏ญ4
b. Plot the points ( ๏ญ4, 0), (0,12) .
zero: 0 ๏ฝ ๏ญ6 x ๏ซ 12 : y-intercept = 12
x๏ฝ2
Plot the points (2, 0), (0,12) .
1
25. H ๏จ x ๏ฉ ๏ฝ ๏ญ x ๏ซ 4
2
1
a. zero: 0 ๏ฝ ๏ญ x ๏ซ 4 : y-intercept = 4
2
x๏ฝ8
b. Plot the points (8, 0), (0, 4) .
151
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
1
x๏ญ4
3
1
a. zero: 0 ๏ฝ x ๏ญ 4 : y-intercept = ๏ญ4
3
x ๏ฝ 12
b. Plot the points (12, 0), (0, ๏ญ4) .
26. G ๏จ x ๏ฉ ๏ฝ
29.
x
y
๏ญ2
๏ญ8
๏ญ1
๏ญ3
0
0
Avg. rate of change =
๏ญ3 ๏ญ ๏จ ๏ญ8 ๏ฉ
๏ญ1 ๏ญ ๏จ ๏ญ2 ๏ฉ
0 ๏ญ ๏จ ๏ญ3๏ฉ
0 ๏ญ ๏จ ๏ญ1๏ฉ
๏ฝ
5
๏ฝ5
1
๏ฝ
3
๏ฝ3
1
๏y
๏x
1
1
2
0
Since the average rate of change is not constant,
this is not a linear function.
30.
27.
x
y
Avg. rate of change =
๏y
๏x
y
๏ญ2
๏ญ4
๏ญ1
0
0 ๏ญ (๏ญ4) 4
๏ฝ ๏ฝ4
๏ญ1 ๏ญ (๏ญ2) 1
๏ญ2
4
๏ญ1
1
1๏ญ 4
๏ญ3
๏ฝ
๏ฝ ๏ญ3
๏ญ1 ๏ญ ๏จ ๏ญ2 ๏ฉ 1
0
4
4๏ญ0
4
๏ฝ ๏ฝ4
0 ๏ญ (๏ญ1) 1
0
๏ญ2
๏ญ2 ๏ญ 1
๏ญ3
๏ฝ
๏ฝ ๏ญ3
0 ๏ญ ๏จ ๏ญ1๏ฉ 1
1
8
8๏ญ4 4
๏ฝ ๏ฝ4
1๏ญ 0 1
1
๏ญ5
๏ญ5 ๏ญ ๏จ ๏ญ2 ๏ฉ
1๏ญ 0
๏ญ8 ๏ญ ๏จ ๏ญ5 ๏ฉ
๏ฝ
x
๏ญ2
๏ญ8
y
๏ฝ
31.
๏y
Avg. rate of change =
๏x
1
4
๏ญ1
1
2
0
1
๏y
๏x
12 ๏ญ 8 4
๏ฝ ๏ฝ4
2 ๏ญ1 1
Since the average rate of change is constant at 4,
this is a linear function with slope = 4. The
y-intercept is (0, 4) , so the equation of the line is
y ๏ฝ 4x ๏ซ 4 .
๏ญ3
๏ฝ ๏ญ3
1
๏ญ3
๏ฝ ๏ญ3
2 ๏ญ1
1
Since the average rate of change is constant at
๏ญ3 , this is a linear function with slope = โ3.
The y-intercept is (0, ๏ญ2) , so the equation of the
line is y ๏ฝ ๏ญ3 x ๏ญ 2 .
2
28.
Avg. rate of change =
x
๏จ 12 ๏ญ 14 ๏ฉ 14 1
๏ฝ ๏ฝ
๏ญ1 ๏ญ ๏จ ๏ญ2 ๏ฉ 1 4
๏จ1 ๏ญ 12 ๏ฉ 12 1
๏ฝ ๏ฝ
0 ๏ญ ๏จ ๏ญ1๏ฉ 1 2
2
12
x
y
๏ญ2
๏ญ26
๏ญ1
๏ญ4
0
2
Avg. rate of change =
๏ญ4 ๏ญ ๏จ ๏ญ26 ๏ฉ
๏ญ1 ๏ญ ๏จ ๏ญ2 ๏ฉ
2 ๏ญ ๏จ ๏ญ4 ๏ฉ
0 ๏ญ ๏จ ๏ญ1๏ฉ
๏y
๏x
๏ฝ
22
๏ฝ 22
1
๏ฝ
6
๏ฝ6
1
1
โ2
2
โ10
Since the average rate of change is not constant,
this is not a linear function.
1
2
2
4
Since the average rate of change is not constant,
this is not a linear function.
152
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.1: Properties of Linear Functions and Linear Models
32.
x
y
๏ญ2
๏ญ4
Avg. rate of change =
๏y
๏x
๏ญ1
๏ญ3.5
0
๏ญ3
๏ญ3 ๏ญ (๏ญ3.5) 0.5
๏ฝ
๏ฝ 0.5
0 ๏ญ (๏ญ1)
1
๏ญ2.5
๏ญ2.5 ๏ญ (๏ญ3) 0.5
๏ฝ
๏ฝ 0.5
1๏ญ 0
1
a.
33.
b.
๏ญ2
8
๏ญ1
8
8๏ญ8
0
๏ฝ ๏ฝ0
๏ญ1 ๏ญ (๏ญ2) 1
0
8
8๏ญ8
0
๏ฝ ๏ฝ0
0 ๏ญ (๏ญ1) 1
1
8
8๏ญ8 0
๏ฝ ๏ฝ0
1๏ญ 0 1
1
4
๏ฌ
1๏ผ
๏ฆ1
๏ถ
The solution set is ๏ญ x x ๏พ ๏ฝ or ๏ง , ๏ฅ ๏ท .
4
4
๏จ
๏ธ
๏ฎ
๏พ
c.
f ๏จ x๏ฉ ๏ฝ g ๏จ x๏ฉ
4 x ๏ญ 1 ๏ฝ ๏ญ2 x ๏ซ 5
6x ๏ฝ 6
x ๏ฝ1
d.
f ๏จ x๏ฉ ๏ฃ g ๏จ x๏ฉ
4 x ๏ญ 1 ๏ฃ ๏ญ2 x ๏ซ 5
6x ๏ฃ 6
x ๏ฃ1
The solution set is ๏ป x x ๏ฃ 1๏ฝ or ๏จ ๏ญ๏ฅ, 1๏ .
e.
8๏ญ8 0
๏ฝ ๏ฝ0
2 ๏ญ1 1
Since the average rate of change is constant at 0,
this is a linear function with slope = 0. The yintercept is (0, 8) , so the equation of the line is
y ๏ฝ 0 x ๏ซ 8 or y ๏ฝ 8 .
34.
f ๏จ x๏ฉ ๏พ 0
x๏พ
๏y
Avg. rate of change =
๏x
y
1
4
4x ๏ญ1 ๏พ 0
๏ญ2
x
2
g ๏จ x ๏ฉ ๏ฝ ๏ญ2 x ๏ซ 5
f ๏จ x๏ฉ ๏ฝ 0
x๏ฝ
๏ญ2 ๏ญ (๏ญ2.5) 0.5
๏ฝ
๏ฝ 0.5
2 ๏ญ1
1
Since the average rate of change is constant at
0.5, this is a linear function with slope = 0.5.
The y-intercept is (0, ๏ญ3) , so the equation of the
line is y ๏ฝ 0.5 x ๏ญ 3 .
2
f ๏จ x ๏ฉ ๏ฝ 4 x ๏ญ 1;
4x ๏ญ1 ๏ฝ 0
๏ญ3.5 ๏ญ (๏ญ4) 0.5
๏ฝ
๏ฝ 0.5
๏ญ1 ๏ญ (๏ญ2)
1
1
35.
8
Avg. rate of change =
x
y
๏ญ2
0
๏ญ1
1
1๏ญ 0
1
๏ฝ ๏ฝ1
๏ญ1 ๏ญ (๏ญ2) 1
0
4
4 ๏ญ1
3
๏ฝ ๏ฝ3
0 ๏ญ (๏ญ1) 1
36.
f ๏จ x ๏ฉ ๏ฝ 3 x ๏ซ 5;
a.
๏y
๏x
g ๏จ x ๏ฉ ๏ฝ ๏ญ2 x ๏ซ 15
f ๏จ x๏ฉ ๏ฝ 0
3x ๏ซ 5 ๏ฝ 0
x๏ฝ๏ญ
b.
5
3
f ๏จ x๏ฉ ๏ผ 0
3x ๏ซ 5 ๏ผ 0
x๏ผ๏ญ
1
9
2
16
Since the average rate of change is not constant,
this is not a linear function.
5
3
๏ฌ
5๏ผ
5๏ถ
๏ฆ
The solution set is ๏ญ x x ๏ผ ๏ญ ๏ฝ or ๏ง ๏ญ๏ฅ, ๏ญ ๏ท .
3๏ธ
3
๏จ
๏ฎ
๏พ
153
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
c.
f ๏จ x๏ฉ ๏ฝ g ๏จ x๏ฉ
38. a.
3x ๏ซ 5 ๏ฝ ๏ญ2 x ๏ซ 15
5 x ๏ฝ 10
b. The point (๏ญ15, 60) is on the graph of
y ๏ฝ g ( x) , so the solution to g ( x) ๏ฝ 60 is
x ๏ฝ ๏ญ15 .
x๏ฝ2
d.
The point (5, 20) is on the graph of y ๏ฝ g ( x) ,
so the solution to g ( x) ๏ฝ 20 is x ๏ฝ 5 .
f ๏จ x๏ฉ ๏ณ g ๏จ x๏ฉ
c.
3x ๏ซ 5 ๏ณ ๏ญ2 x ๏ซ 15
5 x ๏ณ 10
The point (15, 0) is on the graph of y ๏ฝ g ( x) ,
so the solution to g ( x) ๏ฝ 0 is x ๏ฝ 15 .
d. The y-coordinates of the graph of y ๏ฝ g ( x) are
above 20 when the x-coordinates are smaller
than 5. Thus, the solution to g ( x) ๏พ 20 is
x๏ณ2
The solution set is ๏ป x x ๏ณ 2๏ฝ or ๏ 2, ๏ฅ ๏ฉ .
e.
๏ป x x ๏ผ 5๏ฝ or (๏ญ๏ฅ, 5) .
e.
The y-coordinates of the graph of y ๏ฝ f ( x)
are below 60 when the x-coordinates are larger
than ๏ญ15 . Thus, the solution to g ( x) ๏ฃ 60 is
๏ป x x ๏ณ ๏ญ15๏ฝ or [๏ญ15, ๏ฅ) .
f.
37. a.
The point (40, 50) is on the graph of
y ๏ฝ f ( x) , so the solution to f ( x) ๏ฝ 50 is
x ๏ฝ 40 .
๏ป x ๏ญ15 ๏ผ x ๏ผ 15๏ฝ or (๏ญ15, 15) .
b. The point (88, 80) is on the graph of
y ๏ฝ f ( x) , so the solution to f ( x) ๏ฝ 80 is
x ๏ฝ 88 .
c.
39. a.
b.
f ๏จ x ๏ฉ ๏ฃ g ๏จ x ๏ฉ when the graph of f is above
the graph of g. Thus, the solution is
๏ป x x ๏ผ ๏ญ4๏ฝ or (๏ญ๏ฅ, ๏ญ4) .
40. a.
f ๏จ x ๏ฉ ๏ฝ g ๏จ x ๏ฉ when their graphs intersect.
Thus, x ๏ฝ 2 .
๏ป x x ๏พ 40๏ฝ or (40, ๏ฅ) .
f.
f ๏จ x ๏ฉ ๏ฝ g ๏จ x ๏ฉ when their graphs intersect.
Thus, x ๏ฝ ๏ญ4 .
The point (๏ญ40, 0) is on the graph of
y ๏ฝ f ( x) , so the solution to f ( x) ๏ฝ 0 is
x ๏ฝ ๏ญ40 .
d. The y-coordinates of the graph of y ๏ฝ f ( x)
are above 50 when the x-coordinates are larger
than 40. Thus, the solution to f ( x) ๏พ 50 is
e.
The y-coordinates of the graph of y ๏ฝ f ( x)
are between 0 and 60 when the xcoordinates are between ๏ญ15 and 15. Thus,
the solution to 0 ๏ผ f ( x) ๏ผ 60 is
b.
The y-coordinates of the graph of y ๏ฝ f ( x)
are below 80 when the x-coordinates are
smaller than 88. Thus, the solution to
f ( x) ๏ฃ 80 is ๏ป x x ๏ฃ 88๏ฝ or (๏ญ๏ฅ, 88] .
f ๏จ x ๏ฉ ๏ฃ g ๏จ x ๏ฉ when the graph of f is below
or intersects the graph of g. Thus, the
solution is ๏ป x x ๏ฃ 2๏ฝ or ๏จ ๏ญ๏ฅ, 2๏ .
41. a.
f ๏จ x ๏ฉ ๏ฝ g ๏จ x ๏ฉ when their graphs intersect.
Thus, x ๏ฝ ๏ญ6 .
The y-coordinates of the graph of y ๏ฝ f ( x)
are between 0 and 80 when the x-coordinates
are between ๏ญ40 and 88. Thus, the solution to
0 ๏ผ f ( x) ๏ผ 80 is ๏ป x ๏ญ40 ๏ผ x ๏ผ 88๏ฝ or
b.
g ๏จ x ๏ฉ ๏ฃ f ๏จ x ๏ฉ ๏ผ h ๏จ x ๏ฉ when the graph of f is
above or intersects the graph of g and below
the graph of h. Thus, the solution is
๏ป x ๏ญ6 ๏ฃ x ๏ผ 5๏ฝ or ๏ ๏ญ6, 5๏ฉ .
(๏ญ40, 88) .
154
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.1: Properties of Linear Functions and Linear Models
42. a.
f ๏จ x ๏ฉ ๏ฝ g ๏จ x ๏ฉ when their graphs intersect.
d.
Thus, x ๏ฝ 7 .
b.
g ๏จ x ๏ฉ ๏ฃ f ๏จ x ๏ฉ ๏ผ h ๏จ x ๏ฉ when the graph of f is
above or intersects the graph of g and below
the graph of h. Thus, the solution is
๏ป x ๏ญ4 ๏ฃ x ๏ผ 7๏ฝ or ๏ ๏ญ4, 7 ๏ฉ .
e.
43. C ๏จ x ๏ฉ ๏ฝ 2.5 x ๏ซ 85
a.
C ๏จ 40 ๏ฉ ๏ฝ 2.5 ๏จ 40 ๏ฉ ๏ซ 85 ๏ฝ $185 .
b.
Solve C ๏จ x ๏ฉ ๏ฝ 2.5 x ๏ซ 85 ๏ฝ 245
2.5 x ๏ซ 85 ๏ฝ 245
2.5 x ๏ฝ 100
160
x๏ฝ
๏ฝ 64 miles
2.5
c.
Solve C ๏จ x ๏ฉ ๏ฝ 0.35 x ๏ซ 45 ๏ฃ 150
2.5 x ๏ซ 85 ๏ฃ 150
2.5 x ๏ฃ 105
65
๏ฝ 26 miles
x๏ฃ
2.5
d.
The number of mile towed cannot be
negative, so the implied domain for C is
{x | x ๏ณ 0} or [0, ๏ฅ) .
The cost of being towed increases $2.50 for
each mile, or there is a charge of $2.50 per
mile towed in addition to a fixed charge of
$85.
It costs $85 for towing 0 miles, or there is a
fixed charge of $85 for towing in addition to
a charge that depends on mileage.
e.
f.
f.
45. S ๏จ p ๏ฉ ๏ฝ ๏ญ 600 ๏ซ 50 p; D ๏จ p ๏ฉ ๏ฝ 1200 ๏ญ 25 p
a.
b.
Solve D ๏จ p ๏ฉ ๏พ S ๏จ p ๏ฉ .
1200 ๏ญ 25 p ๏พ ๏ญ 600 ๏ซ 50 p
1800 ๏พ 75 p
1800
๏พp
75
24 ๏พ p
The demand will exceed supply when the
price is less than $24 (but still greater than
$0). That is, $0 ๏ผ p ๏ผ $24 .
C ๏จ 50 ๏ฉ ๏ฝ 0.07 ๏จ 50 ๏ฉ ๏ซ 24.99 ๏ฝ $28.49 .
c.
b. Solve C ๏จ x ๏ฉ ๏ฝ 0.07 x ๏ซ 24.99 ๏ฝ 31.85
0.07 x ๏ซ 24.99 ๏ฝ 31.85
0.07 x ๏ฝ 6.86
6.86
๏ฝ 98 minutes
x๏ฝ
0.07
c.
Solve S ๏จ p ๏ฉ ๏ฝ D ๏จ p ๏ฉ .
๏ญ 600 ๏ซ 50 p ๏ฝ 1200 ๏ญ 25 p
75 p ๏ฝ 1800
1800
๏ฝ 24
p๏ฝ
75
S ๏จ 24๏ฉ ๏ฝ ๏ญ 600 ๏ซ 50 ๏จ 24๏ฉ ๏ฝ 600
Thus, the equilibrium price is $24, and the
equilibrium quantity is 600 T-shirts.
44. C ๏จ x ๏ฉ ๏ฝ 0.07 x ๏ซ 24.99
a.
The number of minutes cannot be negative,
so x ๏ณ 0 . If there are 30 days in the month,
then the number of minutes can be at most
30 ๏ 24 ๏ 60 ๏ฝ 43, 200 . Thus, the implied
domain for C is {x | 0 ๏ฃ x ๏ฃ 43, 200} or
[0, 43200] .
The monthly cost of the plan increases $0.07
for each minute used, or there is a charge of
$0.07 per minute to use the phone in
addition to a fixed charge of $24.99.
It costs $24.99 per month for the plan if 0
minutes are used, or there is a fixed charge
of $24.99 per month for the plan in addition
to a charge that depends on the number of
minutes used.
The price will eventually be increased.
46. S ๏จ p ๏ฉ ๏ฝ ๏ญ 2000 ๏ซ 3000 p; D ๏จ p ๏ฉ ๏ฝ 10000 ๏ญ 1000 p
a.
Solve C ๏จ x ๏ฉ ๏ฝ 0.07 x ๏ซ 24.99 ๏ฃ 36
0.07 x ๏ซ 24.99 ๏ฃ 36
0.07 x ๏ฃ 11.01
11.01
๏ป 157 minutes
x๏ฃ
0.07
Solve S ๏จ p ๏ฉ ๏ฝ D ๏จ p ๏ฉ .
๏ญ 2000 ๏ซ 3000 p ๏ฝ 10000 ๏ญ 1000 p
4000 p ๏ฝ 12000
12000
๏ฝ3
p๏ฝ
4000
S ๏จ 3๏ฉ ๏ฝ ๏ญ 2000 ๏ซ 3000 ๏จ 3๏ฉ ๏ฝ 7000
Thus, the equilibrium price is $3, and the
equilibrium quantity is 7000 hot dogs.
155
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
b. Solve D ๏จ p ๏ฉ ๏ผ S ๏จ p ๏ฉ .
e.
0.15 ๏จ x ๏ญ 9325 ๏ฉ ๏ซ 932.50 ๏ฝ 3673.75
10000 ๏ญ 1000 p ๏ผ ๏ญ2000 ๏ซ 3000 p
12000 ๏ผ 4000 p
c.
47. a.
b.
c.
d.
We must solve T ๏จ x ๏ฉ ๏ฝ 3673.75 .
0.15 x ๏ญ 1398.75 ๏ซ 932.50 ๏ฝ 3673.75
12000
๏ผp
4000
3๏ผ p
The demand will be less than the supply
when the price is greater than $3.
The price will eventually be decreased.
0.15 x ๏ญ 466.25 ๏ฝ 3673.75
0.15 x ๏ฝ 4140
f.
We are told that the tax function T is for
adjusted gross incomes x between $9,325
and $37,950, inclusive. Thus, the domain is
๏ป x 9,325 ๏ฃ x ๏ฃ 37,950๏ฝ or ๏9325, 37950๏ .
48. a.
T ๏จ 20, 000 ๏ฉ ๏ฝ 0.15 ๏จ 20, 000 ๏ญ 9325 ๏ฉ ๏ซ 932.50
๏ฝ 2533.75
If a single filerโs adjusted gross income is
$20,000, then his or her tax bill will be
$2533.75.
The independent variable is adjusted gross
income, x. The dependent variable is the tax
bill, T.
b.
x ๏ฝ 27600
A single filer with an adjusted gross income
of $27,600 will have a tax bill of $3673.75.
For each additional dollar of taxable income
between $9325 and $37,950, the tax bill of a
single person in 2013 increased by $0.15.
The independent variable is payroll, p. The
payroll tax only applies if the payroll exceeds
$189 million. Thus, the domain of T is
๏ป p | p ๏พ 189๏ฝ or (189, ๏ฅ) .
T ๏จ 243.8 ๏ฉ ๏ฝ 0.5 ๏จ 243.8 ๏ญ 189 ๏ฉ ๏ฝ 27.4
The luxury tax for the New York Yankees
was $27.4 million.
c.
Evaluate T at x ๏ฝ 9325, 20000, and 37950 .
T ๏จ 9325 ๏ฉ ๏ฝ 0.15 ๏จ 9325 ๏ญ 9325 ๏ฉ ๏ซ 932.50
Evaluate T at p ๏ฝ 189 , 243.8, and 300
million.
T ๏จ189 ๏ฉ ๏ฝ 0.5 ๏จ189 ๏ญ 189 ๏ฉ ๏ฝ 0 million
T ๏จ 243.8 ๏ฉ ๏ฝ 0.5 ๏จ 243.8 ๏ญ 189 ๏ฉ
๏ฝ 27.4
million
T ๏จ 300 ๏ฉ ๏ฝ 0.5 ๏จ 300 ๏ญ 189 ๏ฉ ๏ฝ 55.5 million
๏ฝ 932.50
T ๏จ 20, 000 ๏ฉ ๏ฝ 0.15 ๏จ 20, 000 ๏ญ 9325 ๏ฉ ๏ซ 932.50
Thus, the points ๏จ189 million, 0 million ๏ฉ ,
๏ฝ 2533.75
T ๏จ 37,950 ๏ฉ ๏ฝ 0.15 ๏จ 37950 ๏ญ 9325 ๏ฉ ๏ซ 932.50
๏จ 243.8 million, 27.4 million ๏ฉ , and
๏จ 300 million, 55.5 million ๏ฉ are on the graph.
๏ฝ 5226.25
Thus, the points ๏จ 9325,932.50 ๏ฉ ,
๏จ 20000, 2533.75 ๏ฉ , and ๏จ 37950,5226.25๏ฉ
are on the graph.
d.
We must solve T ๏จ p ๏ฉ ๏ฝ 31.8 .
0.5 ๏จ p ๏ญ 189 ๏ฉ ๏ฝ 31.8
0.5 p ๏ญ 94.5 ๏ฝ 31.8
0.5 p ๏ฝ 126.3
p ๏ฝ 252.6
156
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.1: Properties of Linear Functions and Linear Models
e.
If the luxury tax is $31.8 million, then the
payroll of the team is $252.6 million.
For each additional million dollars of
payroll in excess of $189 million in 2016,
the luxury tax of a team increased by $0.5
million.
$0 after 3 years. Thus, the implied domain
for V is {x | 0 ๏ฃ x ๏ฃ 3} or [0, 3].
c.
The graph of V ( x) ๏ฝ ๏ญ1000 x ๏ซ 3000
d.
V (2) ๏ฝ ๏ญ1000(2) ๏ซ 3000 ๏ฝ 1000
The computerโs book value after 2 years
will be $1000.
e.
Solve V ( x) ๏ฝ 2000
๏ญ1000 x ๏ซ 3000 ๏ฝ 2000
๏ญ1000 x ๏ฝ ๏ญ1000
x ๏ฝ1
The computer will have a book value of
$2000 after 1 year.
49. R ๏จ x ๏ฉ ๏ฝ 8 x; C ๏จ x ๏ฉ ๏ฝ 4.5 x ๏ซ 17,500
a.
Solve R ๏จ x ๏ฉ ๏ฝ C ๏จ x ๏ฉ .
8 x ๏ฝ 4.5 x ๏ซ 17,500
3.5 x ๏ฝ 17,500
x ๏ฝ 5000
The break-even point occurs when the
company sells 5000 units.
b. Solve R ๏จ x ๏ฉ ๏พ C ๏จ x ๏ฉ
8 x ๏พ 4.5 x ๏ซ 17,500
3.5 x ๏พ 17,500
x ๏พ 5000
The company makes a profit if it sells more
than 5000 units.
50. R ( x) ๏ฝ 12 x; C ( x) ๏ฝ 10 x ๏ซ 15, 000
a. Solve R ( x) ๏ฝ C ( x)
12 x ๏ฝ 10 x ๏ซ 15, 000
2 x ๏ฝ 15, 000
x ๏ฝ 7500
The break-even point occurs when the
company sells 7500 units.
52. a.
slope formula yields:
๏y 0 ๏ญ 120000 ๏ญ120000
m๏ฝ
๏ฝ
๏ฝ
๏ฝ ๏ญ12000
๏x
10 ๏ญ 0
10
The y-intercept is ๏จ 0,120000 ๏ฉ , so
b. Solve R ( x) ๏พ C ( x)
12 x ๏พ 10 x ๏ซ 15, 000
2 x ๏พ 15, 000
x ๏พ 7500
The company makes a profit if it sells more
than 7500 units.
51. a.
Consider the data points ๏จ x, y ๏ฉ , where x =
the age in years of the machine and y = the
value in dollars of the machine. So we have
the points ๏จ 0,120000 ๏ฉ and ๏จ10, 0 ๏ฉ . The
b ๏ฝ 120, 000 .
Therefore, the linear function is
V ๏จ x ๏ฉ ๏ฝ mx ๏ซ b ๏ฝ ๏ญ12, 000 x ๏ซ 120, 000 .
b. The age of the machine cannot be negative,
and the book value of the machine will be
$0 after 10 years. Thus, the implied domain
for V is {x | 0 ๏ฃ x ๏ฃ 10} or [0, 10].
Consider the data points ( x, y ) , where x =
the age in years of the computer and y = the
value in dollars of the computer. So we have
the points (0,3000) and (3, 0) . The slope
formula yields:
๏y 0 ๏ญ 3000 ๏ญ3000
m๏ฝ
๏ฝ
๏ฝ
๏ฝ ๏ญ1000
๏x
3๏ญ0
3
The y-intercept is (0,3000) , so b ๏ฝ 3000 .
Therefore, the linear function is
V ( x) ๏ฝ mx ๏ซ b ๏ฝ ๏ญ1000 x ๏ซ 3000 .
c.
The graph of V ๏จ x ๏ฉ ๏ฝ ๏ญ12, 000 x ๏ซ 120, 000
b. The age of the computer cannot be negative,
and the book value of the computer will be
157
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
d.
V ๏จ 4 ๏ฉ ๏ฝ ๏ญ12000 ๏จ 4 ๏ฉ ๏ซ 120000 ๏ฝ 72000
c.
The graph of C ๏จ x ๏ฉ ๏ฝ 90 x ๏ซ 1805
d.
The cost of manufacturing 14 bicycles is
given by C ๏จ14 ๏ฉ ๏ฝ 90 ๏จ14 ๏ฉ ๏ซ 1805 ๏ฝ $3065 .
e.
Solve C ๏จ x ๏ฉ ๏ฝ 90 x ๏ซ 1805 ๏ฝ 3780
90 x ๏ซ 1805 ๏ฝ 3780
90 x ๏ฝ 1975
x ๏ป 21.94
So approximately 21 bicycles could be
manufactured for $3780.
The machineโs value after 4 years is given
by $72,000.
e.
53. a.
Solve V ๏จ x ๏ฉ ๏ฝ 72000 .
๏ญ12000 x ๏ซ 120000 ๏ฝ 72000
๏ญ12000 x ๏ฝ ๏ญ48000
x๏ฝ4
The machine will be worth $72,000 after 4
years.
Let x = the number of bicycles manufactured.
We can use the cost function C ๏จ x ๏ฉ ๏ฝ mx ๏ซ b ,
with m = 90 and b = 1800. Therefore
C ๏จ x ๏ฉ ๏ฝ 90 x ๏ซ 1800
b.
The graph of C ๏จ x ๏ฉ ๏ฝ 90 x ๏ซ 1800
55. a.
b.
c.
The cost of manufacturing 14 bicycles is
given by C ๏จ14 ๏ฉ ๏ฝ 90 ๏จ14 ๏ฉ ๏ซ 1800 ๏ฝ $3060 .
b.
C ๏จ110 ๏ฉ ๏ฝ ๏จ 0.89 ๏ฉ๏จ110 ๏ฉ ๏ซ 39.95 ๏ฝ $137.85
C ๏จ 230 ๏ฉ ๏ฝ ๏จ 0.89 ๏ฉ๏จ 230 ๏ฉ ๏ซ 39.95 ๏ฝ $244.65
56. a.
d. Solve C ๏จ x ๏ฉ ๏ฝ 90 x ๏ซ 1800 ๏ฝ 3780
90 x ๏ซ 1800 ๏ฝ 3780
90 x ๏ฝ 1980
x ๏ฝ 22
So 22 bicycles could be manufactured for
$3780.
54. a.
Let x = number of miles driven, and let C =
cost in dollars. Total cost = (cost per
mile)(number of miles) + fixed cost
C ๏จ x ๏ฉ ๏ฝ 0.89 x ๏ซ 39.95
Let x = number of megabytes used, and
let C = cost in dollars. Total cost = (cost per
megabyte)(number of megabytes over 200)
+ fixed cost:
C ( x) ๏ฝ 0.25( x ๏ญ 200) ๏ซ 40
๏ฝ 0.25 x ๏ญ 50 ๏ซ 40
๏ฝ 0.25 x ๏ญ 10, x ๏พ 200
The new daily fixed cost is
100
1800 ๏ซ
๏ฝ $1805
20
b.
C ๏จ 265 ๏ฉ ๏ฝ ๏จ 0.25 ๏ฉ๏จ 265 ๏ฉ ๏ญ 10 ๏ฝ $56.25
C ๏จ 300 ๏ฉ ๏ฝ ๏จ 0.25 ๏ฉ๏จ 300 ๏ฉ ๏ญ 10 ๏ฝ $65
Let x = the number of bicycles
manufactured. We can use the cost function
C ๏จ x ๏ฉ ๏ฝ mx ๏ซ b , with m = 90 and b = 1805.
Therefore C ๏จ x ๏ฉ ๏ฝ 90 x ๏ซ 1805
158
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.1: Properties of Linear Functions and Linear Models
57. a.
e.
f.
b.
Avg. rate of change =
๏n
๏m
m
n
4
30
16
120
120 ๏ญ 30 90 15
๏ฝ
๏ฝ
16 ๏ญ 4
12 2
64
480
480 ๏ญ 120 360 15
๏ฝ
๏ฝ
64 ๏ญ 16
48
2
128
960
960 ๏ญ 480 480 15
๏ฝ
๏ฝ
128 ๏ญ 64
64
2
58. a.
Since each input (memory) corresponds to a
single output (recording time), we know that
recording time is a function of memory.
Also, because the average rate of change is
constant at 7.5 minutes per gigabyte, the
function is linear.
c.
If memory increases by 1 GB, then the
number of songs increases by 218.75.
b.
From part (b), we know slope ๏ฝ 7.5 . Using
(m1 , n1 ) ๏ฝ (4, 30) , we get the equation:
t ๏ญ t1 ๏ฝ s (m ๏ญ m1 )
t ๏ญ 30 ๏ฝ 7.5(m ๏ญ 4)
t ๏ญ 30 ๏ฝ 7.5m ๏ญ 30
t ๏ฝ 7.5m
Using function notation, we have
t (m) ๏ฝ 7.5m .
d. The memory cannot be negative, so m ๏ณ 0 .
Likewise, the time cannot be negative, so,
t ( m) ๏ณ 0 .
7.5m ๏ณ 0
m๏ณ0
Thus, the implied domain for n(m) is
{m | m ๏ณ 0} or ๏ 0, ๏ฅ ๏ฉ .
c.
Avg. rate of change =
๏h
๏s
s
h
20
0
15
3
3๏ญ0
3
๏ฝ
๏ฝ ๏ญ0.6
15 ๏ญ 20 ๏ญ5
10
6
6๏ญ3
3
๏ฝ
๏ฝ ๏ญ0.6
10 ๏ญ 15 ๏ญ5
5
9
9๏ญ6
3
๏ฝ
๏ฝ ๏ญ0.6
5 ๏ญ 10 ๏ญ5
Since each input (soda) corresponds to a
single output (hot dogs), we know that
number of hot dogs purchased is a function
of number of sodas purchased. Also,
because the average rate of change is
constant at ๏ญ0.6 hot dogs per soda, the
function is linear.
From part (b), we know m ๏ฝ ๏ญ0.6 . Using
( s1 , h1 ) ๏ฝ (20, 0) , we get the equation:
h ๏ญ h1 ๏ฝ m( s ๏ญ s1 )
h ๏ญ 0 ๏ฝ ๏ญ0.6( s ๏ญ 20)
h ๏ฝ ๏ญ0.6s ๏ซ 12
Using function notation, we have
h( s ) ๏ฝ ๏ญ0.6s ๏ซ 12 .
159
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
๏ญmx ๏ซ b ๏ฝ mx ๏ซ b
๏ญ mxb ๏ฝ mx
0 ๏ฝ 2mx
m๏ฝ0
So, yes, a linear function f ๏จ x ๏ฉ ๏ฝ mx ๏ซ b cab be
d. The number of sodas cannot be negative, so
s ๏ณ 0 . Likewise, the number of hot dogs
cannot be negative, so, h( s ) ๏ณ 0 .
๏ญ0.6 s ๏ซ 12 ๏ณ 0
๏ญ0.6 s ๏ณ ๏ญ12
s ๏ฃ 20
Thus, the implied domain for h(s) is
{s | 0 ๏ฃ s ๏ฃ 20} or [0, 20] .
even provided m ๏ฝ 0 .
e.
62. If you solve the linear function f ๏จ x ๏ฉ ๏ฝ mx ๏ซ b
for 0 you are actually finding the x-intercept.
Therefore using x-intercept of the graph of
f ๏จ x ๏ฉ ๏ฝ mx ๏ซ b would be same x-value as
solving mx ๏ซ b ๏พ 0 for x. Then the appropriate
interval could be determined
x 2 ๏ญ 4 x ๏ซ y 2 ๏ซ 10 y ๏ญ 7 ๏ฝ 0
63.
( x 2 ๏ญ 4 x ๏ซ 4) ๏ซ ( y 2 ๏ซ 10 y ๏ซ 25) ๏ฝ 7 ๏ซ 4 ๏ซ 25
f.
g.
If the number of hot dogs purchased increases
by $1, then the number of sodas purchased
decreases by 0.6.
s-intercept: If 0 hot dogs are purchased, then
20 sodas can be purchased.
h-intercept: If 0 sodas are purchased, then
12 hot dogs may be purchased.
( x ๏ญ 2) 2 ๏ซ ( y ๏ซ 5) 2 ๏ฝ 62
Center: (2, -5); Radius = 6
59. The graph shown has a positive slope and a
positive y-intercept. Therefore, the function
from (d) and (e) might have the graph shown.
60. The graph shown has a negative slope and a
positive y-intercept. Therefore, the function
from (b) and (e) might have the graph shown.
61. A linear function f ๏จ x ๏ฉ ๏ฝ mx ๏ซ b will be odd
provided f ๏จ ๏ญ x ๏ฉ ๏ฝ ๏ญ f ๏จ x ๏ฉ .
64.
That is, provided m ๏จ ๏ญ x ๏ฉ ๏ซ b ๏ฝ ๏ญ ๏จ mx ๏ซ b ๏ฉ .
๏ญmx ๏ซ b ๏ฝ ๏ญ mx ๏ญ b
b ๏ฝ ๏ญb
2b ๏ฝ 0
b๏ฝ0
So a linear function f ๏จ x ๏ฉ ๏ฝ mx ๏ซ b will be odd
provided b ๏ฝ 0 .
2x ๏ซ B
x๏ญ3
2(5) ๏ซ B
f (5) ๏ฝ 8 ๏ฝ
5๏ญ3
10 ๏ซ B
8๏ฝ
2
16 ๏ฝ 10 ๏ซ B
B๏ฝ6
f ( x) ๏ฝ
A linear function f ๏จ x ๏ฉ ๏ฝ mx ๏ซ b will be even
provided f ๏จ ๏ญ x ๏ฉ ๏ฝ f ๏จ x ๏ฉ .
That is, provided m ๏จ ๏ญ x ๏ฉ ๏ซ b ๏ฝ mx ๏ซ b .
160
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.2: Building Linear Models from Data
65.
f (3) ๏ญ f (1)
3 ๏ญ1
12 ๏ญ ( ๏ญ2)
๏ฝ
2
14
๏ฝ
2
๏ฝ7
6. Nonlinear relation
7. Linear relation, m ๏ผ 0
8. Linear relation, m ๏พ 0
9. Nonlinear relation
10. Nonlinear relation
11. a.
66.
b.
๏ฐ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ฑ๏ฐ
๏ฐ
Answers will vary. We select (4, 6) and
(8, 14). The slope of the line containing
these points is:
14 ๏ญ 6 8
m๏ฝ
๏ฝ ๏ฝ2
8๏ญ4 4
The equation of the line is:
y ๏ญ y1 ๏ฝ m( x ๏ญ x1 )
y ๏ญ 6 ๏ฝ 2( x ๏ญ 4)
Section 2.2
1.
๏ฒ๏ฐ
y ๏ญ 6 ๏ฝ 2x ๏ญ 8
y ๏ฝ 2x ๏ญ 2
y
๏ฑ๏ฒ
c.
๏ฒ๏ฐ
d.
๏ฐ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ฑ๏ฐ
๏ฐ
Using the LINear REGression program,
the line of best fit is:
y ๏ฝ 2.0357 x ๏ญ 2.3571
e.
๏ฒ๏ฐ
๏ถ
๏ฑ๏ ๏ ๏ ๏ ๏ ๏ฒ๏ ๏ ๏ ๏ ๏ ๏ณ
x
No, the relation is not a function because an
input, 1, corresponds to two different outputs, 5
and 12.
2. Let ๏จ x1 , y1 ๏ฉ ๏ฝ ๏จ1, 4 ๏ฉ and ๏จ x2 , y2 ๏ฉ ๏ฝ ๏จ 3, 8 ๏ฉ .
m๏ฝ
y2 ๏ญ y1 8 ๏ญ 4 4
๏ฝ
๏ฝ ๏ฝ2
x2 ๏ญ x1 3 ๏ญ 1 2
y ๏ญ y1 ๏ฝ m ๏จ x ๏ญ x1 ๏ฉ
y ๏ญ 4 ๏ฝ 2 ๏จ x ๏ญ 1๏ฉ
y ๏ญ 4 ๏ฝ 2x ๏ญ 2
y ๏ฝ 2x ๏ซ 2
12. a.
๏ฐ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ฑ๏ฐ
๏ฐ
๏ฑ๏ต
3. scatter diagram
4. decrease; 0.008
๏ฐ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ฑ๏ต
5. Linear relation, m ๏พ 0
๏ญ๏ต
161
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
b.
Answers will vary. We select (5, 2) and
(11, 9). The slope of the line containing
9๏ญ2 7
๏ฝ
these points is: m ๏ฝ
11 ๏ญ 5 6
The equation of the line is:
y ๏ญ y1 ๏ฝ m( x ๏ญ x1 )
๏ญ๏ณ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ณ
7
( x ๏ญ 5)
6
7
35
y๏ญ2 ๏ฝ x๏ญ
6
6
7
23
y ๏ฝ x๏ญ
6
6
๏ฑ๏ต
y๏ญ2 ๏ฝ
c.
๏ถ
c.
e.
๏ญ๏ถ
Using the LINear REGression program,
the line of best fit is:
y ๏ฝ 2.2 x ๏ซ 1.2
๏ถ
๏ญ๏ณ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ณ
๏ญ๏ถ
๏ฐ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ฑ๏ต
d.
e.
๏ญ๏ต๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ต
b.
๏ฐ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ฑ๏ต
๏ญ๏ต
13. a.
๏ถ
๏ญ๏ณ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ณ
b.
๏ธ
14. a.
๏ญ๏ต
Using the LINear REGression program,
the line of best fit is:
y ๏ฝ 1.1286 x ๏ญ 3.8619
๏ฑ๏ต
๏ญ๏ถ
Answers will vary. We select (โ2,โ4) and
(2, 5). The slope of the line containing
5 ๏ญ (๏ญ 4) 9
these points is: m ๏ฝ
๏ฝ .
2 ๏ญ (๏ญ 2) 4
The equation of the line is:
y ๏ญ y1 ๏ฝ m( x ๏ญ x1 )
9
y ๏ญ (๏ญ 4) ๏ฝ ( x ๏ญ (๏ญ 2))
4
9
9
y๏ซ4๏ฝ x๏ซ
4
2
9
1
y ๏ฝ x๏ซ
4
2
c.
๏ญ๏ฒ
Answers will vary. We select (โ2, 7) and
(2, 0). The slope of the line containing
0๏ญ7
7
๏ญ7
these points is: m ๏ฝ
๏ฝ
๏ฝ๏ญ .
2 ๏ญ (๏ญ2) 4
4
The equation of the line is:
y ๏ญ y1 ๏ฝ m( x ๏ญ x1 )
7
y ๏ญ 7 ๏ฝ ๏ญ ( x ๏ญ (๏ญ 2))
4
7
7
y๏ญ7 ๏ฝ ๏ญ x๏ญ
4
2
7
7
y ๏ฝ ๏ญ x๏ซ
4
2
๏ธ
๏ญ๏ต๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ต
d.
๏ญ๏ฒ
Using the LINear REGression program,
the line of best fit is:
y ๏ฝ ๏ญ1.8 x ๏ซ 3.6
162
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.2: Building Linear Models from Data
e.
๏ธ
b.
๏ญ๏ต๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ต
The equation of the line is:
y ๏ญ y1 ๏ฝ m( x ๏ญ x1 )
๏ญ๏ฒ
๏ฑ๏ต๏ฐ
15. a.
b.
1
๏จ x ๏ญ (๏ญ30) ๏ฉ
2
1
y ๏ญ 10 ๏ฝ x ๏ซ 15
2
1
y ๏ฝ x ๏ซ 25
2
y ๏ญ 10 ๏ฝ
๏ญ๏ฒ๏ต๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ฐ
๏น๏ฐ
Answers will vary. We select (โ20,100)
and (โ10,140). The slope of the line
containing these points is:
140 ๏ญ 100
40
m๏ฝ
๏ฝ
๏ฝ4
๏ญ10 ๏ญ ๏จ ๏ญ20 ๏ฉ 10
c.
The equation of the line is:
y ๏ญ y1 ๏ฝ m( x ๏ญ x1 )
d.
y ๏ญ 100 ๏ฝ 4 ๏จ x ๏ญ (๏ญ20) ๏ฉ
y ๏ญ 100 ๏ฝ 4 x ๏ซ 80
e.
y ๏ฝ 4 x ๏ซ 180
c.
Selection of points will vary. We select
(โ30, 10) and (โ14, 18). The slope of the
line containing these points is:
18 ๏ญ 10
8 1
m๏ฝ
๏ฝ
๏ฝ
๏ญ14 ๏ญ ๏จ ๏ญ30 ๏ฉ 16 2
๏ฒ๏ต
๏ญ๏ด๏ฐ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ฐ
๏ฐ
Using the LINear REGression program,
the line of best fit is:
y ๏ฝ 0.4421x ๏ซ 23.4559
๏ฒ๏ต
๏ฑ๏ต๏ฐ
๏ญ๏ด๏ฐ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ฐ
๏ฐ
d.
e.
๏ญ๏ฒ๏ต๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ฐ
๏น๏ฐ
Using the LINear REGression program,
the line of best fit is:
y ๏ฝ 3.8613 x ๏ซ 180.2920
๏ฑ๏ต๏ฐ
17. a.
๏ญ๏ฒ๏ต๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ฐ
๏น๏ฐ
16. a.
b. Linear.
c. Answers will vary. We will use the points
(39.52, 210) and (66.45, 280) .
๏ฒ๏ต
๏ญ๏ด๏ฐ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ฐ
๏ฐ
163
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
d.
280 ๏ญ 210
70
๏ฝ
๏ป 2.5993316
66.45 ๏ญ 39.52 26.93
y ๏ญ 210 ๏ฝ 2.5993316( x ๏ญ 39.52)
y ๏ญ 210 ๏ฝ 2.5993316 x ๏ญ 102.7255848
y ๏ฝ 2.599 x ๏ซ 107.274
m๏ฝ
d.
e.
e.
f.
f.
x ๏ฝ 62.3 : y ๏ฝ 2.599(62.3) ๏ซ 107.274 ๏ป 269
We predict that a candy bar weighing 62.3
grams will contain 269 calories.
If the weight of a candy bar is increased by
one gram, then the number of calories will
increase by 2.599.
19.
a.
18. a.
L(450) ๏ฝ 0.011(450) ๏ซ 0.3 ๏ฝ 5.25
We predict that the approximately length of a
450 yard wide tornado is 5.25 miles.
For each 1-yard increase in the width of a
tornado, the length of the tornado increases
by 0.011 mile, on average.
The independent variable is the number of
hours spent playing video games and
cumulative grade-point average is the
dependent variable because we are using
number of hours playing video games to
predict (or explain) cumulative grade-point
average.
b.
b.
c.
Linear with positive slope.
Answers will vary. We will use the points
(200, 2.5) and (500, 5.8) .
c.
Using the LINear REGression program, the
line of best fit is: G (h) ๏ฝ ๏ญ0.0942h ๏ซ 3.2763
m๏ฝ
d.
L ๏ญ 2.5 ๏ฝ 0.011๏จ w ๏ญ 200๏ฉ
L ๏ญ 2.5 ๏ฝ 0.011w ๏ญ 2.2
L ๏ฝ 0.011w ๏ซ 0.3
e.
If the number of hours playing video games
in a week increases by 1 hour, the
cumulative grade-point average decreases
0.09, on average.
G (8) ๏ฝ ๏ญ0.0942(8) ๏ซ 3.2763 ๏ฝ 2.52
We predict a grade-point average of
approximately 2.52 for a student who plays
8 hours of video games each week.
2.40 ๏ฝ ๏ญ0.0942(h) ๏ซ 3.2763
2.40 ๏ญ 3.2763 ๏ฝ ๏ญ0.0942h
๏ญ0.8763 ๏ฝ ๏ญ0.0942h
9.3 ๏ฝ h
5.8 ๏ญ 2.5
3.3
๏ฝ
๏ฝ 0.011
500 ๏ญ 200 300
L ๏ญ L1 ๏ฝ m ๏จ w ๏ญ w1 ๏ฉ
f.
164
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.2: Building Linear Models from Data
A student who has a grade-point average of
2.40 will have played approximately 9.3
hours of video games.
20. a.
๏ฑ๏ธ
d.
For each 1-mph increase in the speed off
bat, the homerun distance increases by
3.3641 feet, on average.
e.
d ( s) ๏ฝ 3.3641s ๏ซ 51.8233
f.
Since the speed off bat must be greater than
0 the domain is ๏ป s | s ๏พ 0๏ฝ .
g.
d (103) ๏ฝ 3.3641(103) ๏ซ 51.8233 ๏ป 398 ft
A hurricane with a wind speed of 85 knots
would have a pressure of approximately 967
millibars.
a.
The relation is a function because none of
the invariables are repeated.
๏ฒ๏ด๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ฒ๏ธ
๏ฑ๏ถ
b.
22.
Using the LINear REGression program, the
line of best fit is:
w( p) ๏ฝ ๏ญ1.1857 p ๏ซ 1231.8279
c.
d.
e.
21. a.
b.
For each 10-millibar increase in the
atmospheric pressure, the wind speed of the
tropical system decreases by 1.1857 knots, on
average.
w(990) ๏ฝ ๏ญ1.1857(990) ๏ซ 1231.8279 ๏ป 58
knots
To find the pressure, we solve the following
equation:
85 ๏ฝ ๏ญ1.1857 p ๏ซ 1231.8279
๏ญ1146.8279 ๏ฝ ๏ญ1.1857 p
967 ๏ป p
A hurricane with a wind speed of 85 knots
would have a pressure of approximately 967
millibars.
c.
d. If Internet ad spending increases by 1%,
magazine ad spending goes down by about
0.2277%, on average.
This relation does not represent a function
since the values of the input variable s are
repeated.
e.
m ๏จ n ๏ฉ ๏ฝ ๏ญ0.2277 n ๏ซ 15.9370
f.
Domain: ๏ปn 0 ๏ผ n ๏ฃ 70.0๏ฝ
Note that the m-intercept is roughly 15.9 and
that the percent of Internet sales cannot be
negative.
b.
g.
c.
Using the LINear REGression program, the
line of best fit is: m ๏ฝ ๏ญ0.2277n ๏ซ 15.9370 .
D(28) ๏ฝ ๏ญ0.2277(26.0) ๏ซ 15.9370 ๏ป 10.0
Percent of magazine sales is about 10.0%.
Using the LINear REGression program, the
line of best fit is: d ๏ฝ 3.3641s ๏ซ 51.8233
165
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
x 2 ๏ญ 25 ๏ฝ 0
x 2 ๏ฝ 25 ๏ฎ x ๏ฝ ๏ฑ5
So the domain is: ๏ป x | x ๏น 5, ๏ญ5๏ฝ
23.
f ( x) ๏ฝ 5 x ๏ญ 8 and g ( x) ๏ฝ x 2 ๏ญ 3x ๏ซ 4
30.
( g ๏ญ f )( x) ๏ฝ ( x 2 ๏ญ 3 x ๏ซ 4) ๏ญ (5 x ๏ญ 8)
๏ฝ x 2 ๏ญ 3x ๏ซ 4 ๏ญ 5 x ๏ซ 8
๏ฝ x 2 ๏ญ 8 x ๏ซ 12
31. Since y is shifted to the left 3 units we would use
y ๏ฝ ( x ๏ซ 3) 2 . Since y is also shifted down 4
units,we would use y ๏ฝ ( x ๏ซ 3) 2 ๏ญ 4 .
The data do not follow a linear pattern so it
would not make sense to find the line of best fit.
Section 2.3
24. Using the ordered pairs (1, 5) and (3, 8) , the line
of best fit is y ๏ฝ 1.5 x ๏ซ 3.5 .
1. a.
b.
2.
x 2 ๏ญ 5 x ๏ญ 6 ๏ฝ ๏จ x ๏ญ 6 ๏ฉ๏จ x ๏ซ 1๏ฉ
2 x 2 ๏ญ x ๏ญ 3 ๏ฝ ๏จ 2 x ๏ญ 3๏ฉ๏จ x ๏ซ 1๏ฉ
82 ๏ญ 4 ๏ 2 ๏ 3 ๏ฝ 64 ๏ญ 24
๏ฝ 40 ๏ฝ 4 ๏10 ๏ฝ 2 10
The correlation coefficient is r ๏ฝ 1 . This is
reasonable because two points determine a line.
3.
x ๏ญ 3 ๏ฝ 0 or 3x ๏ซ 5 ๏ฝ 0
25. A correlation coefficient of 0 implies that the
data do not have a linear relationship.
x๏ฝ3
3x ๏ฝ ๏ญ5
5
3
5
๏ฌ
๏ผ
The solution set is ๏ญ๏ญ ,3๏ฝ .
๏ฎ 3 ๏พ
x๏ฝ๏ญ
26. The y-intercept would be the calories of a candy
bar with weight 0 which would not be
meaningful in this problem.
27. G (0) ๏ฝ ๏ญ0.0942(0) ๏ซ 3.2763 ๏ฝ 3.2763 . The
approximate grade-point average of a student
who plays 0 hours of video games per week
would be 3.28.
28. m ๏ฝ
๏จ x ๏ญ 3๏ฉ๏จ 3x ๏ซ 5๏ฉ ๏ฝ 0
2
๏ฆ1 ๏ถ
4. add; ๏ง ๏ 6 ๏ท ๏ฝ 9
๏จ2 ๏ธ
5. If f (4) ๏ฝ 10 , then the point (4, 10) is on the
graph of f.
๏ญ3 ๏ญ 5
๏ญ8
๏ฝ
๏ฝ ๏ญ2
3 ๏ญ ( ๏ญ1)
4
6.
y ๏ญ y1 ๏ฝ m ๏จ x ๏ญ x1 ๏ฉ
f ๏จ ๏ญ3๏ฉ ๏ฝ (๏ญ3) 2 ๏ซ 4(๏ญ3) ๏ซ 3
๏ฝ 9 ๏ญ 12 ๏ซ 3 ๏ฝ 0
๏ญ3 is a zero of f ๏จ x ๏ฉ .
y ๏ญ 5 ๏ฝ ๏ญ2 ๏จ x ๏ซ 1๏ฉ
y ๏ญ 5 ๏ฝ ๏ญ2 x ๏ญ 2
y ๏ฝ ๏ญ2 x ๏ซ 3 or
2x ๏ซ y ๏ฝ 3
7. repeated; multiplicity 2
8. discriminant; negative
29. The domain would be all real numbers except
those that make the denominator zero.
9. A quadratic functions can have either 0, 1 or 2
real zeros.
166
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.3: Quadratic Functions and Their Zeros
10. x ๏ฝ
F ๏จ x๏ฉ ๏ฝ 0
17.
๏ญb ๏ฑ b 2 ๏ญ 4ac
2a
2
11. False; the equation will have only two real
solution but not necessarily negatives of one
another.
x ๏ซ x๏ญ6 ๏ฝ 0
( x ๏ซ 3)( x ๏ญ 2) ๏ฝ 0
x ๏ซ 3 ๏ฝ 0 or x ๏ญ 2 ๏ฝ 0
x ๏ฝ ๏ญ3
x๏ฝ2
12. b
The zeros of F ๏จ x ๏ฉ ๏ฝ x 2 ๏ซ x ๏ญ 6 are ๏ญ3 and 2.
13.
The x-intercepts of the graph of F are ๏ญ3 and 2.
f ๏จ x๏ฉ ๏ฝ 0
x2 ๏ซ 7 x ๏ซ 6 ๏ฝ 0
x ๏จ x ๏ญ 9๏ฉ ๏ฝ 0
x ๏ฝ 0 or
( x ๏ซ 6)( x ๏ซ 1) ๏ฝ 0
x ๏ซ 6 ๏ฝ 0 or x ๏ซ 1 ๏ฝ 0
x ๏ฝ ๏ญ6
x ๏ฝ ๏ญ1
x๏ญ9 ๏ฝ 0
x๏ฝ9
The zeros of f ๏จ x ๏ฉ ๏ฝ x 2 ๏ญ 9 x are 0 and 9. The x-
The zeros of H ๏จ x ๏ฉ ๏ฝ x 2 ๏ซ 7 x ๏ซ 6 are ๏ญ6 and ๏ญ1 .
intercepts of the graph of f are 0 and 9.
14.
The x-intercepts of the graph of H are ๏ญ6 and ๏ญ1 .
f ๏จ x๏ฉ ๏ฝ 0
2
2 x ๏ญ 5x ๏ญ 3 ๏ฝ 0
(2 x ๏ซ 1)( x ๏ญ 3) ๏ฝ 0
x ๏จ x ๏ซ 4๏ฉ ๏ฝ 0
x๏ซ4๏ฝ0
x ๏ฝ ๏ญ4
2x ๏ซ 1 ๏ฝ 0
x๏ฝ๏ญ
The zeros of f ๏จ x ๏ฉ ๏ฝ x 2 ๏ซ 4 x are ๏ญ4 and 0. The
x-intercepts of the graph of f are ๏ญ4 and 0.
15.
or x ๏ญ 3 ๏ฝ 0
x๏ฝ3
1
2
1
and 3.
2
1
The x-intercepts of the graph of g are ๏ญ and 3.
2
The zeros of g ๏จ x ๏ฉ ๏ฝ 2 x 2 ๏ญ 5 x ๏ญ 3 are ๏ญ
g ๏จ x๏ฉ ๏ฝ 0
x 2 ๏ญ 25 ๏ฝ 0
( x ๏ซ 5)( x ๏ญ 5) ๏ฝ 0
x ๏ซ 5 ๏ฝ 0 or x ๏ญ 5 ๏ฝ 0
x ๏ฝ ๏ญ5
x๏ฝ5
20.
f ๏จ x๏ฉ ๏ฝ 0
3x 2 ๏ซ 5 x ๏ซ 2 ๏ฝ 0
(3x ๏ซ 2)( x ๏ซ 1) ๏ฝ 0
The zeros of g ๏จ x ๏ฉ ๏ฝ x 2 ๏ญ 25 are ๏ญ5 and 5. The
3x ๏ซ 2 ๏ฝ 0
x-intercepts of the graph of g are ๏ญ5 and 5.
16.
g ๏จ x๏ฉ ๏ฝ 0
19.
x2 ๏ซ 4 x ๏ฝ 0
x ๏ฝ 0 or
H ๏จ x๏ฉ ๏ฝ 0
18.
x2 ๏ญ 9 x ๏ฝ 0
or x ๏ซ 1 ๏ฝ 0
2
x ๏ฝ ๏ญ1
3
The zeros of f ๏จ x ๏ฉ ๏ฝ 3 x 2 ๏ซ 5 x ๏ซ 2 are ๏ญ1 and
x๏ฝ๏ญ
G ๏จ x๏ฉ ๏ฝ 0
x2 ๏ญ 9 ๏ฝ 0
( x ๏ซ 3)( x ๏ญ 3) ๏ฝ 0
x ๏ซ 3 ๏ฝ 0 or x ๏ญ 3 ๏ฝ 0
x ๏ฝ ๏ญ3
x๏ฝ3
2
๏ญ . The x-intercepts of the graph of f are ๏ญ1
3
2
and ๏ญ .
3
The zeros of G ๏จ x ๏ฉ ๏ฝ x 2 ๏ญ 9 are ๏ญ3 and 3. The
x-intercepts of the graph of G are ๏ญ3 and 3.
167
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
P ๏จ x๏ฉ ๏ฝ 0
21.
3
.
2
3
The only x-intercept of the graph of G is .
2
The only zero of G ๏จ x ๏ฉ ๏ฝ 4 x 2 ๏ซ 9 ๏ญ 12 x is
2
3 x ๏ญ 48 ๏ฝ 0
3( x 2 ๏ญ 16) ๏ฝ 0
3( x ๏ซ 4)( x ๏ญ 4) ๏ฝ 0
t ๏ซ 4 ๏ฝ 0 or t ๏ญ 4 ๏ฝ 0
F ๏จ x๏ฉ ๏ฝ 0
26.
2
t๏ฝ4
25 x ๏ซ 16 ๏ญ 40 x ๏ฝ 0
The zeros of P ๏จ x ๏ฉ ๏ฝ 3 x 2 ๏ญ 48 are ๏ญ4 and 4.
25 x 2 ๏ญ 40 x ๏ซ 16 ๏ฝ 0
(5 x ๏ญ 4)(5 x ๏ญ 4) ๏ฝ 0
t ๏ฝ ๏ญ4
The x-intercepts of the graph of P are ๏ญ4 and 4.
5 x ๏ญ 4 ๏ฝ 0 or 5 x ๏ญ 4 ๏ฝ 0
4
4
x๏ฝ
x๏ฝ
5
5
H ๏จ x๏ฉ ๏ฝ 0
22.
2 x 2 ๏ญ 50 ๏ฝ 0
2( x 2 ๏ญ 25) ๏ฝ 0
The only zero of F ๏จ x ๏ฉ ๏ฝ 25 x 2 ๏ซ 16 ๏ญ 40 x is
2( x ๏ซ 5)( x ๏ญ 5) ๏ฝ 0
y ๏ซ 5 ๏ฝ 0 or y ๏ญ 5=0
y ๏ฝ ๏ญ5
The only x-intercept of the graph of F is
y๏ฝ5
The zeros of H ๏จ x ๏ฉ ๏ฝ 2 x 2 ๏ญ 50 are ๏ญ5 and 5.
27.
The x-intercepts of the graph of H are ๏ญ5 and 5.
x ๏ฝ ๏ฑ 8 ๏ฝ ๏ฑ2 2
The zeros of f ๏จ x ๏ฉ ๏ฝ x 2 ๏ญ 8 are ๏ญ2 2 and 2 2 .
x 2 ๏ซ 8 x ๏ซ 12 ๏ฝ 0
The x-intercepts of the graph of f are ๏ญ2 2 and
2 2.
( x ๏ซ 6) ๏จ x ๏ซ 2 ๏ฉ ๏ฝ 0
x ๏ฝ ๏ญ6 or x ๏ฝ ๏ญ2
The zeros of g ๏จ x ๏ฉ ๏ฝ x ๏จ x ๏ซ 8 ๏ฉ ๏ซ 12 are ๏ญ6 and ๏ญ2 .
28.
The x-intercepts of the graph of g are ๏ญ6 and ๏ญ2 .
g ๏จ x๏ฉ ๏ฝ 0
x 2 ๏ญ 18 ๏ฝ 0
x 2 ๏ฝ 18
f ๏จ x๏ฉ ๏ฝ 0
x ๏จ x ๏ญ 4 ๏ฉ ๏ญ 12 ๏ฝ 0
x ๏ฝ ๏ฑ 18 ๏ฝ ๏ฑ3 3
The zeros of g ๏จ x ๏ฉ ๏ฝ x 2 ๏ญ 18 are ๏ญ3 3 and
x 2 ๏ญ 4 x ๏ญ 12 ๏ฝ 0
( x ๏ญ 6) ๏จ x ๏ซ 2 ๏ฉ ๏ฝ 0
3 3 . The x-intercepts of the graph of g are
๏ญ3 3 and 3 3 .
x ๏ฝ ๏ญ2 or x ๏ฝ 6
The zeros of f ๏จ x ๏ฉ ๏ฝ x ๏จ x ๏ญ 4 ๏ฉ ๏ญ 12 are ๏ญ2 and 6.
29.
The x-intercepts of the graph of f are ๏ญ2 and 6.
g ๏จ x๏ฉ ๏ฝ 0
๏จ x ๏ญ 1๏ฉ2 ๏ญ 4 ๏ฝ 0
๏จ x ๏ญ 1๏ฉ2 ๏ฝ 4
G ๏จ x๏ฉ ๏ฝ 0
25.
f ๏จ x๏ฉ ๏ฝ 0
x2 ๏ฝ 8
x ๏จ x ๏ซ 8 ๏ฉ ๏ซ 12 ๏ฝ 0
24.
4
.
5
x2 ๏ญ 8 ๏ฝ 0
g ๏จ x๏ฉ ๏ฝ 0
23.
4
.
5
2
4 x ๏ซ 9 ๏ญ 12 x ๏ฝ 0
x ๏ญ1 ๏ฝ ๏ฑ 4
x ๏ญ 1 ๏ฝ ๏ฑ2
x ๏ญ 1 ๏ฝ 2 or x ๏ญ 1 ๏ฝ ๏ญ2
x๏ฝ3
x ๏ฝ ๏ญ1
4 x 2 ๏ญ 12 x ๏ซ 9 ๏ฝ 0
(2 x ๏ญ 3)(2 x ๏ญ 3) ๏ฝ 0
2 x ๏ญ 3 ๏ฝ 0 or 2 x ๏ญ 3 ๏ฝ 0
3
3
x๏ฝ
x๏ฝ
2
2
The zeros of g ๏จ x ๏ฉ ๏ฝ ๏จ x ๏ญ 1๏ฉ ๏ญ 4 are ๏ญ1 and 3.
2
The x-intercepts of the graph of g are ๏ญ1 and 3.
168
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.3: Quadratic Functions and Their Zeros
G ๏จ x๏ฉ ๏ฝ 0
30.
f ๏จ x๏ฉ ๏ฝ 0
33.
๏จ x ๏ซ 2๏ฉ ๏ญ 1 ๏ฝ 0
๏จ x ๏ซ 2 ๏ฉ2 ๏ฝ 1
2
2
x ๏ซ 4x ๏ญ 8 ๏ฝ 0
x2 ๏ซ 4 x ๏ฝ 8
x2 ๏ซ 4 x ๏ซ 4 ๏ฝ 8 ๏ซ 4
x๏ซ2๏ฝ ๏ฑ 1
x ๏ซ 2 ๏ฝ ๏ฑ1
x ๏ซ 2 ๏ฝ 1 or x ๏ซ 2 ๏ฝ ๏ญ1
x ๏ฝ ๏ญ1
x ๏ฝ ๏ญ3
๏จ x ๏ซ 2 ๏ฉ2 ๏ฝ 12
x ๏ซ 2 ๏ฝ ๏ฑ 12
x ๏ซ 2 ๏ฝ ๏ฑ2 3
The zeros of G ๏จ x ๏ฉ ๏ฝ ๏จ x ๏ซ 2 ๏ฉ ๏ญ 1 are ๏ญ3 and ๏ญ1 .
2
x ๏ฝ ๏ญ2 ๏ฑ 2 3
x ๏ฝ ๏ญ2 ๏ซ 2 3 or x ๏ฝ ๏ญ2 ๏ญ 2 3
The x-intercepts of the graph of G are ๏ญ3 and ๏ญ1 .
The zeros of f ๏จ x ๏ฉ ๏ฝ x 2 ๏ซ 4 x ๏ญ 8 are ๏ญ2 ๏ซ 2 3
F ๏จ x๏ฉ ๏ฝ 0
31.
๏จ 2 x ๏ซ 3๏ฉ2 ๏ญ 32 ๏ฝ 0
๏จ 2 x ๏ซ 3๏ฉ2 ๏ฝ 32
and ๏ญ2 ๏ญ 2 3 . The x-intercepts of the graph of f
are ๏ญ2 ๏ซ 2 3 and ๏ญ2 ๏ญ 2 3 .
2 x ๏ซ 3 ๏ฝ ๏ฑ 32
2 x ๏ซ 3 ๏ฝ ๏ฑ4 2
x2 ๏ญ 6 x ๏ญ 9 ๏ฝ 0
2 x ๏ฝ ๏ญ3 ๏ฑ 4 2
x๏ฝ
f ๏จ x๏ฉ ๏ฝ 0
34.
x2 ๏ญ 6 x ๏ซ 9 ๏ฝ 9 ๏ซ 9
๏จ x ๏ญ 3๏ฉ2 ๏ฝ 18
๏ญ3 ๏ฑ 4 2
2
x ๏ญ 3 ๏ฝ ๏ฑ 18
The zeros of F ๏จ x ๏ฉ ๏ฝ ๏จ 2 x ๏ซ 3๏ฉ ๏ญ 32 are
2
x ๏ฝ 3๏ฑ3 2
๏ญ3 ๏ซ 4 2
๏ญ3 ๏ญ 4 2
and
. The x-intercepts of
2
2
๏ญ3 ๏ซ 4 2
๏ญ3 ๏ญ 4 2
and
.
the graph of F are
2
2
The zeros of f ๏จ x ๏ฉ ๏ฝ x 2 ๏ญ 6 x ๏ญ 9 are 3 ๏ญ 3 2
and 3 ๏ซ 3 2 . The x-intercepts of the graph of f
are 3 ๏ญ 3 2 and 3 ๏ซ 3 2 .
F ๏จ x๏ฉ ๏ฝ 0
32.
1
3
x๏ญ ๏ฝ0
2
16
1
3
x2 ๏ญ x ๏ฝ
2
16
1
1
3 1
x2 ๏ญ x ๏ซ ๏ฝ ๏ซ
2
16 16 16
๏จ 3x ๏ญ 2 ๏ฉ ๏ญ 75 ๏ฝ 0
๏จ 3x ๏ญ 2 ๏ฉ2 ๏ฝ 75
2
x2 ๏ญ
3 x ๏ญ 2 ๏ฝ ๏ฑ 75
3 x ๏ญ 2 ๏ฝ ๏ฑ5 3
3x ๏ฝ 2 ๏ฑ 5 3
x๏ฝ
g ๏จ x๏ฉ ๏ฝ 0
35.
2
1๏ถ
1
๏ฆ
๏งx๏ญ 4๏ท ๏ฝ 4
๏จ
๏ธ
2๏ฑ5 3
3
1
1
1
๏ฝ๏ฑ
๏ฝ๏ฑ
4
4
2
1 1
x๏ฝ ๏ฑ
4 2
3
1
x๏ฝ
or x ๏ฝ ๏ญ
4
4
1
3
1
3
are ๏ญ and .
The zeros of g ๏จ x ๏ฉ ๏ฝ x 2 ๏ญ x ๏ญ
2
16
4
4
1
3
The x-intercepts of the graph of g are ๏ญ and .
4
4
x๏ญ
2๏ซ5 3
The zeros of G ๏จ x ๏ฉ ๏ฝ ๏จ 3 x ๏ญ 2 ๏ฉ ๏ญ 75 are
3
2
and
2๏ญ5 3
. The x-intercepts of the graph of G
3
are
2๏ญ5 3
2๏ซ5 3
and
.
3
3
169
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
g ๏จ x๏ฉ ๏ฝ 0
36.
2
1
x๏ญ ๏ฝ0
3
3
2
1
2
x ๏ซ x๏ฝ
3
3
2
1
1
1
x2 ๏ซ x ๏ซ ๏ฝ ๏ซ
3
9 3 9
2
2 x ๏ญ 3x ๏ญ 1 ๏ฝ 0
3
1
x2 ๏ญ x ๏ญ ๏ฝ 0
2
2
3
1
2
x ๏ญ x๏ฝ
2
2
3
9 1 9
2
x ๏ญ x๏ซ ๏ฝ ๏ซ
2
16 2 16
x2 ๏ซ
2
1๏ถ
4
๏ฆ
๏งx๏ซ 3๏ท ๏ฝ 9
๏จ
๏ธ
x๏ซ
2
3 ๏ถ 17
๏ฆ
๏ง x ๏ญ 4 ๏ท ๏ฝ 16
๏จ
๏ธ
1
4
2
๏ฝ๏ฑ
๏ฝ๏ฑ
3
9
3
1 2
x๏ฝ๏ญ ๏ฑ
3 3
1
x ๏ฝ or x ๏ฝ ๏ญ1
3
x๏ญ
4
3 ๏ซ 17
. The x-intercepts of the graph of G are
4
3 ๏ญ 17
4
F ๏จ x๏ฉ ๏ฝ 0
4
x2 ๏ญ 4 x ๏ซ 2 ๏ฝ 0
a ๏ฝ 1, b ๏ฝ ๏ญ 4, c ๏ฝ 2
x๏ฝ
๏ญ(๏ญ 4) ๏ฑ (๏ญ 4) 2 ๏ญ 4(1)(2) 4 ๏ฑ 16 ๏ญ 8
๏ฝ
2(1)
2
4๏ฑ 8 4๏ฑ2 2
๏ฝ
๏ฝ 2๏ฑ 2
2
2
The zeros of f ๏จ x ๏ฉ ๏ฝ x 2 ๏ญ 4 x ๏ซ 2 are 2 ๏ญ 2 and
๏ฝ
2
1๏ถ
7
๏ฆ
๏ง x ๏ซ 6 ๏ท ๏ฝ 36
๏จ
๏ธ
2 ๏ซ 2 . The x-intercepts of the graph of f are
2 ๏ญ 2 and 2 ๏ซ 2 .
1
7
7
๏ฝ๏ฑ
๏ฝ๏ฑ
6
36
6
f ๏จ x๏ฉ ๏ฝ 0
40.
๏ญ1 ๏ฑ 7
6
The zeros of F ๏จ x ๏ฉ ๏ฝ 3 x 2 ๏ซ x ๏ญ
and 3 ๏ซ 17 .
f ๏จ x๏ฉ ๏ฝ 0
39.
1
๏ฝ0
2
1
1
x2 ๏ซ x ๏ญ ๏ฝ 0
3
6
1
1
x2 ๏ซ x ๏ฝ
3
6
1
1 1 1
2
x ๏ซ x๏ซ
๏ฝ ๏ซ
3
36 6 36
3x 2 ๏ซ x ๏ญ
x๏ฝ
3 ๏ฑ 17
4
The zeros of G ๏จ x ๏ฉ ๏ฝ 2 x 2 ๏ญ 3x ๏ญ 1 are 3 ๏ญ 17 and
2
1
1
The zeros of g ๏จ x ๏ฉ ๏ฝ x ๏ซ x ๏ญ are ๏ญ1 and .
3
3
3
1
The x-intercepts of the graph of g are ๏ญ1 and .
3
x๏ซ
3
17
17
๏ฝ๏ฑ
๏ฝ๏ฑ
4
16
4
x๏ฝ
2
37.
G ๏จ x๏ฉ ๏ฝ 0
38.
x2 ๏ซ 4 x ๏ซ 2 ๏ฝ 0
a ๏ฝ 1, b ๏ฝ 4, c ๏ฝ 2
1
are ๏ญ1 ๏ญ 7 and
6
2
๏ญ 4 ๏ฑ 42 ๏ญ 4(1)(2) ๏ญ 4 ๏ฑ 16 ๏ญ 8
๏ฝ
2(1)
2
๏ญ1 ๏ซ 7
. The x-intercepts of the graph of F are
6
x๏ฝ
๏ญ1 ๏ญ 7
6
๏ญ4๏ฑ 8 ๏ญ4๏ฑ 2 2
๏ฝ
๏ฝ ๏ญ2๏ฑ 2
2
2
The zeros of f ๏จ x ๏ฉ ๏ฝ x 2 ๏ซ 4 x ๏ซ 2 are ๏ญ 2 ๏ญ 2
and ๏ญ1 ๏ซ 7 .
๏ฝ
6
and ๏ญ 2 ๏ซ 2 . The x-intercepts of the graph of f
are ๏ญ 2 ๏ญ 2 and ๏ญ 2 ๏ซ 2 .
170
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.3: Quadratic Functions and Their Zeros
g ๏จ x๏ฉ ๏ฝ 0
41.
x ๏ญ 4x ๏ญ1 ๏ฝ 0
a ๏ฝ 1, b ๏ฝ ๏ญ 4, c ๏ฝ ๏ญ1
x๏ฝ
2
4x ๏ญ x ๏ซ 2 ๏ฝ 0
a ๏ฝ 4, b ๏ฝ ๏ญ 1, c ๏ฝ 2
๏ญ(๏ญ 4) ๏ฑ (๏ญ 4) 2 ๏ญ 4(1)(๏ญ1)
2(1)
๏ฝ
4 ๏ฑ 16 ๏ซ 4
2
x๏ฝ
๏ญ(๏ญ1) ๏ฑ (๏ญ1) 2 ๏ญ 4(4)(2) 1 ๏ฑ 1 ๏ญ 32
๏ฝ
2(4)
8
4 ๏ฑ 20 4 ๏ฑ 2 5
๏ฝ
๏ฝ 2๏ฑ 5
2
2
The zeros of g ๏จ x ๏ฉ ๏ฝ x 2 ๏ญ 4 x ๏ญ 1 are 2 ๏ญ 5 and
1 ๏ฑ ๏ญ31
๏ฝ not real
8
The function P ๏จ x ๏ฉ ๏ฝ 4 x 2 ๏ญ x ๏ซ 2 has no real
2 ๏ซ 5 . The x-intercepts of the graph of g are
zeros, and the graph of P has no x-intercepts.
๏ฝ
๏ฝ
2 ๏ญ 5 and 2 ๏ซ 5 .
4×2 ๏ซ x ๏ซ 1 ๏ฝ 0
a ๏ฝ 4, b ๏ฝ 1, c ๏ฝ 1
x ๏ซ 6x ๏ซ 1 ๏ฝ 0
a ๏ฝ 1, b ๏ฝ 6, c ๏ฝ 1
2
t๏ฝ
๏ญ 6 ๏ฑ 6 ๏ญ 4(1)(1) ๏ญ 6 ๏ฑ 36 ๏ญ 4
๏ฝ
2(1)
2
2
x๏ฝ
๏ญ1 ๏ฑ ๏ญ15
๏ฝ not real
8
The function H ๏จ x ๏ฉ ๏ฝ 4 x 2 ๏ซ x ๏ซ 1 has no real
zeros, and the graph of H has no x-intercepts.
and ๏ญ3 ๏ซ 2 2 . The x-intercepts of the graph of
g are ๏ญ3 ๏ญ 2 2 and ๏ญ3 ๏ซ 2 2 .
2
4x ๏ญ1๏ซ 2x ๏ฝ 0
4 x2 ๏ซ 2 x ๏ญ 1 ๏ฝ 0
a ๏ฝ 4, b ๏ฝ 2, c ๏ฝ ๏ญ1
2 x ๏ญ 5x ๏ซ 3 ๏ฝ 0
a ๏ฝ 2, b ๏ฝ ๏ญ 5, c ๏ฝ 3
2
x๏ฝ
2(2)
f ๏จ x๏ฉ ๏ฝ 0
47.
F ๏จ x๏ฉ ๏ฝ 0
๏ญ(๏ญ 5) ๏ฑ (๏ญ 5) 2 ๏ญ 4(2)(3)
๏ญ1 ๏ฑ 12 ๏ญ 4(4)(1) ๏ญ1 ๏ฑ 1 ๏ญ 16
๏ฝ
2(4)
8
๏ฝ
๏ญ 6 ๏ฑ 32 ๏ญ 6 ๏ฑ 4 2
๏ฝ
๏ฝ
๏ฝ ๏ญ3 ๏ฑ 2 2
2
2
The zeros of g ๏จ x ๏ฉ ๏ฝ x 2 ๏ซ 6 x ๏ซ 1 are ๏ญ3 ๏ญ 2 2
43.
H ๏จ x๏ฉ ๏ฝ 0
46.
g ๏จ x๏ฉ ๏ฝ 0
42.
5 ๏ฑ 25 ๏ญ 24
๏ฝ
4
5 ๏ฑ1 3
๏ฝ
๏ฝ or 1
4
2
x๏ฝ
๏ญ 2 ๏ฑ 22 ๏ญ 4(4)(๏ญ1) ๏ญ 2 ๏ฑ 4 ๏ซ 16
๏ฝ
2(4)
8
๏ฝ
๏ญ 2 ๏ฑ 20 ๏ญ 2 ๏ฑ 2 5 ๏ญ1 ๏ฑ 5
๏ฝ
๏ฝ
8
8
4
The zeros of f ๏จ x ๏ฉ ๏ฝ 4 x 2 ๏ญ 1 ๏ซ 2 x are ๏ญ1 ๏ญ 5
The zeros of F ๏จ x ๏ฉ ๏ฝ 2 x 2 ๏ญ 5 x ๏ซ 3 are 1 and 3 .
4
2
3
The x-intercepts of the graph of F are 1 and .
2
44.
P ๏จ x๏ฉ ๏ฝ 0
45.
2
and ๏ญ1 ๏ซ 5 . The x-intercepts of the graph of f
4
are ๏ญ1 ๏ญ 5 and ๏ญ1 ๏ซ 5 .
g ๏จ x๏ฉ ๏ฝ 0
4
2 x2 ๏ซ 5x ๏ซ 3 ๏ฝ 0
a ๏ฝ 2, b ๏ฝ 5, c ๏ฝ 3
4
f ๏จ x๏ฉ ๏ฝ 0
48.
2
2x ๏ญ1๏ซ 2x ๏ฝ 0
๏ญ5 ๏ฑ 52 ๏ญ 4(2)(3) ๏ญ5 ๏ฑ 25 ๏ญ 24
x๏ฝ
๏ฝ
2(2)
4
๏ญ5 ๏ฑ 1
3
๏ฝ
๏ฝ ๏ญ1 or ๏ญ
4
2
2 x2 ๏ซ 2 x ๏ญ 1 ๏ฝ 0
a ๏ฝ 2, b ๏ฝ 2, c ๏ฝ ๏ญ1
x๏ฝ
๏ญ 2 ๏ฑ 22 ๏ญ 4(2)(๏ญ1) ๏ญ 2 ๏ฑ 4 ๏ซ 8
๏ฝ
2(2)
4
๏ฝ
๏ญ 2 ๏ฑ 12 ๏ญ 2 ๏ฑ 2 3 ๏ญ1 ๏ฑ 3
๏ฝ
๏ฝ
4
4
2
The zeros of g ๏จ x ๏ฉ ๏ฝ 2 x 2 ๏ซ 5 x ๏ซ 3 are ๏ญ 3 and ๏ญ1 .
2
3
The x-intercepts of the graph of g are ๏ญ and ๏ญ1 .
2
171
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
2
2
4 x ๏ซ 20 x ๏ซ 25 ๏ฝ 0
a ๏ฝ 4, b ๏ฝ 20, c ๏ฝ 25
and ๏ญ1 ๏ซ 3 . The x-intercepts of the graph of f
2
are ๏ญ1 ๏ญ 3
2
and ๏ญ1 ๏ซ 3 .
x๏ฝ
2 x( x ๏ซ 2) ๏ญ 3 ๏ฝ 0
2 x2 ๏ซ 4 x ๏ญ 3 ๏ฝ 0
a ๏ฝ 2, b ๏ฝ 4, c ๏ฝ ๏ญ3
x๏ฝ
๏ฝ
๏ญ ๏จ 4๏ฉ ๏ฑ
๏ญ
๏จ 4 ๏ฉ ๏ญ 4(2)(๏ญ3)
2
๏ญ4 ๏ฑ 16 ๏ซ 24
4
๏ฝ
2(2)
f ๏จ x๏ฉ ๏ฝ g ๏จ x๏ฉ
x ๏ซ 6x ๏ซ 3 ๏ฝ 3
x2 ๏ซ 6x ๏ฝ 0 ๏ x ๏จ x ๏ซ 6๏ฉ ๏ฝ 0
x ๏ฝ 0 or x ๏ซ 6 ๏ฝ 0
x ๏ฝ ๏ญ6
The x-coordinates of the points of intersection are
๏ญ6 and 0. The y-coordinates are g ๏จ ๏ญ6 ๏ฉ ๏ฝ 3 and
2
and ๏ญ2 ๏ญ 10 . The x-intercepts of the graph of G
2
are ๏ญ2 ๏ซ 10 and ๏ญ2 ๏ญ 10 .
2
2
g ๏จ 0 ๏ฉ ๏ฝ 3 . The graphs of the f and g intersect at
F ๏จ x๏ฉ ๏ฝ 0
the points (๏ญ6,3) and (0,3) .
3x( x ๏ซ 2) ๏ญ 1 ๏ฝ 0 ๏ 3 x ๏ซ 6 x ๏ญ 1 ๏ฝ 0
a ๏ฝ 3, b ๏ฝ 6, c ๏ฝ ๏ญ1
2
x๏ฝ
๏ฝ
๏จ 6 ๏ฉ2 ๏ญ 4(3)(๏ญ1)
2(3)
2
x ๏ญ 4x ๏ซ 3 ๏ฝ 3
๏ญ6 ๏ฑ 36 ๏ซ 12
๏ฝ
6
x2 ๏ญ 4 x ๏ฝ 0
x ๏จ x ๏ญ 4๏ฉ ๏ฝ 0
๏ญ6 ๏ฑ 48 ๏ญ6 ๏ฑ 4 3 ๏ญ3 ๏ฑ 2 3
๏ฝ
=
6
6
3
x ๏ฝ 0 or x ๏ญ 4 ๏ฝ 0
x๏ฝ4
The x-coordinates of the points of intersection are 0
and 4. The y-coordinates are g ๏จ 0 ๏ฉ ๏ฝ 3 and
3
and ๏ญ3 ๏ญ 2 3 . The x-intercepts of the graph of G
3
g ๏จ 4 ๏ฉ ๏ฝ 3 . The graphs of the f and g intersect at
are ๏ญ3 ๏ซ 2 3 and ๏ญ3 ๏ญ 2 3 .
3
3
the points (0,3) and (4,3) .
p ๏จ x๏ฉ ๏ฝ 0
55.
2
9x ๏ญ 6x ๏ซ 1 ๏ฝ 0
a ๏ฝ 9, b ๏ฝ ๏ญ6, c ๏ฝ 1
x๏ฝ
๏ญ ๏จ ๏ญ6 ๏ฉ ๏ฑ
๏จ ๏ญ6 ๏ฉ ๏ญ 4(9)(1)
f ๏จ x๏ฉ ๏ฝ g ๏จ x๏ฉ
๏ญ2 x 2 ๏ซ 1 ๏ฝ 3 x ๏ซ 2
0 ๏ฝ 2 x 2 ๏ซ 3x ๏ซ 1
2
2(9)
f ๏จ x๏ฉ ๏ฝ g ๏จ x๏ฉ
54.
The zeros of F ๏จ x ๏ฉ ๏ฝ 3 x( x ๏ซ 2) ๏ญ 2 are ๏ญ3 ๏ซ 2 3
51.
2
2
๏ญ4 ๏ฑ 40 ๏ญ4 ๏ฑ 2 10 ๏ญ2 ๏ฑ 10
๏ฝ
=
4
4
2
๏ญ ๏จ 6๏ฉ ๏ฑ
๏จ 20 ๏ฉ ๏ญ 4(4)(25)
5
5
. The only x-intercept of the graph of F is ๏ญ .
2
2
53.
The zeros of G ๏จ x ๏ฉ ๏ฝ 2 x( x ๏ซ 2) ๏ญ 3 are ๏ญ2 ๏ซ 10
50.
๏ญ20 ๏ฑ
๏ญ20 ๏ฑ 400 ๏ญ 400
๏ฝ
2(4)
8
๏ญ20 ๏ฑ 0
20
5
๏ฝ
๏ฝ๏ญ
๏ฝ๏ญ
8
8
2
The only real zero of q ๏จ x ๏ฉ ๏ฝ 4 x 2 ๏ซ 20 x ๏ซ 25 is
2
G ๏จ x๏ฉ ๏ฝ 0
49.
q ๏จ x๏ฉ ๏ฝ 0
52.
The zeros of f ๏จ x ๏ฉ ๏ฝ 2 x 2 ๏ญ 1 ๏ซ 2 x are ๏ญ1 ๏ญ 3
๏ฝ
0 ๏ฝ ๏จ 2 x ๏ซ 1๏ฉ๏จ x ๏ซ 1๏ฉ
6 ๏ฑ 36 ๏ญ 36
18
2x ๏ซ1 ๏ฝ 0
or x ๏ซ 1 ๏ฝ 0
1
x ๏ฝ ๏ญ1
x๏ฝ๏ญ
2
The x-coordinates of the points of intersection
6๏ฑ0 1
๏ฝ
๏ฝ
18
3
The only real zero of p ๏จ x ๏ฉ ๏ฝ 9 x 2 ๏ญ 6 x ๏ซ 1 is
1
.
3
1
2
are ๏ญ1 and ๏ญ . The y-coordinates are
1
The only x-intercept of the graph of g is .
3
g ๏จ ๏ญ1๏ฉ ๏ฝ 3 ๏จ ๏ญ1๏ฉ ๏ซ 2 ๏ฝ ๏ญ3 ๏ซ 2 ๏ฝ ๏ญ1 and
172
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.3: Quadratic Functions and Their Zeros
f ๏จ ๏ญ6 ๏ฉ ๏ฝ ๏จ ๏ญ6 ๏ฉ ๏ซ 5 ๏จ ๏ญ6 ๏ฉ ๏ญ 3 ๏ฝ 36 ๏ญ 30 ๏ญ 3 ๏ฝ 3 and
3
1
๏ฆ 1๏ถ
๏ฆ 1๏ถ
g ๏ง ๏ญ ๏ท ๏ฝ 3๏ง ๏ญ ๏ท ๏ซ 2 ๏ฝ ๏ญ ๏ซ 2 ๏ฝ .
2
2
2
2
๏จ
๏ธ
๏จ
๏ธ
The graphs of the f and g intersect at the points
2
f ๏จ 4 ๏ฉ ๏ฝ 42 ๏ซ 5 ๏จ 4 ๏ฉ ๏ญ 3 ๏ฝ 16 ๏ซ 20 ๏ญ 3 ๏ฝ 33 .
The graphs of the f and g intersect at the points
(๏ญ6, 3) and ๏จ 4, 33๏ฉ .
๏ฆ 1 1๏ถ
๏จ
๏ธ
(๏ญ1, ๏ญ1) and ๏ง ๏ญ , ๏ท .
2 2
f ๏จ x๏ฉ ๏ฝ g ๏จ x๏ฉ
56.
P ๏จ x๏ฉ ๏ฝ 0
59.
4
x ๏ญ 6 x ๏ญ 16 ๏ฝ 0
3x 2 ๏ญ 7 ๏ฝ 10 x ๏ซ 1
๏จ x ๏ซ 2๏ฉ๏จ x ๏ญ 8๏ฉ ๏ฝ 0
2
3x 2 ๏ญ 10 x ๏ญ 8 ๏ฝ 0
๏จ 3x ๏ซ 2 ๏ฉ๏จ x ๏ญ 4 ๏ฉ ๏ฝ 0
or x ๏ญ 4 ๏ฝ 0
2
x๏ฝ4
x๏ฝ๏ญ
3
The x-coordinates of the points of intersection
or x 2 ๏ญ 8 ๏ฝ 0
x 2 ๏ฝ ๏ญ2
x2 ๏ฝ 8
x ๏ฝ ๏ฑ ๏ญ2
๏ฝ not real
x๏ฝ๏ฑ 8
The zeros of P ๏จ x ๏ฉ ๏ฝ x ๏ญ 6 x 2 ๏ญ 16 are ๏ญ2 2
2
and 4. The y-coordinates are
3
and 2 2 . The x-intercepts of the graph of P are
๏ญ2 2 and 2 2 .
H ๏จ x๏ฉ ๏ฝ 0
60.
The graphs of the f and g intersect at the points
4
x ๏ญ 3×2 ๏ญ 4 ๏ฝ 0
๏ฆ 2 17 ๏ถ
๏ง ๏ญ , ๏ญ ๏ท and ๏จ 4, 41๏ฉ .
๏จ 3 3๏ธ
๏จ x ๏ซ 1๏ฉ๏จ x ๏ญ 4 ๏ฉ ๏ฝ 0
2
f ๏จ x๏ฉ ๏ฝ g ๏จ x๏ฉ
x 2 ๏ญ x ๏ซ 1 ๏ฝ 2 x 2 ๏ญ 3x ๏ญ 14
2
x2 ๏ซ 1 ๏ฝ 0
or x 2 ๏ญ 4 ๏ฝ 0
x 2 ๏ฝ ๏ญ1
x2 ๏ฝ 4
x ๏ฝ ๏ฑ ๏ญ1
x๏ฝ๏ฑ 4
๏ฝ not real
๏ฝ ๏ฑ2
4
The zeros of H ๏จ x ๏ฉ ๏ฝ x ๏ญ 3 x 2 ๏ญ 4 are ๏ญ2 and 2.
0 ๏ฝ x 2 ๏ญ 2 x ๏ญ 15
0 ๏ฝ ๏จ x ๏ซ 3๏ฉ๏จ x ๏ญ 5 ๏ฉ
x ๏ซ 3 ๏ฝ 0 or x ๏ญ 5 ๏ฝ 0
x ๏ฝ ๏ญ3
x๏ฝ5
The x-coordinates of the points of intersection
are ๏ญ3 and 5. The y-coordinates are
The x-intercepts of the graph of H are ๏ญ2 and 2.
f ๏จ x๏ฉ ๏ฝ 0
61.
x4 ๏ญ 5×2 ๏ซ 4 ๏ฝ 0
f ๏จ ๏ญ3๏ฉ ๏ฝ ๏จ ๏ญ3๏ฉ ๏ญ ๏จ ๏ญ3๏ฉ ๏ซ 1 ๏ฝ 9 ๏ซ 3 ๏ซ 1 ๏ฝ 13 and
2
๏จ x ๏ญ 4๏ฉ๏จ x ๏ญ 1๏ฉ ๏ฝ 0
2
f ๏จ 5 ๏ฉ ๏ฝ 52 ๏ญ 5 ๏ซ 1 ๏ฝ 25 ๏ญ 5 ๏ซ 1 ๏ฝ 21 .
2
x 2 ๏ญ 4 ๏ฝ 0 or x 2 ๏ญ 1 ๏ฝ 0
x ๏ฝ ๏ฑ2 or x ๏ฝ ๏ฑ1
The zeros of f ๏จ x ๏ฉ ๏ฝ x 4 ๏ญ 5 x 2 ๏ซ 4 are ๏ญ2 , ๏ญ1 ,
The graphs of the f and g intersect at the points
(๏ญ3, 13) and ๏จ 5, 21๏ฉ .
58.
๏ฝ ๏ฑ2 2
4
20
17
๏ฆ 2๏ถ
๏ฆ 2๏ถ
g ๏ง ๏ญ ๏ท ๏ฝ 10 ๏ง ๏ญ ๏ท ๏ซ 1 ๏ฝ ๏ญ ๏ซ 1 ๏ฝ ๏ญ
and
3
3
๏จ 3๏ธ
๏จ 3๏ธ
g ๏จ 4 ๏ฉ ๏ฝ 10 ๏จ 4 ๏ฉ ๏ซ 1 ๏ฝ 40 ๏ซ 1 ๏ฝ 41 .
57.
2
x2 ๏ซ 2 ๏ฝ 0
3x ๏ซ 2 ๏ฝ 0
are ๏ญ
2
f ๏จ x๏ฉ ๏ฝ g ๏จ x๏ฉ
1, and 2. The x-intercepts of the graph of f are
๏ญ2 , ๏ญ1 , 1, and 2.
x 2 ๏ซ 5 x ๏ญ 3 ๏ฝ 2 x 2 ๏ซ 7 x ๏ญ 27
0 ๏ฝ x 2 ๏ซ 2 x ๏ญ 24
0 ๏ฝ ๏จ x ๏ซ 6 ๏ฉ๏จ x ๏ญ 4 ๏ฉ
x ๏ซ 6 ๏ฝ 0 or x ๏ญ 4 ๏ฝ 0
x ๏ฝ ๏ญ6
x๏ฝ4
The x-coordinates of the points of intersection
are ๏ญ6 and 4. The y-coordinates are
173
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
f ๏จ x๏ฉ ๏ฝ 0
The zeros of g ๏จ x ๏ฉ ๏ฝ x 6 ๏ซ 7 x3 ๏ญ 8 are ๏ญ2 and 1.
x 4 ๏ญ 10 x 2 ๏ซ 24 ๏ฝ 0
The x-intercepts of the graph of g are ๏ญ2 and 1.
62.
๏จ x ๏ญ 4 ๏ฉ๏จ x ๏ญ 6๏ฉ ๏ฝ 0
2
2
2
x ๏ญ4 ๏ฝ 0
x ๏ญ6 ๏ฝ 0
or
2
x 6 ๏ญ 7 x3 ๏ญ 8 ๏ฝ 0
๏จ x ๏ญ 8๏ฉ๏จ x ๏ซ 1๏ฉ ๏ฝ 0
2
x ๏ฝ4
x ๏ฝ ๏ฑ2
x ๏ฝ6
3
x๏ฝ๏ฑ 6
2
6 , 2 and ๏ญ2 . The x-intercepts of the graph of
f are ๏ญ 6 , 6 , 2 and ๏ญ2 .
1
3
x2 ๏ฝ 1
The x-intercepts of the graph of G are ๏ญ1 and 1.
The zeros of G ๏จ x ๏ฉ ๏ฝ ๏จ x ๏ซ 2 ๏ฉ ๏ซ 7 ๏จ x ๏ซ 2 ๏ฉ ๏ซ 12 are
2
F ๏จ x๏ฉ ๏ฝ 0
๏ญ6 and ๏ญ5 . The x-intercepts of the graph of G
are ๏ญ6 and ๏ญ5 .
2
2 x ๏ญ 5 x ๏ญ 12 ๏ฝ 0
๏จ 2 x ๏ซ 3๏ฉ๏จ x ๏ญ 4๏ฉ ๏ฝ 0
2
2x ๏ซ 3 ๏ฝ 0
x2 ๏ฝ ๏ญ
f ๏จ x๏ฉ ๏ฝ 0
68.
or
๏จ 2 x ๏ซ 5๏ฉ ๏ญ ๏จ 2 x ๏ซ 5๏ฉ ๏ญ 6 ๏ฝ 0
2
Let u ๏ฝ 2 x ๏ซ 5 ๏ฎ u 2 ๏ฝ ๏จ 2 x ๏ซ 5 ๏ฉ
2
2
x ๏ญ4 ๏ฝ 0
3
2
x2 ๏ฝ 4
x๏ฝ๏ฑ 4
3
x๏ฝ๏ฑ ๏ญ
2
๏ฝ not real
u2 ๏ญ u ๏ญ 6 ๏ฝ 0
๏จ u ๏ญ 3๏ฉ๏จ u ๏ซ 2 ๏ฉ ๏ฝ 0
๏ฝ ๏ฑ2
u ๏ญ3 ๏ฝ 0
u ๏ฝ3
The zeros of F ๏จ x ๏ฉ ๏ฝ 2 x 4 ๏ญ 5 x 2 ๏ญ 12 are ๏ญ2 and 2.
2x ๏ซ 5 ๏ฝ 3
x ๏ฝ ๏ญ1
The x-intercepts of the graph of F are ๏ญ2 and 2.
g ๏จ x๏ฉ ๏ฝ 0
65.
G ๏จ x๏ฉ ๏ฝ 0
u ๏ซ 3 ๏ฝ 0 or u ๏ซ 4 ๏ฝ 0
u ๏ฝ ๏ญ3
u ๏ฝ ๏ญ4
x ๏ซ 2 ๏ฝ ๏ญ3
x ๏ซ 2 ๏ฝ ๏ญ4
x ๏ฝ ๏ญ5
x ๏ฝ ๏ญ6
๏ฝ ๏ฑ1
The zeros of G ๏จ x ๏ฉ ๏ฝ 3x 4 ๏ญ 2 x 2 ๏ญ 1 are ๏ญ1 and 1.
2
x ๏ฝ ๏ญ1
u 2 ๏ซ 7u ๏ซ 12 ๏ฝ 0
๏จ u ๏ซ 3๏ฉ๏จ u ๏ซ 4 ๏ฉ ๏ฝ 0
x๏ฝ๏ฑ 1
1
x๏ฝ๏ฑ ๏ญ
3
x ๏ฝ not real
2
x๏ฝ2
๏จ x ๏ซ 2 ๏ฉ2 ๏ซ 7 ๏จ x ๏ซ 2 ๏ฉ ๏ซ 12 ๏ฝ 0
2
Let u ๏ฝ x ๏ซ 2 ๏ฎ u 2 ๏ฝ ๏จ x ๏ซ 2 ๏ฉ
x2 ๏ญ 1 ๏ฝ 0
or
4
x3 ๏ฝ ๏ญ1
67.
๏จ 3x 2 ๏ซ 1๏ฉ๏จ x 2 ๏ญ 1๏ฉ ๏ฝ 0
64.
x3 ๏ฝ 8
The x-intercepts of the graph of g are ๏ญ1 and 2.
3x 4 ๏ญ 2 x 2 ๏ญ 1 ๏ฝ 0
x2 ๏ฝ ๏ญ
x3 ๏ซ 1 ๏ฝ 0
or
The zeros of g ๏จ x ๏ฉ ๏ฝ x 6 ๏ญ 7 x3 ๏ญ 8 are ๏ญ1 and 2.
G ๏จ x๏ฉ ๏ฝ 0
3x 2 ๏ซ 1 ๏ฝ 0
3
x3 ๏ญ 8 ๏ฝ 0
The zeros of f ๏จ x ๏ฉ ๏ฝ x ๏ญ 10 x ๏ซ 24 are ๏ญ 6 ,
4
63.
g ๏จ x๏ฉ ๏ฝ 0
66.
2
or
u๏ซ2๏ฝ0
u ๏ฝ ๏ญ2
2 x ๏ซ 5 ๏ฝ ๏ญ2
7
x๏ฝ๏ญ
2
x ๏ซ 7 x3 ๏ญ 8 ๏ฝ 0
The zeros of f ๏จ x ๏ฉ ๏ฝ ๏จ 2 x ๏ซ 5 ๏ฉ ๏ญ ๏จ 2 x ๏ซ 5 ๏ฉ ๏ญ 6 are
3
7
and ๏ญ1 . The x-intercepts of the graph of f
2
7
are ๏ญ and ๏ญ1 .
2
2
6
๏จ x ๏ซ 8๏ฉ๏จ x ๏ญ 1๏ฉ ๏ฝ 0
3
x3 ๏ซ 8 ๏ฝ 0
or
๏ญ
x3 ๏ญ 1 ๏ฝ 0
x 3 ๏ฝ ๏ญ8
x3 ๏ฝ 1
x ๏ฝ ๏ญ2
x ๏ฝ1
174
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.3: Quadratic Functions and Their Zeros
f ๏จ x๏ฉ ๏ฝ 0
69.
3
and 2. The x-intercepts of the graph of P
2
3
are ๏ญ and 2.
2
๏ญ
๏จ 3x ๏ซ 4 ๏ฉ ๏ญ 6 ๏จ 3x ๏ซ 4 ๏ฉ ๏ซ 9 ๏ฝ 0
2
Let u ๏ฝ 3 x ๏ซ 4 ๏ฎ u 2 ๏ฝ ๏จ 3x ๏ซ 4 ๏ฉ
2
u 2 ๏ญ 6u ๏ซ 9 ๏ฝ 0
๏จ u ๏ญ 3๏ฉ ๏ฝ 0
3 ๏จ1 ๏ญ x ๏ฉ ๏ซ 5 ๏จ1 ๏ญ x ๏ฉ ๏ซ 2 ๏ฝ 0
2
u ๏ญ3 ๏ฝ 0
u๏ฝ3
3x ๏ซ 4 ๏ฝ 3
x๏ฝ๏ญ
Let u ๏ฝ 1 ๏ญ x ๏ฎ u 2 ๏ฝ ๏จ1 ๏ญ x ๏ฉ
๏จ 3u ๏ซ 2 ๏ฉ๏จ u ๏ซ 1๏ฉ ๏ฝ 0
1
3
3u ๏ซ 2 ๏ฝ 0
or u ๏ซ 1 ๏ฝ 0
2
u ๏ฝ ๏ญ1
u๏ฝ๏ญ
3
1 ๏ญ x ๏ฝ ๏ญ1
2
x๏ฝ2
1๏ญ x ๏ฝ ๏ญ
3
5
x๏ฝ
3
2
1
3
1
3
is ๏ญ . The x-intercept of the graph of f is ๏ญ .
H ๏จ x๏ฉ ๏ฝ 0
๏จ 2 ๏ญ x ๏ฉ ๏ซ ๏จ 2 ๏ญ x ๏ฉ ๏ญ 20 ๏ฝ 0
2
Let u ๏ฝ 2 ๏ญ x ๏ฎ u 2 ๏ฝ ๏จ 2 ๏ญ x ๏ฉ
2
The zeros of H ๏จ x ๏ฉ ๏ฝ 3 ๏จ1 ๏ญ x ๏ฉ ๏ซ 5 ๏จ1 ๏ญ x ๏ฉ ๏ซ 2 are
2
5
and 2. The x-intercepts of the graph of H are
3
5
and 2.
3
u 2 ๏ซ u ๏ญ 20 ๏ฝ 0
๏จ u ๏ซ 5 ๏ฉ๏จ u ๏ญ 4 ๏ฉ ๏ฝ 0
u ๏ซ5 ๏ฝ 0
or u ๏ญ 4 ๏ฝ 0
u ๏ฝ ๏ญ5
u๏ฝ4
2 ๏ญ x ๏ฝ ๏ญ5
2๏ญ x ๏ฝ 4
x๏ฝ7
x ๏ฝ ๏ญ2
73.
G ๏จ x๏ฉ ๏ฝ 0
x๏ญ4 x ๏ฝ 0
The zeros of H ๏จ x ๏ฉ ๏ฝ ๏จ 2 ๏ญ x ๏ฉ ๏ซ ๏จ 2 ๏ญ x ๏ฉ ๏ญ 20 are
2
Let u ๏ฝ x ๏ฎ u 2 ๏ฝ x
u 2 ๏ญ 4u ๏ฝ 0
๏ญ2 and 7. The x-intercepts of the graph of H are
๏ญ2 and 7.
u ๏จu ๏ญ 4๏ฉ ๏ฝ 0
P ๏จ x๏ฉ ๏ฝ 0
71.
2
3u 2 ๏ซ 5u ๏ซ 2 ๏ฝ 0
The only zero of f ๏จ x ๏ฉ ๏ฝ ๏จ 3 x ๏ซ 4 ๏ฉ ๏ญ 6 ๏จ 3 x ๏ซ 4 ๏ฉ ๏ซ 9
70.
H ๏จ x๏ฉ ๏ฝ 0
72.
2
u๏ฝ0
or u ๏ญ 4 ๏ฝ 0
u๏ฝ4
2 ๏จ x ๏ซ 1๏ฉ ๏ญ 5 ๏จ x ๏ซ 1๏ฉ ๏ญ 3 ๏ฝ 0
2
Let u ๏ฝ x ๏ซ 1 ๏ฎ u 2 ๏ฝ ๏จ x ๏ซ 1๏ฉ
x ๏ฝ0
2
x ๏ฝ4
2
x๏ฝ0 ๏ฝ0
2
2u ๏ญ 5u ๏ญ 3 ๏ฝ 0
x ๏ฝ 42 ๏ฝ 16
Check:
G ๏จ 0๏ฉ ๏ฝ 0 ๏ญ 4 0 ๏ฝ 0
๏จ 2u ๏ซ 1๏ฉ๏จ u ๏ญ 3๏ฉ ๏ฝ 0
2u ๏ซ 1 ๏ฝ 0
or u ๏ญ 3 ๏ฝ 0
u๏ฝ3
1
u๏ฝ๏ญ
2
x ๏ซ1 ๏ฝ 3
1
x๏ฝ2
x ๏ซ1 ๏ฝ ๏ญ
2
3
x๏ฝ๏ญ
2
G ๏จ16 ๏ฉ ๏ฝ 16 ๏ญ 4 16 ๏ฝ 16 ๏ญ 16 ๏ฝ 0
The zeros of G ๏จ x ๏ฉ ๏ฝ x ๏ญ 4 x are 0 and 16. The
x-intercepts of the graph of G are 0 and 16.
The zeros of P ๏จ x ๏ฉ ๏ฝ 2 ๏จ x ๏ซ 1๏ฉ ๏ญ 5 ๏จ x ๏ซ 1๏ฉ ๏ญ 3 are
2
175
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
74.
f ๏จ x๏ฉ ๏ฝ 0
x ๏ซ8 x ๏ฝ 0
2
x ๏ญ 50 ๏ฝ 0
2
Let u ๏ฝ x ๏ฎ u ๏ฝ x
x 2 ๏ฝ 50 ๏ x ๏ฝ ๏ฑ 50 ๏ฝ ๏ฑ5 2
2
u ๏ซ 8u ๏ฝ 0
The zeros of f ๏จ x ๏ฉ ๏ฝ x 2 ๏ญ 50 are ๏ญ5 2 and
u ๏จu ๏ซ 8๏ฉ ๏ฝ 0
u๏ฝ0
5 2 . The x-intercepts of the graph of f are
or u ๏ซ 8 ๏ฝ 0
๏ญ5 2 and 5 2 .
u ๏ฝ ๏ญ8
x ๏ฝ0
78.
x ๏ฝ ๏ญ8
x ๏ฝ not real
x ๏ฝ 02 ๏ฝ 0
f ๏จ x๏ฉ ๏ฝ 0
x 2 ๏ญ 20 ๏ฝ 0
x 2 ๏ฝ 20 ๏ x ๏ฝ ๏ฑ 20 ๏ฝ ๏ฑ2 5
Check: f ๏จ 0 ๏ฉ ๏ฝ 0 ๏ซ 8 0 ๏ฝ 0
The zeros of f ๏จ x ๏ฉ ๏ฝ x 2 ๏ญ 6 are ๏ญ2 5 and
The only zero of f ๏จ x ๏ฉ ๏ฝ x ๏ซ 8 x is 0. The only
2 5 . The x-intercepts of the graph of f are
x-intercept of the graph of f is 0.
75.
f ๏จ x๏ฉ ๏ฝ 0
77.
๏ญ2 5 and 2 5 .
g ๏จ x๏ฉ ๏ฝ 0
79.
x ๏ซ x ๏ญ 20 ๏ฝ 0
Let u ๏ฝ x ๏ฎ u 2 ๏ฝ x
u 2 ๏ซ u ๏ญ 20 ๏ฝ 0
g ๏จ x๏ฉ ๏ฝ 0
16 x 2 ๏ญ 8 x ๏ซ 1 ๏ฝ 0
๏จ 4 x ๏ญ 1๏ฉ2 ๏ฝ 0
4x ๏ญ1 ๏ฝ 0 ๏ x ๏ฝ
๏จ u ๏ซ 5 ๏ฉ๏จ u ๏ญ 4 ๏ฉ ๏ฝ 0
u ๏ซ5 ๏ฝ 0
or u ๏ญ 4 ๏ฝ 0
u ๏ฝ ๏ญ5
u๏ฝ4
x ๏ฝ ๏ญ5
x ๏ฝ not real
x ๏ฝ4
The only real zero of g ๏จ x ๏ฉ ๏ฝ 16 x 2 ๏ญ 8 x ๏ซ 1 is
The only x-intercept of the graph of g is
x ๏ฝ 42 ๏ฝ 16
F ๏จ x๏ฉ ๏ฝ 0
80.
Check: g ๏จ16 ๏ฉ ๏ฝ 16 ๏ซ 16 ๏ญ 20 ๏ฝ 16 ๏ซ 4 ๏ญ 20 ๏ฝ 0
4 x 2 ๏ญ 12 x ๏ซ 9 ๏ฝ 0
The only zero of g ๏จ x ๏ฉ ๏ฝ x ๏ซ x ๏ญ 20 is 16. The
๏จ 2 x ๏ญ 3๏ฉ2 ๏ฝ 0
only x-intercept of the graph of g is 16.
76.
1
4
2x ๏ญ 3 ๏ฝ 0 ๏ x ๏ฝ
f ๏จ x๏ฉ ๏ฝ 0
1
.
4
3
2
x๏ซ x ๏ญ2 ๏ฝ 0
The only real zero of F ๏จ x ๏ฉ ๏ฝ 4 x 2 ๏ญ 12 x ๏ซ 9 is
Let u ๏ฝ x ๏ฎ u 2 ๏ฝ x
u2 ๏ซ u ๏ญ 2 ๏ฝ 0
The only x-intercept of the graph of F is
๏จ u ๏ญ 1๏ฉ๏จ u ๏ซ 2 ๏ฉ ๏ฝ 0
or u ๏ซ 2 ๏ฝ 0
10 x ๏ญ 19 x ๏ญ 15 ๏ฝ 0
u ๏ฝ1
u ๏ฝ ๏ญ2
๏จ 5 x ๏ซ 3๏ฉ๏จ 2 x ๏ญ 5 ๏ฉ ๏ฝ 0
x ๏ฝ1
x ๏ฝ ๏ญ2
x ๏ฝ not real
5x ๏ซ 3 ๏ฝ 0
x ๏ฝ1 ๏ฝ1
3
.
2
3
.
2
G ๏จ x๏ฉ ๏ฝ 0
81.
u ๏ญ1 ๏ฝ 0
2
1
.
4
2
3
x๏ฝ๏ญ
5
Check: f ๏จ1๏ฉ ๏ฝ 1 ๏ซ 1 ๏ญ 2 ๏ฝ 1 ๏ซ 1 ๏ญ 2 ๏ฝ 0
or 2 x ๏ญ 5 ๏ฝ 0
5
x๏ฝ
2
The zeros of G ๏จ x ๏ฉ ๏ฝ 10 x 2 ๏ญ 19 x ๏ญ 15 are ๏ญ
The only zero of f ๏จ x ๏ฉ ๏ฝ x ๏ซ x ๏ญ 2 is 1. The
only x-intercept of the graph of f is 1.
176
Copyright ยฉ 2019 Pearson Education, Inc.
3
and
5
Section 2.3: Quadratic Functions and Their Zeros
5
3
. The x-intercepts of the graph of G are ๏ญ
2
5
5
and .
2
x๏ฝ
๏ญ2 2 ๏ฑ 8 ๏ซ 8 ๏ญ2 2 ๏ฑ 16
๏ฝ
4
4
๏ญ2 2 ๏ฑ 4 ๏ญ 2 ๏ฑ 2
๏ฝ
๏ฝ
4
2
1
๏ญ 2 ๏ญ2
The zeros of G ๏จ x ๏ฉ ๏ฝ x 2 ๏ซ 2 x ๏ญ are
2
2
2
6 x ๏ซ 7 x ๏ญ 20 ๏ฝ 0
๏จ 3x ๏ญ 4 ๏ฉ๏จ 2 x ๏ซ 5๏ฉ ๏ฝ 0
3x ๏ญ 4 ๏ฝ 0
or 2 x ๏ซ 5 ๏ฝ 0
4
3
x๏ฝ๏ญ
x๏ฝ
5
2
5
4
and .
2
3
5
4
The x-intercepts of the graph of f are ๏ญ and .
2
3
The zeros of f ๏จ x ๏ฉ ๏ฝ 6 x 2 ๏ซ 7 x ๏ญ 20 are ๏ญ
๏จ 3x ๏ญ 2 ๏ฉ๏จ 2 x ๏ซ 1๏ฉ ๏ฝ 0
are
๏ญ 2 ๏ญ2
๏ญ 2๏ซ2
and
.
2
2
F ๏จ x๏ฉ ๏ฝ 0
x2 ๏ญ 2 2x ๏ญ 2 ๏ฝ 0
3x ๏ญ 2 ๏ฝ 0 or 2 x ๏ซ 1 ๏ฝ 0
2
1
x๏ฝ
x๏ฝ๏ญ
3
2
a ๏ฝ 1, b ๏ฝ ๏ญ2 2, c ๏ฝ ๏ญ2
x๏ฝ
1
2
The zeros of P ๏จ x ๏ฉ ๏ฝ 6 x 2 ๏ญ x ๏ญ 2 are ๏ญ and .
2
3
1
2
The x-intercepts of the graph of P are ๏ญ and .
2
3
๏ญ(๏ญ2 2) ๏ฑ (๏ญ2 2) 2 ๏ญ 4(1) ๏จ ๏ญ2 ๏ฉ
2(1)
2 2 ๏ฑ 16 2 2 ๏ฑ 4
2๏ฑ2
๏ฝ
๏ฝ
2
2
1
1
The zeros of F ๏จ x ๏ฉ ๏ฝ x 2 ๏ญ 2 x ๏ญ 1 are 2 ๏ญ 2
2
and 2 ๏ซ 2 . The x-intercepts of the graph of F
๏ฝ
H ๏จ x๏ฉ ๏ฝ 0
6 x2 ๏ซ x ๏ญ 2 ๏ฝ 0
๏จ 3x ๏ซ 2 ๏ฉ๏จ 2 x ๏ญ 1๏ฉ ๏ฝ 0
are
3x ๏ซ 2 ๏ฝ 0
or 2 x ๏ญ 1 ๏ฝ 0
2
1
x๏ฝ๏ญ
x๏ฝ
3
2
2 ๏ญ 2 and
2 ๏ซ2.
f ๏จ x๏ฉ ๏ฝ 0
87.
2
x ๏ซ x๏ญ4 ๏ฝ 0
a ๏ฝ 1, b ๏ฝ 1, c ๏ฝ ๏ญ4
2
1
and .
3
2
2
1
The x-intercepts of the graph of H are ๏ญ and .
3
2
The zeros of H ๏จ x ๏ฉ ๏ฝ 6 x 2 ๏ซ x ๏ญ 2 are ๏ญ
85.
๏ญ 2๏ซ2
. The x-intercepts of the graph of G
2
1 2
x ๏ญ 2x ๏ญ1 ๏ฝ 0
2
๏ฆ1
๏ถ
2 ๏ง x 2 ๏ญ 2 x ๏ญ 1๏ท ๏ฝ ๏จ 0 ๏ฉ๏จ 2 ๏ฉ
๏จ2
๏ธ
6 x2 ๏ญ x ๏ญ 2 ๏ฝ 0
84.
and
86.
P ๏จ x๏ฉ ๏ฝ 0
83.
2(2)
๏ฝ
f ๏จ x๏ฉ ๏ฝ 0
82.
๏ญ(2 2) ๏ฑ (2 2) 2 ๏ญ 4(2) ๏จ ๏ญ1๏ฉ
x๏ฝ
G ๏จ x๏ฉ ๏ฝ 0
๏ฝ
1
๏ฝ0
2
1๏ถ
๏ฆ
2 ๏ง x 2 ๏ซ 2 x ๏ญ ๏ท ๏ฝ ๏จ 0 ๏ฉ๏จ 2 ๏ฉ
2๏ธ
๏จ
x2 ๏ซ 2 x ๏ญ
๏ญ(1) ๏ฑ (1) 2 ๏ญ 4 ๏จ1๏ฉ๏จ ๏ญ4 ๏ฉ
2(1)
๏ญ1 ๏ฑ 1 ๏ซ 16 ๏ญ1 ๏ฑ 17
๏ฝ
2
2
The zeros of f ๏จ x ๏ฉ ๏ฝ x 2 ๏ซ x ๏ญ 4 are
๏ญ1 ๏ญ 17
and
2
๏ญ1 ๏ซ 17
. The x-intercepts of the graph of f are
2
2 x2 ๏ซ 2 2 x ๏ญ 1 ๏ฝ 0
๏ญ1 ๏ญ 17
๏ญ1 ๏ซ 17
and
.
2
2
a ๏ฝ 2, b ๏ฝ 2 2, c ๏ฝ ๏ญ1
177
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
g ๏จ x๏ฉ ๏ฝ 0
88.
( x ๏ซ 3) 2 ๏ญ 9 ๏ฝ 0
x ๏ซ x ๏ญ1 ๏ฝ 0
a ๏ฝ 1, b ๏ฝ 1, c ๏ฝ ๏ญ1
x๏ฝ
F ๏จ x๏ฉ ๏ฝ 0
b.
2
๏ญ(1) ๏ฑ (1) 2 ๏ญ 4 ๏จ1๏ฉ๏จ ๏ญ1๏ฉ
2(1)
x2 ๏ซ 6 x ๏ซ 9 ๏ญ 9 ๏ฝ 0
๏ฝ
x2 ๏ซ 6 x ๏ฝ 0
๏ญ1 ๏ฑ 5
2
x( x ๏ซ 6) ๏ฝ 0 ๏ x ๏ฝ 0 or x ๏ฝ ๏ญ6
๏ญ1 ๏ญ 5
and
The zeros of g ๏จ x ๏ฉ ๏ฝ x 2 ๏ซ x ๏ญ 1 are
2
91. a. f ( x) ๏ฝ 2( x ๏ซ 4) 2 ๏ญ 8
๏ญ1 ๏ซ 5
. The x-intercepts of the graph of g are
2
Using the graph of y ๏ฝ x 2 , horizontally shift
to the left 4 units, vertically stretch by a factor
of 2, and then vertically shift downward 8
units.
๏ญ1 ๏ญ 5
๏ญ1 ๏ซ 5
and
.
2
2
89. a. g ( x) ๏ฝ ( x ๏ญ 1) 2 ๏ญ 4
Using the graph of y ๏ฝ x 2 , horizontally shift to
the right 1 unit, and then vertically shift
downward 4 units.
f ๏จ x๏ฉ ๏ฝ 0
b.
2( x ๏ซ 4) 2 ๏ญ 8 ๏ฝ 0
2( x 2 ๏ซ 8 x ๏ซ 16) ๏ญ 8 ๏ฝ 0
2 x 2 ๏ซ 16 x ๏ซ 32 ๏ญ 8 ๏ฝ 0
b.
2 x 2 ๏ซ 16 x ๏ซ 24 ๏ฝ 0
2( x ๏ซ 2)( x ๏ซ 6) ๏ฝ 0 ๏ x ๏ฝ ๏ญ2 or x ๏ฝ ๏ญ6
g ๏จ x๏ฉ ๏ฝ 0
( x ๏ญ 1) 2 ๏ญ 4 ๏ฝ 0
92. a. h( x ) ๏ฝ 3( x ๏ญ 2) 2 ๏ญ 12
x2 ๏ญ 2 x ๏ซ 1 ๏ญ 4 ๏ฝ 0
Using the graph of y ๏ฝ x 2 , horizontally shift
to the right 2 units, vertically stretch by a
factor of 3, and then vertically shift downward
12 units.
x2 ๏ญ 2 x ๏ญ 3 ๏ฝ 0
( x ๏ซ 1)( x ๏ญ 3) ๏ฝ 0 ๏ x ๏ฝ ๏ญ1 or x ๏ฝ 3
90. a. F ( x ) ๏ฝ ( x ๏ซ 3) 2 ๏ญ 9
Using the graph of y ๏ฝ x 2 , horizontally shift
to the left 3 units, and then vertically shift
downward 9 units.
178
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.3: Quadratic Functions and Their Zeros
h ๏จ x๏ฉ ๏ฝ 0
b.
vertically shift upward 12 units.
3( x ๏ญ 2) 2 ๏ญ 12 ๏ฝ 0
3( x 2 ๏ญ 4 x ๏ซ 4) ๏ญ 12 ๏ฝ 0
3x 2 ๏ญ 12 x ๏ซ 12 ๏ญ 12 ๏ฝ 0
3 x 2 ๏ญ 12 x ๏ฝ 0
3 x( x ๏ญ 4) ๏ฝ 0 ๏ x ๏ฝ 0 or x ๏ฝ 4
93. a. H ( x) ๏ฝ ๏ญ3( x ๏ญ 3) 2 ๏ซ 6
f ๏จ x๏ฉ ๏ฝ 0
b.
Using the graph of y ๏ฝ x 2 , horizontally shift
to the right 3 units, vertically stretch by a
factor of 3, reflect about the x-axis, and then
vertically shift upward 6 units.
2
๏ญ2( x ๏ซ 1) ๏ซ 12 ๏ฝ 0
๏ญ2( x 2 ๏ซ 2 x ๏ซ 1) ๏ซ 12 ๏ฝ 0
๏ญ2 x 2 ๏ญ 4 x ๏ญ 2 ๏ซ 12 ๏ฝ 0
๏ญ2 x 2 ๏ญ 4 x ๏ซ 10 ๏ฝ 0
๏ญ2( x 2 ๏ซ 2 x ๏ญ 5) ๏ฝ 0
a ๏ฝ 1, b ๏ฝ 2, c ๏ฝ ๏ญ5
x๏ฝ
H ๏จ x๏ฉ ๏ฝ 0
b.
๏ฝ
๏ญ3( x ๏ญ 3) 2 ๏ซ 6 ๏ฝ 0
๏ญ3( x 2 ๏ญ 6 x ๏ซ 9) ๏ซ 6 ๏ฝ 0
95.
๏ญ3x 2 ๏ซ 18 x ๏ญ 27 ๏ซ 6 ๏ฝ 0
๏ญ2 ๏ฑ 4 ๏ซ 20
2
๏ญ2 ๏ฑ 24 ๏ญ2 ๏ฑ 2 6
๏ฝ
๏ฝ ๏ญ1 ๏ฑ 6
2
2
f ๏จ x๏ฉ ๏ฝ g ๏จ x๏ฉ
5 x 2 ๏ญ 5 x ๏ฝ ๏ญ7 x 2 ๏ซ 2
๏ญ3( x 2 ๏ญ 6 x ๏ซ 7) ๏ฝ 0
a ๏ฝ 1, b ๏ฝ ๏ญ6, c ๏ฝ 7
๏ฝ
2(1)
๏ฝ
5 x( x ๏ญ 1) ๏ฝ ๏ญ7 x 2 ๏ซ 2
๏ญ3x 2 ๏ซ 18 x ๏ญ 21 ๏ฝ 0
x๏ฝ
๏ญ(2) ๏ฑ (2) 2 ๏ญ 4 ๏จ1๏ฉ๏จ ๏ญ5 ๏ฉ
12 x 2 ๏ญ 5 x ๏ญ 2 ๏ฝ 0
2
1
or x ๏ฝ ๏ญ
3
4
๏ฆ2๏ถ
๏ฆ 2 ๏ถ ๏ฉ๏ฆ 2 ๏ถ ๏น
f ๏ง ๏ท ๏ฝ 5 ๏ง ๏ท ๏ช๏ง ๏ท ๏ญ 1๏บ
๏จ3๏ธ
๏จ 3 ๏ธ ๏ซ๏จ 3 ๏ธ ๏ป
10
๏ฆ 10 ๏ถ ๏ฆ 1 ๏ถ
๏ฝ ๏ง ๏ท๏ง ๏ญ ๏ท ๏ฝ ๏ญ
3
3
9
๏จ ๏ธ๏จ
๏ธ
(3x ๏ญ 2)(4 x ๏ซ 1) ๏ฝ 0 ๏ x ๏ฝ
๏ญ(๏ญ6) ๏ฑ (๏ญ6) 2 ๏ญ 4 ๏จ1๏ฉ๏จ 7 ๏ฉ 6 ๏ฑ 36 ๏ญ 28
๏ฝ
2(1)
2
6๏ฑ 8 6๏ฑ2 2
๏ฝ
๏ฝ 3๏ฑ 2
2
2
94. a. f ( x) ๏ฝ ๏ญ2( x ๏ซ 1) 2 ๏ซ 12
๏ฆ 1๏ถ
๏ฆ 1 ๏ถ ๏ฉ๏ฆ 1 ๏ถ ๏น
f ๏ง ๏ญ ๏ท ๏ฝ 5 ๏ง ๏ญ ๏ท ๏ช๏ง ๏ญ ๏ท ๏ญ 1๏บ
๏จ 4๏ธ
๏จ 4 ๏ธ ๏ซ๏จ 4 ๏ธ ๏ป
๏ฆ 5 ๏ถ๏ฆ 5 ๏ถ 25
๏ฝ ๏ง ๏ญ ๏ท๏ง ๏ญ ๏ท ๏ฝ
๏จ 4 ๏ธ๏จ 4 ๏ธ 16
2
Using the graph of y ๏ฝ x , horizontally shift
to the left 1 unit, vertically stretch by a factor
of 2, reflect about the x-axis, and then
The points of intersection are:
๏ฆ 2 10 ๏ถ
๏ฆ 1 25 ๏ถ
๏ง , ๏ญ ๏ท and ๏ง ๏ญ , ๏ท
3
9
๏จ
๏ธ
๏จ 4 16 ๏ธ
179
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
f ๏จ x๏ฉ ๏ฝ g ๏จ x๏ฉ
96.
10 x( x ๏ซ 2) ๏ฝ ๏ญ3x ๏ซ 5
๏ญ5
3x
5
๏ญ
๏ฝ
x ๏ซ 2 x ๏ซ 1 x 2 ๏ซ 3x ๏ซ 2
๏ญ5
3x
5
๏ญ
๏ฝ
x ๏ซ 2 x ๏ซ 1 ( x ๏ซ 2)( x ๏ซ 1)
3x( x ๏ซ 1) ๏ญ 5( x ๏ซ 2) ๏ฝ ๏ญ5
10 x ๏ซ 20 x ๏ฝ ๏ญ3x ๏ซ 5
2
10 x 2 ๏ซ 23x ๏ญ 5 ๏ฝ 0
5
1
or x ๏ฝ
2
5
๏ฆ 5๏ถ
๏ฆ 5 ๏ถ ๏ฉ๏ฆ 5 ๏ถ ๏น
f ๏ง ๏ญ ๏ท ๏ฝ 10 ๏ง ๏ญ ๏ท ๏ช๏ง ๏ญ ๏ท ๏ซ 2 ๏บ
๏จ 2๏ธ
๏จ 2 ๏ธ ๏ซ๏จ 2 ๏ธ ๏ป
๏ฆ 1 ๏ถ 25
๏ฝ ๏จ ๏ญ25 ๏ฉ ๏ง ๏ญ ๏ท ๏ฝ
๏จ 2๏ธ 2
(2 x ๏ซ 5)(5 x ๏ญ 1) ๏ฝ 0 ๏ x ๏ฝ ๏ญ
3 x 2 ๏ซ 3 x ๏ญ 5 x ๏ญ 10 ๏ฝ ๏ญ5
3x 2 ๏ญ 2 x ๏ญ 5 ๏ฝ 0
(3x ๏ญ 5)( x ๏ซ 1) ๏ฝ 0
5
x ๏ฝ or x ๏ฝ ๏ญ1
3
๏ฆ5๏ถ
3๏ง ๏ท
5
5
3
๏ฆ ๏ถ
f ๏ง ๏ท๏ฝ ๏จ ๏ธ ๏ญ
๏จ 3 ๏ธ ๏ฆ 5 ๏ถ ๏ซ 2 ๏ฆ 5 ๏ถ ๏ซ1
๏ง ๏ท
๏ง ๏ท
๏จ3๏ธ
๏จ3๏ธ
๏จ 5๏ฉ 5
๏ฝ
๏ญ
๏ฆ 11 ๏ถ ๏ฆ 8 ๏ถ
๏ง ๏ท ๏ง ๏ท
๏จ 3 ๏ธ ๏จ3๏ธ
15 15
๏ฝ ๏ญ
11 8
45
๏ฝ๏ญ
88
๏ฆ1๏ถ
๏ฆ 1 ๏ถ ๏ฉ๏ฆ 1 ๏ถ ๏น
f ๏ง ๏ท ๏ฝ 10 ๏ง ๏ท ๏ช๏ง ๏ท ๏ซ 2 ๏บ
5
๏จ ๏ธ
๏จ 5 ๏ธ ๏ซ๏จ 5 ๏ธ ๏ป
๏ฆ 11 ๏ถ 22
๏ฝ ๏จ 2๏ฉ ๏ง ๏ท ๏ฝ
๏จ5๏ธ 5
The points of intersection are:
๏ฆ 5 25 ๏ถ
๏ฆ 1 22 ๏ถ
๏ง ๏ญ , ๏ท and ๏ง , ๏ท
๏จ 2 2 ๏ธ
๏จ5 5 ๏ธ
f ๏จ x๏ฉ ๏ฝ g ๏จ x๏ฉ
97.
3( x ๏ญ 4) ๏ฝ 3x 2 ๏ซ 2 x ๏ซ 4
2
3 x 2 ๏ญ 12 ๏ฝ 3x 2 ๏ซ 2 x ๏ซ 4
๏ฆ 5 45 ๏ถ
The point of intersection is: ๏ง , ๏ญ ๏ท
๏จ 3 88 ๏ธ
๏ญ12 ๏ฝ 2 x ๏ซ 4
๏ญ16 ๏ฝ 2 x ๏ x ๏ฝ ๏ญ8
2
f ๏จ ๏ญ8 ๏ฉ ๏ฝ 3 ๏ฉ๏จ ๏ญ8 ๏ฉ ๏ญ 4 ๏น
๏ซ
๏ป
๏ฝ 3๏ 64 ๏ญ 4๏ ๏ฝ 180
f ๏จ x๏ฉ ๏ฝ g ๏จ x๏ฉ
100.
2x
3
2 x ๏ซ 18
๏ญ
๏ฝ
x ๏ญ 3 x ๏ซ 1 x2 ๏ญ 2 x ๏ญ 3
2x
3
2 x ๏ซ 18
๏ญ
๏ฝ
x ๏ญ 3 x ๏ซ 1 ( x ๏ญ 3)( x ๏ซ 1)
2 x( x ๏ซ 1) ๏ญ 3( x ๏ญ 3) ๏ฝ 2 x ๏ซ 18
The point of intersection is: ๏จ ๏ญ8,180 ๏ฉ
98.
f ๏จ x๏ฉ ๏ฝ g ๏จ x๏ฉ
99.
f ๏จ x๏ฉ ๏ฝ g ๏จ x๏ฉ
4( x ๏ซ 1) ๏ฝ 4 x 2 ๏ญ 3 x ๏ญ 8
2 x 2 ๏ซ 2 x ๏ญ 3 x ๏ซ 9 ๏ฝ 2 x ๏ซ 18
4 x 2 ๏ซ 4 ๏ฝ 4 x 2 ๏ญ 3x ๏ญ 8
2 x 2 ๏ญ 3x ๏ญ 9 ๏ฝ 0
4 ๏ฝ ๏ญ3x ๏ญ 8
(2 x ๏ซ 3)( x ๏ญ 3) ๏ฝ 0
3
x ๏ฝ ๏ญ or x ๏ฝ 3
2
2
12 ๏ฝ ๏ญ3x ๏ x ๏ฝ ๏ญ4
2
f ๏จ ๏ญ4 ๏ฉ ๏ฝ 4 ๏ฉ๏จ ๏ญ4 ๏ฉ ๏ซ 1๏น
๏ซ
๏ป
๏ฝ 4 ๏16 ๏ซ 1๏ ๏ฝ 68
The point of intersection is: ๏จ ๏ญ4, 68 ๏ฉ
180
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.3: Quadratic Functions and Their Zeros
๏ฆ 3๏ถ
2๏ง ๏ญ ๏ท
3
2๏ธ
๏ฆ 3๏ถ
f ๏ง๏ญ ๏ท ๏ฝ ๏จ
๏ญ
๏จ 2 ๏ธ ๏ฆ ๏ญ 3 ๏ถ ๏ญ 3 ๏ฆ ๏ญ 3 ๏ถ ๏ซ1
๏ง
๏ท
๏ง
๏ท
๏จ 2๏ธ
๏จ 2๏ธ
๏จ ๏ญ3๏ฉ
๏ฝ ๏จ x 2 ๏ญ 3 x ๏ญ 18 ๏ฉ ๏ญ ๏จ x 2 ๏ซ 2 x ๏ญ 3๏ฉ
๏ฝ x 2 ๏ญ 3x ๏ญ 18 ๏ญ x 2 ๏ญ 2 x ๏ซ 3
๏ฝ ๏ญ5 x ๏ญ 15
๏ญ5 x ๏ญ 15 ๏ฝ 0 ๏ x ๏ฝ ๏ญ3
3
๏ฆ 9๏ถ ๏ฆ 1๏ถ
๏ง๏ญ ๏ท ๏ง๏ญ ๏ท
๏จ 2๏ธ ๏จ 2๏ธ
6
2
20
๏ฝ ๏ซ6 ๏ฝ ๏ซ6 ๏ฝ
9
3
3
๏ฆ 3 20 ๏ถ
The point of intersection is: ๏ง ๏ญ , ๏ท
๏จ 2 3 ๏ธ
๏ฝ
๏ญ
๏ฝ ๏จ x 2 ๏ญ 3 x ๏ญ 18 ๏ฉ๏จ x 2 ๏ซ 2 x ๏ญ 3๏ฉ
๏ฝ ๏จ x ๏ซ 3๏ฉ๏จ x ๏ญ 6 ๏ฉ๏จ x ๏ซ 3๏ฉ๏จ x ๏ญ 1๏ฉ
( f ๏ g) ๏จ x๏ฉ ๏ฝ 0
0 ๏ฝ ๏จ x ๏ซ 3๏ฉ๏จ x ๏ญ 6 ๏ฉ๏จ x ๏ซ 3๏ฉ๏จ x ๏ญ 1๏ฉ
๏ x ๏ฝ ๏ญ3 or x ๏ฝ 6 or x ๏ฝ 1
๏ฝ x 2 ๏ซ 5 x ๏ญ 14 ๏ซ x 2 ๏ซ 3 x ๏ญ 4
x( x ๏ซ 2) ๏ฝ 143
2
x ๏ซ 2 x ๏ญ 143 ๏ฝ 0
x2 ๏ซ 4x ๏ญ 9 ๏ฝ 0
x๏ฝ
๏ญ(4) ๏ฑ (4) 2 ๏ญ 4 ๏จ1๏ฉ๏จ ๏ญ9 ๏ฉ
2(1)
( x ๏ซ 13)( x ๏ญ 11) ๏ฝ 0
๏ฝ
๏ญ4 ๏ฑ 16 ๏ซ 36
2
x ๏ฝ ๏ญ13 or x ๏ฝ 11
Discard the negative solution since width cannot
be negative. The width of the rectangular
window is 11 feet and the length is 13 feet.
๏ญ4 ๏ฑ 52 ๏ญ4 ๏ฑ 2 13
๏ฝ
๏ฝ ๏ญ2 ๏ฑ 13
2
2
( f ๏ญ g) ๏จ x๏ฉ ๏ฝ
A( x ) ๏ฝ 306
104.
๏ฝ ๏จ x ๏ซ 5 x ๏ญ 14 ๏ฉ ๏ญ ๏จ x ๏ซ 3x ๏ญ 4 ๏ฉ
2
x( x ๏ซ 1) ๏ฝ 306
2
2
x ๏ซ x ๏ญ 306 ๏ฝ 0
( x ๏ซ 18)( x ๏ญ 17) ๏ฝ 0
๏ฝ x 2 ๏ซ 5 x ๏ญ 14 ๏ญ x 2 ๏ญ 3x ๏ซ 4
๏ฝ 2 x ๏ญ 10
2 x ๏ญ 10 ๏ฝ 0 ๏ x ๏ฝ 5
c.
A( x ) ๏ฝ 143
103.
๏ฝ 2 x 2 ๏ซ 8 x ๏ญ 18
2
2 x ๏ซ 8 x ๏ญ 18 ๏ฝ 0
b.
( f ๏ g) ๏จ x๏ฉ ๏ฝ
c.
( f ๏ซ g) ๏จ x๏ฉ ๏ฝ
101. a.
๏ฝ
( f ๏ญ g) ๏จ x๏ฉ ๏ฝ
b.
x ๏ฝ ๏ญ18 or x ๏ฝ 17
Discard the negative solution since width cannot
be negative. The width of the rectangular
window is 17 cm and the length is 18 cm.
( f ๏ g) ๏จ x๏ฉ ๏ฝ
๏ฝ ๏จ x 2 ๏ซ 5 x ๏ญ 14 ๏ฉ๏จ x 2 ๏ซ 3x ๏ญ 4 ๏ฉ
๏ฝ ๏จ x ๏ซ 7 ๏ฉ๏จ x ๏ญ 2 ๏ฉ๏จ x ๏ซ 4 ๏ฉ๏จ x ๏ญ 1๏ฉ
105.
V ๏จ x๏ฉ ๏ฝ 4
๏จ x ๏ญ 2 ๏ฉ2 ๏ฝ 4
( f ๏ g) ๏จ x๏ฉ ๏ฝ 0
x๏ญ2 ๏ฝ ๏ฑ 4
x ๏ญ 2 ๏ฝ ๏ฑ2
0 ๏ฝ ๏จ x ๏ซ 7 ๏ฉ๏จ x ๏ญ 2 ๏ฉ๏จ x ๏ซ 4 ๏ฉ๏จ x ๏ญ 1๏ฉ
x ๏ฝ 2๏ฑ2
x ๏ฝ 4 or x ๏ฝ 0
Discard x ๏ฝ 0 since that is not a feasible length
for the original sheet. Therefore, the original
sheet should measure 4 feet on each side.
๏ x ๏ฝ ๏ญ7 or x ๏ฝ 2 or x ๏ฝ ๏ญ4 or x ๏ฝ 1
102. a.
( f ๏ซ g) ๏จ x๏ฉ ๏ฝ
๏ฝ x 2 ๏ญ 3x ๏ญ 18 ๏ซ x 2 ๏ซ 2 x ๏ญ 3
๏ฝ 2 x 2 ๏ญ x ๏ญ 21
2 x 2 ๏ญ x ๏ญ 21 ๏ฝ 0
๏จ 2 x ๏ญ 7 ๏ฉ๏จ x ๏ซ 3๏ฉ ๏ฝ 0 ๏ x ๏ฝ
7
or x ๏ฝ ๏ญ3
2
181
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
V ๏จ x๏ฉ ๏ฝ 4
106.
t๏ฝ
๏จ x ๏ญ 2 ๏ฉ ๏ฝ 16
2
x ๏ญ 2 ๏ฝ ๏ฑ 16
๏ฝ
x ๏ญ 2 ๏ฝ ๏ฑ4
2 ๏จ ๏ญ4.9 ๏ฉ
๏ญ20 ๏ฑ 106
๏ญ9.8
20 ๏ฑ 106
9.8
t ๏ป 0.99 or t ๏ป 3.09
The object will be 15 meters above the ground
after about 0.99 seconds (on the way up) and
about 3.09 seconds (on the way down).
x ๏ฝ 2๏ฑ4
x ๏ฝ 6 or x ๏ฝ ๏ญ2
Discard x ๏ฝ ๏ญ2 since width cannot be negative.
Therefore, the original sheet should measure 6
feet on each side.
107. a.
๏ญ20 ๏ฑ 202 ๏ญ 4 ๏จ ๏ญ4.9 ๏ฉ๏จ ๏ญ15 ๏ฉ
๏ฝ
When the ball strikes the ground, the
distance from the ground will be 0.
Therefore, we solve
s๏ฝ0
b. The object will strike the ground when the
distance from the ground is 0. Thus, we solve
s๏ฝ0
๏ญ4.9t 2 ๏ซ 20t ๏ฝ 0
2
96 ๏ซ 80t ๏ญ 16t ๏ฝ 0
t ๏จ ๏ญ4.9t ๏ซ 20 ๏ฉ ๏ฝ 0
๏ญ16t 2 ๏ซ 80t ๏ซ 96 ๏ฝ 0
t๏ฝ0
๏ญ4.9t ๏ซ 20 ๏ฝ 0
or
t 2 ๏ญ 5t ๏ญ 6 ๏ฝ 0
๏ญ4.9t ๏ฝ ๏ญ20
๏จ t ๏ญ 6 ๏ฉ๏จ t ๏ซ 1๏ฉ ๏ฝ 0
t ๏ป 4.08
The object will strike the ground after about
4.08 seconds.
t ๏ฝ 6 or t ๏ฝ ๏ญ1
Discard the negative solution since the time
of flight must be positive. The ball will
strike the ground after 6 seconds.
2
๏ญ4.9t ๏ซ 20t ๏ฝ 100
b. When the ball passes the top of the building,
it will be 96 feet from the ground. Therefore,
we solve
s ๏ฝ 96
2
๏ญ4.9t ๏ซ 20t ๏ญ 100 ๏ฝ 0
a ๏ฝ ๏ญ4.9, b ๏ฝ 20, c ๏ฝ ๏ญ100
t๏ฝ
2
96 ๏ซ 80t ๏ญ 16t ๏ฝ 96
2
๏ญ16t ๏ซ 80t ๏ฝ 0
๏ญ20 ๏ฑ 202 ๏ญ 4 ๏จ ๏ญ4.9 ๏ฉ๏จ ๏ญ100 ๏ฉ
2 ๏จ ๏ญ4.9 ๏ฉ
๏ญ20 ๏ฑ ๏ญ1560
๏ญ9.8
There is no real solution. The object never
reaches a height of 100 meters.
๏ฝ
2
t ๏ญ 5t ๏ฝ 0
t ๏จt ๏ญ 5๏ฉ ๏ฝ 0
t ๏ฝ 0 or t ๏ฝ 5
The ball is at the top of the building at time
t ๏ฝ 0 seconds when it is thrown. It will pass
the top of the building on the way down
after 5 seconds.
108. a.
s ๏ฝ 100
c.
109. For the sum to be 210, we solve
S (n) ๏ฝ 210
1
n(n ๏ซ 1) ๏ฝ 210
2
n(n ๏ซ 1) ๏ฝ 420
To find when the object will be 15 meters
above the ground, we solve
s ๏ฝ 15
n 2 ๏ซ n ๏ญ 420 ๏ฝ 0
(n ๏ญ 20)(n ๏ซ 21) ๏ฝ 0
n ๏ญ 20 ๏ฝ 0 or n ๏ซ 21 ๏ฝ 0
๏ญ4.9t 2 ๏ซ 20t ๏ฝ 15
๏ญ4.9t 2 ๏ซ 20t ๏ญ 15 ๏ฝ 0
a ๏ฝ ๏ญ4.9, b ๏ฝ 20, c ๏ฝ ๏ญ15
n ๏ฝ 20
n ๏ฝ ๏ญ21
Discard the negative solution since the number
of consecutive integers must be positive. For a
sum of 210, we must add the 20 consecutive
integers, starting at 1.
182
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.3: Quadratic Functions and Their Zeros
110. To determine the number of sides when a
polygon has 65 diagonals, we solve
D (n) ๏ฝ 65
1
n(n ๏ญ 3) ๏ฝ 65
2
n(n ๏ญ 3) ๏ฝ 130
so the product of the roots is
๏ฆ ๏ญb ๏ญ b 2 ๏ญ 4ac ๏ถ๏ฆ ๏ญb ๏ซ b 2 ๏ญ 4ac ๏ถ
๏ท๏ง
๏ท
x1 ๏ x2 ๏ฝ ๏ง
2a
2a
๏จ
๏ธ๏จ
๏ธ
๏ฝ
2
n ๏ญ 3n ๏ญ 130 ๏ฝ 0
๏ฝ
(n ๏ซ 10)(n ๏ญ 13) ๏ฝ 0
n ๏ซ 10 ๏ฝ 0
or n ๏ญ 13 ๏ฝ 0
๏จ ๏ญb ๏ฉ2 ๏ญ ๏จ b 2 ๏ญ 4ac ๏ฉ
๏จ 2a ๏ฉ2
b 2 ๏ญ b 2 ๏ซ 4ac 4ac c
๏ฝ 2 ๏ฝ
a
4a 2
4a
1 ๏ญ 4k 2 ๏ฝ 0
4k 2 ๏ฝ 1
1
k2 ๏ฝ
4
k ๏ฝ๏ฑ
2
n ๏ญ 3n ๏ญ 160 ๏ฝ 0
a ๏ฝ 1, b ๏ฝ ๏ญ3, c ๏ฝ ๏ญ160
k๏ฝ
๏ญ(๏ญ3) ๏ฑ (๏ญ3) 2 ๏ญ 4(1)(๏ญ160)
2(1)
3 ๏ฑ 649
2
Since the solutions are not integers, a polygon
with 80 diagonals is not possible.
1
2
or k ๏ฝ ๏ญ
1
2
๏จ ๏ญk ๏ฉ2 ๏ญ 4 ๏จ1๏ฉ๏จ 4 ๏ฉ ๏ฝ 0
k 2 ๏ญ 16 ๏ฝ 0
๏จ k ๏ญ 4 ๏ฉ๏จ k ๏ซ 4 ๏ฉ ๏ฝ 0
111. The roots of a quadratic equation are
2
๏ญb ๏ญ b ๏ญ 4ac
๏ญb ๏ซ b ๏ญ 4ac
and x2 ๏ฝ
,
2a
2a
so the sum of the roots is
x1 ๏ซ x2 ๏ฝ
1
4
114. In order to have one repeated real zero, we need
the discriminant to be 0.
b 2 ๏ญ 4ac ๏ฝ 0
๏ฝ
x1 ๏ฝ
b 2 ๏ญ ๏จ b 2 ๏ญ 4ac ๏ฉ
4a 2
12 ๏ญ 4 ๏จ k ๏ฉ๏จ k ๏ฉ ๏ฝ 0
To determine the number of sides if a polygon
has 80 diagonals, we solve
D(n) ๏ฝ 80
1
n(n ๏ญ 3) ๏ฝ 80
2
n(n ๏ญ 3) ๏ฝ 160
2
๏ฝ
113. In order to have one repeated real zero, we need
the discriminant to be 0.
b 2 ๏ญ 4ac ๏ฝ 0
n ๏ฝ 13
n ๏ฝ ๏ญ10
Discard the negative solution since the number
of sides must be positive. A polygon with 65
diagonals will have 13 sides.
t๏ฝ
2
k ๏ฝ 4 or k ๏ฝ ๏ญ4
115. For f ๏จ x ๏ฉ ๏ฝ ax 2 ๏ซ bx ๏ซ c ๏ฝ 0 :
๏ญb ๏ญ b 2 ๏ญ 4ac ๏ญb ๏ซ b 2 ๏ญ 4ac
๏ซ
2a
2a
x1 ๏ฝ
๏ญb ๏ญ b 2 ๏ญ 4ac ๏ญ b ๏ซ b 2 ๏ญ 4ac
2a
๏ญ2b
b
๏ฝ
๏ฝ๏ญ
2a
a
๏ฝ
๏ญb ๏ญ b 2 ๏ญ 4ac
๏ญb ๏ซ b 2 ๏ญ 4ac
and x2 ๏ฝ
2a
2a
For f ๏จ x ๏ฉ ๏ฝ ax 2 ๏ญ bx ๏ซ c ๏ฝ 0 :
x1* ๏ฝ
112. The roots of a quadratic equation are
๏ฝ
๏ญb ๏ญ b 2 ๏ญ 4ac
๏ญb ๏ซ b 2 ๏ญ 4ac
x1 ๏ฝ
and x2 ๏ฝ
,
2a
2a
๏ญ ๏จ ๏ญb ๏ฉ ๏ญ
๏จ ๏ญb ๏ฉ2 ๏ญ 4ac
2a
๏ฆ ๏ญb ๏ซ b 2 ๏ญ 4ac ๏ถ
b ๏ญ b 2 ๏ญ 4ac
๏ท ๏ฝ ๏ญ x2
๏ฝ ๏ญ๏ง
๏ง
๏ท
2a
2a
๏จ
๏ธ
183
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
and
x2* ๏ฝ
๏ฝ
๏ญ ๏จ ๏ญb ๏ฉ ๏ซ
118. Answers may vary. Methods discussed in this
section include factoring, the square root
method, completing the square, and the quadratic
formula.
๏จ ๏ญb ๏ฉ ๏ญ 4ac
2
2a
๏ฆ ๏ญb ๏ญ b 2 ๏ญ 4ac ๏ถ
b ๏ซ b ๏ญ 4ac
๏ท ๏ฝ ๏ญ x1
๏ฝ ๏ญ๏ง
๏ง
๏ท
2a
2a
๏จ
๏ธ
2
119. Answers will vary. Knowing the discriminant
allows us to know how many real solutions the
equation will have.
116. For f ๏จ x ๏ฉ ๏ฝ ax 2 ๏ซ bx ๏ซ c ๏ฝ 0 :
2
120. Answers will vary. One possibility:
Two distinct: f ๏จ x ๏ฉ ๏ฝ x 2 ๏ญ 3 x ๏ญ 18
2
๏ญb ๏ญ b ๏ญ 4ac
๏ญb ๏ซ b ๏ญ 4ac
and x2 ๏ฝ
2a
2a
x1 ๏ฝ
One repeated: f ๏จ x ๏ฉ ๏ฝ x 2 ๏ญ 14 x ๏ซ 49
For f ๏จ x ๏ฉ ๏ฝ cx ๏ซ bx ๏ซ a ๏ฝ 0 :
2
๏ญb ๏ญ b ๏ญ 4 ๏จ c ๏ฉ๏จ a ๏ฉ
2
x1* ๏ฝ
๏ฝ
๏ฝ
๏ฝ
2c
๏ฝ
No real: f ๏จ x ๏ฉ ๏ฝ x 2 ๏ซ x ๏ซ 4
๏ญb ๏ญ b 2 ๏ญ 4ac
2c
121. Answers will vary.
๏ญb ๏ญ b 2 ๏ญ 4ac ๏ญb ๏ซ b 2 ๏ญ 4ac
๏
2c
๏ญb ๏ซ b 2 ๏ญ 4ac
๏จ
b 2 ๏ญ b 2 ๏ญ 4ac
๏จ
๏ฉ
2
2c ๏ญb ๏ซ b ๏ญ 4ac
2a
2
๏ญb ๏ซ b ๏ญ 4ac
๏ฝ
๏ฝ
122. Two quadratic functions can intersect 0, 1, or 2
times.
123. The graph is shifted vertically by 4 units and is
reflected about the x-axis.
4ac
๏ฉ 2c ๏จ ๏ญb ๏ซ b ๏ญ 4ac ๏ฉ
2
1
x2
and
x2* ๏ฝ
๏ฝ
๏ฝ
๏ฝ
117. a.
๏ญb ๏ซ b 2 ๏ญ 4 ๏จ c ๏ฉ๏จ a ๏ฉ
2c
๏ฝ
๏ญb ๏ซ b 2 ๏ญ 4ac
2c
2
๏ญb ๏ซ b ๏ญ 4ac ๏ญb ๏ญ b 2 ๏ญ 4ac
๏
2c
๏ญb ๏ญ b 2 ๏ญ 4ac
๏จ
b 2 ๏ญ b 2 ๏ญ 4ac
๏จ
๏ฉ
2c ๏ญb ๏ญ b 2 ๏ญ 4ac
2a
2
๏ญb ๏ญ b ๏ญ 4ac
๏ฝ
๏ฝ
124. Domain: ๏ป ๏ญ3, ๏ญ1,1,3๏ฝ Range: ๏ป 2, 4๏ฝ
4ac
๏ฉ 2c ๏จ ๏ญb ๏ญ b ๏ญ 4ac ๏ฉ
๏ญ10 ๏ซ 2 ๏ญ8
๏ฝ
๏ฝ ๏ญ4
2
2
4 ๏ซ ( ๏ญ1) 3
y๏ฝ
๏ฝ
2
2
2
125. x ๏ฝ
1
x1
3๏ถ
๏ฆ
So the midpoint is: ๏ง ๏ญ4, ๏ท .
๏จ
2๏ธ
x 2 ๏ฝ 9 and x ๏ฝ 3 are not equivalent
because they do not have the same solution
set. In the first equation we can also have
x ๏ฝ ๏ญ3 .
b.
x ๏ฝ 9 and x ๏ฝ 3 are equivalent because
9 ๏ฝ3.
c.
๏จ x ๏ญ 1๏ฉ๏จ x ๏ญ 2 ๏ฉ ๏ฝ ๏จ x ๏ญ 1๏ฉ2 and x ๏ญ 2 ๏ฝ x ๏ญ 1 are
126. If the graph is symmetric with respect to the yaxis then x and โx are on the graph. Thus if
๏จ ๏ญ1, 4๏ฉ is on the graph, then so is ๏จ1, 4๏ฉ .
not equivalent because they do not have the
same solution set. The first equation has the
solution set ๏ป1๏ฝ while the second equation
has no solutions.
184
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.4: Properties of Quadratic Functions
17. G
Section 2.4
18. B
1. y ๏ฝ x 2 ๏ญ 9
To find the y-intercept, let x ๏ฝ 0 :
y ๏ฝ 02 ๏ญ 9 ๏ฝ ๏ญ9 .
To find the x-intercept(s), let y ๏ฝ 0 :
19. H
20. D
x2 ๏ญ 9 ๏ฝ 0
21.
x2 ๏ฝ 9
x ๏ฝ ๏ฑ 9 ๏ฝ ๏ฑ3
The intercepts are (0, ๏ญ9), (๏ญ3, 0), and (3, 0) .
1 2
x
4
Using the graph of y ๏ฝ x 2 , compress vertically
f ( x) ๏ฝ
by a factor of
1
.
4
2 x2 ๏ซ 7 x ๏ญ 4 ๏ฝ 0
2.
๏จ 2 x ๏ญ 1๏ฉ๏จ x ๏ซ 4 ๏ฉ ๏ฝ 0
2 x ๏ญ 1 ๏ฝ 0 or x ๏ซ 4 ๏ฝ 0
2 x ๏ฝ 1 or
x ๏ฝ ๏ญ4
1
x๏ฝ
or
x ๏ฝ ๏ญ4
2
1๏ผ
๏ฌ
The solution set is ๏ญ๏ญ4, ๏ฝ . .
2๏พ
๏ฎ
22.
2
25
๏ฆ1
๏ถ
3. ๏ง ๏ (๏ญ5) ๏ท ๏ฝ
4
๏จ2
๏ธ
f ( x) ๏ฝ 2 x 2 ๏ซ 4
Using the graph of y ๏ฝ x 2 , stretch vertically by a
factor of 2, then shift up 4 units.
4. right; 4
5. parabola
6. axis (or axis of symmetry)
7. ๏ญ
b
2a
8. True; a ๏ฝ 2 ๏พ 0 .
9. True; ๏ญ
b
4
๏ฝ๏ญ
๏ฝ2
2a
2 ๏จ ๏ญ1๏ฉ
23.
f ( x) ๏ฝ ( x ๏ซ 2) 2 ๏ญ 2
Using the graph of y ๏ฝ x 2 , shift left 2 units, then
shift down 2 units.
10. True
11. a
12. d
13. C
14. E
15. F
16. A
185
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
24.
f ( x) ๏ฝ ( x ๏ญ 3) 2 ๏ญ 10
27.
Using the graph of y ๏ฝ x 2 , shift right 3 units,
then shift down 10 units.
f ( x) ๏ฝ 2 x 2 ๏ญ 4 x ๏ซ 1
๏จ
๏ฉ
๏ฝ 2 x2 ๏ญ 2x ๏ซ 1
2
๏ฝ 2( x ๏ญ 2 x ๏ซ 1) ๏ซ 1 ๏ญ 2
๏ฝ 2( x ๏ญ 1) 2 ๏ญ 1
Using the graph of y ๏ฝ x 2 , shift right 1 unit,
stretch vertically by a factor of 2, then shift
down 1 unit.
25.
f ( x) ๏ฝ x 2 ๏ซ 4 x ๏ซ 1
๏ฝ ( x 2 ๏ซ 4 x ๏ซ 4) ๏ซ 1 ๏ญ 4
๏ฝ ( x ๏ซ 2) 2 ๏ญ 3
Using the graph of y ๏ฝ x 2 , shift left 2 units, then
shift down 3 units.
28.
f ( x) ๏ฝ 3 x 2 ๏ซ 6 x
๏จ
๏ฝ 3 x2 ๏ซ 2 x
๏ฉ
๏ฝ 3( x 2 ๏ซ 2 x ๏ซ 1) ๏ญ 3
๏ฝ 3( x ๏ซ 1) 2 ๏ญ 3
Using the graph of y ๏ฝ x 2 , shift left 1 unit,
stretch vertically by a factor of 3, then shift
down 3 units.
26.
f ( x) ๏ฝ x 2 ๏ญ 6 x ๏ญ 1
๏ฝ ( x 2 ๏ญ 6 x ๏ซ 9) ๏ญ 1 ๏ญ 9
๏ฝ ( x ๏ญ 3) 2 ๏ญ 10
Using the graph of y ๏ฝ x 2 , shift right 3 units,
then shift down 10 units.
29.
f ( x) ๏ฝ ๏ญ x 2 ๏ญ 2 x
๏จ
๏ฝ ๏ญ x2 ๏ซ 2x
๏ฉ
2
๏ฝ ๏ญ( x ๏ซ 2 x ๏ซ 1) ๏ซ 1
๏ฝ ๏ญ( x ๏ซ 1) 2 ๏ซ 1
Using the graph of y ๏ฝ x 2 , shift left 1 unit,
reflect across the x-axis, then shift up 1 unit.
186
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.4: Properties of Quadratic Functions
down
30.
f ( x) ๏ฝ ๏ญ2 x 2 ๏ซ 6 x ๏ซ 2
๏จ
๏ฉ
๏ฝ ๏ญ2 x 2 ๏ญ 3x ๏ซ 2
32.
9๏ถ
9
๏ฆ
๏ฝ ๏ญ2 ๏ง x 2 ๏ญ 3 x ๏ซ ๏ท ๏ซ 2 ๏ซ
4
2
๏จ
๏ธ
2 2 4
x ๏ซ x ๏ญ1
3
3
2 2
๏ฝ x ๏ซ 2x ๏ญ1
3
2
2
๏ฝ x2 ๏ซ 2 x ๏ซ 1 ๏ญ 1 ๏ญ
3
3
2
5
2
๏ฝ ๏จ x ๏ซ 1๏ฉ ๏ญ
3
3
Using the graph of y ๏ฝ x 2 , shift left 1 unit,
f ( x) ๏ฝ
๏จ
๏จ
2
3 ๏ถ 13
๏ฆ
๏ฝ ๏ญ2 ๏ง x ๏ญ ๏ท ๏ซ
2๏ธ
2
๏จ
3
Using the graph of y ๏ฝ x , shift right units,
2
reflect about the x-axis, stretch vertically by a
13
factor of 2, then shift up
units.
2
2
๏ฉ
๏ฉ
compress vertically by a factor of
down
31.
3
units.
2
1 2
x ๏ซ x ๏ญ1
2
1
๏ฝ x2 ๏ซ 2 x ๏ญ 1
2
1
1
๏ฝ x2 ๏ซ 2 x ๏ซ 1 ๏ญ 1 ๏ญ
2
2
1
3
2
๏ฝ ๏จ x ๏ซ 1๏ฉ ๏ญ
2
2
Using the graph of y ๏ฝ x 2 , shift left 1 unit,
2
, then shift
3
5
unit.
3
f ( x) ๏ฝ
๏จ
๏จ
๏ฉ
33. a.
๏ฉ
compress vertically by a factor of
For f ( x) ๏ฝ x 2 ๏ซ 2 x , a ๏ฝ 1 , b ๏ฝ 2 , c ๏ฝ 0.
Since a ๏ฝ 1 ๏พ 0 , the graph opens up.
The x-coordinate of the vertex is
x๏ฝ
๏ญb ๏ญ(2) ๏ญ2
๏ฝ
๏ฝ
๏ฝ ๏ญ1 .
2a 2(1)
2
The y-coordinate of the vertex is
๏ฆ ๏ญb ๏ถ
f ๏ง ๏ท ๏ฝ f (๏ญ1) ๏ฝ (๏ญ1) 2 ๏ซ 2(๏ญ1) ๏ฝ 1 ๏ญ 2 ๏ฝ ๏ญ1.
๏จ 2a ๏ธ
Thus, the vertex is (๏ญ1, ๏ญ 1) .
The axis of symmetry is the line x ๏ฝ ๏ญ1 .
The discriminant is
b 2 ๏ญ 4ac ๏ฝ (2) 2 ๏ญ 4(1)(0) ๏ฝ 4 ๏พ 0 , so the graph
has two x-intercepts.
1
, then shift
2
187
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
The x-intercepts are found by solving:
x2 ๏ซ 2 x ๏ฝ 0
x( x ๏ซ 2) ๏ฝ 0
x ๏ฝ 0 or x ๏ฝ ๏ญ2
The x-intercepts are โ2 and 0 .
The y-intercept is f (0) ๏ฝ 0 .
b.
The domain is (๏ญ๏ฅ, ๏ฅ) .
The range is [๏ญ1, ๏ฅ) .
c.
Decreasing on (๏ญ๏ฅ, ๏ญ 1] .
Increasing on [๏ญ1, ๏ฅ) .
34. a.
b.
The domain is (๏ญ๏ฅ, ๏ฅ) .
The range is [๏ญ4, ๏ฅ) .
c.
Decreasing on (๏ญ๏ฅ, 2] .
Increasing on [2, ๏ฅ) .
35. a.
For f ( x) ๏ฝ x 2 ๏ญ 4 x , a ๏ฝ 1 , b ๏ฝ ๏ญ4 , c ๏ฝ 0 .
Since a ๏ฝ 1 ๏พ 0 , the graph opens up.
The x-coordinate of the vertex is
๏ญb ๏ญ(๏ญ4) 4
x๏ฝ
๏ฝ
๏ฝ ๏ฝ2.
2a
2(1)
2
The y-coordinate of the vertex is
๏ฆ ๏ญb ๏ถ
f ๏ง ๏ท ๏ฝ f (2) ๏ฝ (2) 2 ๏ญ 4(2) ๏ฝ 4 ๏ญ 8 ๏ฝ ๏ญ4.
๏จ 2a ๏ธ
Thus, the vertex is (2, ๏ญ 4) .
The axis of symmetry is the line x ๏ฝ 2 .
The discriminant is:
b 2 ๏ญ 4ac ๏ฝ (๏ญ4) 2 ๏ญ 4(1)(0) ๏ฝ 16 ๏พ 0 , so the
graph has two x-intercepts.
The x-intercepts are found by solving:
x2 ๏ญ 4 x ๏ฝ 0
x( x ๏ญ 4) ๏ฝ 0
x ๏ฝ 0 or x ๏ฝ 4.
The x-intercepts are 0 and 4.
The y-intercept is f (0) ๏ฝ 0 .
For f ( x) ๏ฝ ๏ญ x 2 ๏ญ 6 x , a ๏ฝ ๏ญ1 , b ๏ฝ ๏ญ6 ,
c ๏ฝ 0 . Since a ๏ฝ ๏ญ1 ๏ผ 0, the graph opens
down. The x-coordinate of the vertex is
๏ญb ๏ญ(๏ญ6) 6
x๏ฝ
๏ฝ
๏ฝ
๏ฝ ๏ญ3.
2a 2(๏ญ1) ๏ญ2
The y-coordinate of the vertex is
๏ฆ ๏ญb ๏ถ
f ๏ง ๏ท ๏ฝ f (๏ญ3) ๏ฝ ๏ญ(๏ญ3) 2 ๏ญ 6(๏ญ3)
๏จ 2a ๏ธ
๏ฝ ๏ญ9 ๏ซ 18 ๏ฝ 9.
Thus, the vertex is (๏ญ3, 9) .
The axis of symmetry is the line x ๏ฝ ๏ญ3 .
The discriminant is:
b 2 ๏ญ 4ac ๏ฝ (๏ญ6) 2 ๏ญ 4(๏ญ1)(0) ๏ฝ 36 ๏พ 0 ,
so the graph has two x-intercepts.
The x-intercepts are found by solving:
๏ญ x2 ๏ญ 6 x ๏ฝ 0
๏ญ x( x ๏ซ 6) ๏ฝ 0
x ๏ฝ 0 or x ๏ฝ ๏ญ6.
The x-intercepts are ๏ญ6 and 0 .
The y-intercepts are f (0) ๏ฝ 0 .
188
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.4: Properties of Quadratic Functions
b.
The domain is (๏ญ๏ฅ, ๏ฅ) .
The range is (๏ญ๏ฅ, 9] .
c.
Increasing on (๏ญ๏ฅ, ๏ญ 3] .
Decreasing on [๏ญ3, ๏ฅ) .
36. a.
๏ญb ๏ญ2 ๏ญ2
๏ฝ
๏ฝ
๏ฝ ๏ญ1 .
2a 2(1) 2
The y-coordinate of the vertex is
๏ฆ ๏ญb ๏ถ
f ๏ง ๏ท ๏ฝ f (๏ญ1) ๏ฝ (๏ญ1) 2 ๏ซ 2(๏ญ1) ๏ญ 8
๏จ 2a ๏ธ
๏ฝ 1 ๏ญ 2 ๏ญ 8 ๏ฝ ๏ญ9.
Thus, the vertex is (๏ญ1, ๏ญ 9) .
The axis of symmetry is the line x ๏ฝ ๏ญ1 .
The discriminant is:
b 2 ๏ญ 4ac ๏ฝ 22 ๏ญ 4(1)( ๏ญ8) ๏ฝ 4 ๏ซ 32 ๏ฝ 36 ๏พ 0 ,
so the graph has two x-intercepts.
The x-intercepts are found by solving:
x2 ๏ซ 2 x ๏ญ 8 ๏ฝ 0
( x ๏ซ 4)( x ๏ญ 2) ๏ฝ 0
x ๏ฝ ๏ญ4 or x ๏ฝ 2.
The x-intercepts are ๏ญ4 and 2 .
The y-intercept is f (0) ๏ฝ ๏ญ8 .
x๏ฝ
For f ( x) ๏ฝ ๏ญ x 2 ๏ซ 4 x, a ๏ฝ ๏ญ1, b ๏ฝ 4 , c ๏ฝ 0 .
Since a ๏ฝ ๏ญ1 ๏ผ 0 , the graph opens down.
The x-coordinate of the vertex is
๏ญb
๏ญ4
๏ญ4
x๏ฝ
๏ฝ
๏ฝ
๏ฝ 2.
2a 2(๏ญ1) ๏ญ2
The y-coordinate of the vertex is
๏ฆ ๏ญb ๏ถ
f ๏ง ๏ท ๏ฝ f (2)
๏จ 2a ๏ธ
๏ฝ ๏ญ(2) 2 ๏ซ 4(2)
๏ฝ 4.
Thus, the vertex is (2, 4) .
The axis of symmetry is the line x ๏ฝ 2 .
The discriminant is:
b 2 ๏ญ 4ac ๏ฝ 42 ๏ญ 4( ๏ญ1)(0) ๏ฝ 16 ๏พ 0,
so the graph has two x-intercepts.
The x-intercepts are found by solving:
๏ญ x2 ๏ซ 4 x ๏ฝ 0
๏ญ x( x ๏ญ 4) ๏ฝ 0
x ๏ฝ 0 or x ๏ฝ 4.
The x-intercepts are 0 and 4.
The y-intercept is f (0) ๏ฝ 0 .
b. The domain is (๏ญ๏ฅ, ๏ฅ) .
The range is [๏ญ9, ๏ฅ) .
c.
38. a.
b.
The domain is (๏ญ๏ฅ, ๏ฅ) .
The range is (๏ญ๏ฅ, 4] .
c.
Increasing on (๏ญ๏ฅ, 2] .
Decreasing on [2, ๏ฅ) .
37. a.
Decreasing on (๏ญ๏ฅ, ๏ญ 1] .
Increasing on [๏ญ1, ๏ฅ) .
For f ( x) ๏ฝ x 2 ๏ญ 2 x ๏ญ 3, a ๏ฝ 1, b ๏ฝ ๏ญ2,
c ๏ฝ ๏ญ3.
Since a ๏ฝ 1 ๏พ 0 , the graph opens up.
The x-coordinate of the vertex is
๏ญb ๏ญ(๏ญ2) 2
x๏ฝ
๏ฝ
๏ฝ ๏ฝ 1.
2a
2(1)
2
The y-coordinate of the vertex is
๏ฆ ๏ญb ๏ถ
f ๏ง ๏ท ๏ฝ f (1) ๏ฝ 12 ๏ญ 2(1) ๏ญ 3 ๏ฝ ๏ญ4.
๏จ 2a ๏ธ
Thus, the vertex is (1, ๏ญ 4) .
The axis of symmetry is the line x ๏ฝ 1 .
The discriminant is:
For f ( x) ๏ฝ x 2 ๏ซ 2 x ๏ญ 8 , a ๏ฝ 1 , b ๏ฝ 2 , c ๏ฝ ๏ญ8 .
Since a ๏ฝ 1 ๏พ 0 , the graph opens up.
The x-coordinate of the vertex is
b 2 ๏ญ 4ac ๏ฝ ( ๏ญ2) 2 ๏ญ 4(1)( ๏ญ3) ๏ฝ 4 ๏ซ 12 ๏ฝ 16 ๏พ 0 ,
189
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
The y-intercept is f (0) ๏ฝ 1 .
so the graph has two x-intercepts.
The x-intercepts are found by solving:
x2 ๏ญ 2 x ๏ญ 3 ๏ฝ 0
( x ๏ซ 1)( x ๏ญ 3) ๏ฝ 0
x ๏ฝ ๏ญ1 or x ๏ฝ 3.
The x-intercepts are ๏ญ1 and 3 .
The y-intercept is f (0) ๏ฝ ๏ญ3 .
b.
The domain is (๏ญ๏ฅ, ๏ฅ) .
The range is [0, ๏ฅ) .
c.
Decreasing on (๏ญ๏ฅ, ๏ญ 1] .
Increasing on [๏ญ1, ๏ฅ) .
40. a.
b.
The domain is (๏ญ๏ฅ, ๏ฅ) . The range is [๏ญ4, ๏ฅ) .
c.
Decreasing on (๏ญ๏ฅ, 1] . Increasing on [1, ๏ฅ) .
39. a.
For f ( x) ๏ฝ x 2 ๏ซ 2 x ๏ซ 1 , a ๏ฝ 1 , b ๏ฝ 2 , c ๏ฝ 1 .
Since a ๏ฝ 1 ๏พ 0 , the graph opens up.
The x-coordinate of the vertex is
๏ญb ๏ญ2 ๏ญ2
x๏ฝ
๏ฝ
๏ฝ
๏ฝ ๏ญ1 .
2a 2(1) 2
The y-coordinate of the vertex is
๏ฆ ๏ญb ๏ถ
f ๏ง ๏ท ๏ฝ f (๏ญ1)
๏จ 2a ๏ธ
For f ( x) ๏ฝ x 2 ๏ซ 6 x ๏ซ 9 , a ๏ฝ 1 , b ๏ฝ 6 , c ๏ฝ 9 .
Since a ๏ฝ 1 ๏พ 0 , the graph opens up.
The x-coordinate of the vertex is
๏ญb ๏ญ6 ๏ญ6
x๏ฝ
๏ฝ
๏ฝ
๏ฝ ๏ญ3 .
2a 2(1) 2
The y-coordinate of the vertex is
๏ฆ ๏ญb ๏ถ
f ๏ง ๏ท ๏ฝ f (๏ญ3)
๏จ 2a ๏ธ
๏ฝ (๏ญ3) 2 ๏ซ 6(๏ญ3) ๏ซ 9 ๏ฝ 9 ๏ญ 18 ๏ซ 9 ๏ฝ 0.
Thus, the vertex is (๏ญ3, 0) .
The axis of symmetry is the line x ๏ฝ ๏ญ3 .
The discriminant is:
b 2 ๏ญ 4ac ๏ฝ 62 ๏ญ 4(1)(9) ๏ฝ 36 ๏ญ 36 ๏ฝ 0 ,
so the graph has one x-intercept.
The x-intercept is found by solving:
x2 ๏ซ 6 x ๏ซ 9 ๏ฝ 0
๏ฝ (๏ญ1) 2 ๏ซ 2(๏ญ1) ๏ซ 1 ๏ฝ 1 ๏ญ 2 ๏ซ 1 ๏ฝ 0.
Thus, the vertex is (๏ญ1, 0) .
The axis of symmetry is the line x ๏ฝ ๏ญ1 .
The discriminant is:
b 2 ๏ญ 4ac ๏ฝ 22 ๏ญ 4(1)(1) ๏ฝ 4 ๏ญ 4 ๏ฝ 0 ,
so the graph has one x-intercept.
The x-intercept is found by solving:
x2 ๏ซ 2 x ๏ซ 1 ๏ฝ 0
( x ๏ซ 3) 2 ๏ฝ 0
x ๏ฝ ๏ญ3.
The x-intercept is ๏ญ3 .
The y-intercept is f (0) ๏ฝ 9 .
( x ๏ซ 1) 2 ๏ฝ 0
x ๏ฝ ๏ญ1.
The x-intercept is ๏ญ1 .
b.
The domain is (๏ญ๏ฅ, ๏ฅ) . The range is [0, ๏ฅ) .
190
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.4: Properties of Quadratic Functions
c.
41. a.
๏จ ๏ฉ
Decreasing on (๏ญ๏ฅ, ๏ญ 3] .
Increasing on [๏ญ3, ๏ฅ) .
Thus, the vertex is 1 , 3 .
4 4
The axis of symmetry is the line x ๏ฝ 1 .
4
The discriminant is:
b 2 ๏ญ 4ac ๏ฝ (๏ญ2) 2 ๏ญ 4(4)(1) ๏ฝ 4 ๏ญ 16 ๏ฝ ๏ญ12 ,
so the graph has no x-intercepts.
The y-intercept is f (0) ๏ฝ 1 .
For f ( x) ๏ฝ 2 x 2 ๏ญ x ๏ซ 2 , a ๏ฝ 2 , b ๏ฝ ๏ญ1 , c ๏ฝ 2 .
Since a ๏ฝ 2 ๏พ 0 , the graph opens up.
The x-coordinate of the vertex is
๏ญb ๏ญ(๏ญ1) 1
x๏ฝ
๏ฝ
๏ฝ .
2a 2(2) 4
The y-coordinate of the vertex is
2
๏ฆ ๏ญb ๏ถ
๏ฆ1๏ถ
๏ฆ1๏ถ 1
f ๏ง ๏ท ๏ฝ f ๏ง ๏ท ๏ฝ 2๏ง ๏ท ๏ญ ๏ซ 2
๏จ 2a ๏ธ
๏จ4๏ธ
๏จ4๏ธ 4
1 1
15
๏ฝ ๏ญ ๏ซ2๏ฝ .
8 4
8
๏ฆ 1 15 ๏ถ
Thus, the vertex is ๏ง , ๏ท .
๏จ4 8 ๏ธ
The axis of symmetry is the line x ๏ฝ 1 .
4
The discriminant is:
b 2 ๏ญ 4ac ๏ฝ (๏ญ1) 2 ๏ญ 4(2)(2) ๏ฝ 1 ๏ญ 16 ๏ฝ ๏ญ15 ,
so the graph has no x-intercepts.
The y-intercept is f (0) ๏ฝ 2 .
b.
The domain is (๏ญ๏ฅ, ๏ฅ) . The range is ๏ช๏ฉ
c.
1
1
Decreasing on ๏ฆ๏ง ๏ญ๏ฅ, ๏บ๏น . Increasing on ๏ฉ๏ช , ๏ฅ ๏ท๏ถ .
4๏ป
๏จ
๏ซ4 ๏ธ
42. a.
๏ฉ
The range is ๏ฉ 3 , ๏ฅ .
๏ซ4
c.
43. a.
b.
The domain is (๏ญ๏ฅ, ๏ฅ) .
15 ๏ถ
, ๏ฅ๏ท .
๏ซ8
๏ธ
๏จ
Decreasing on ๏ญ๏ฅ, 1 ๏น .
4๏ป
1
Increasing on ๏ฉ , ๏ฅ .
๏ซ4
๏ฉ
For f ( x) ๏ฝ ๏ญ2 x 2 ๏ซ 2 x ๏ญ 3 , a ๏ฝ ๏ญ2 , b ๏ฝ 2 ,
c ๏ฝ ๏ญ3 . Since a ๏ฝ ๏ญ2 ๏ผ 0 , the graph opens
down.
The x-coordinate of the vertex is
๏ญb ๏ญ(2) ๏ญ2 1
x๏ฝ
๏ฝ
๏ฝ
๏ฝ .
2a 2(๏ญ2) ๏ญ4 2
The y-coordinate of the vertex is
2
๏ฆ ๏ญb ๏ถ
๏ฆ1๏ถ
๏ฆ1๏ถ
๏ฆ1๏ถ
f ๏ง ๏ท ๏ฝ f ๏ง ๏ท ๏ฝ ๏ญ2 ๏ง ๏ท ๏ซ 2 ๏ง ๏ท ๏ญ 3
2
2
2
a
๏จ ๏ธ
๏จ ๏ธ
๏จ ๏ธ
๏จ2๏ธ
1
5
๏ฝ ๏ญ ๏ซ1๏ญ 3 ๏ฝ ๏ญ .
2
2
๏ฆ1 5๏ถ
Thus, the vertex is ๏ง , ๏ญ ๏ท .
๏จ2 2๏ธ
1
The axis of symmetry is the line x ๏ฝ .
2
The discriminant is:
b 2 ๏ญ 4ac ๏ฝ 22 ๏ญ 4(๏ญ2)(๏ญ3) ๏ฝ 4 ๏ญ 24 ๏ฝ ๏ญ20 ,
so the graph has no x-intercepts.
For f ( x) ๏ฝ 4 x 2 ๏ญ 2 x ๏ซ 1 , a ๏ฝ 4 , b ๏ฝ ๏ญ2 , c ๏ฝ 1 .
Since a ๏ฝ 4 ๏พ 0 , the graph opens up.
The x-coordinate of the vertex is
๏ญb ๏ญ(๏ญ2) 2 1
x๏ฝ
๏ฝ
๏ฝ ๏ฝ .
2a
2(4) 8 4
The y-coordinate of the vertex is
2
๏ฆ ๏ญb ๏ถ
๏ฆ1๏ถ
๏ฆ1๏ถ
๏ฆ1๏ถ
f ๏ง ๏ท ๏ฝ f ๏ง ๏ท ๏ฝ 4๏ง ๏ท ๏ญ 2๏ง ๏ท ๏ซ1
2
4
4
a
๏จ ๏ธ
๏จ ๏ธ
๏จ ๏ธ
๏จ4๏ธ
1 1
3
๏ฝ ๏ญ ๏ซ1 ๏ฝ .
4 2
4
191
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
The y-intercept is f (0) ๏ฝ ๏ญ3 .
b.
The domain is (๏ญ๏ฅ, ๏ฅ) .
5๏น
๏ฆ
The range is ๏ง ๏ญ๏ฅ, ๏ญ ๏บ .
4๏ป
๏จ
c.
45. a.
b.
The domain is (๏ญ๏ฅ, ๏ฅ) .
5๏น
๏ฆ
The range is ๏ง ๏ญ๏ฅ, ๏ญ ๏บ .
2๏ป
๏จ
c.
44.
1๏น
๏ฆ
Increasing on ๏ง ๏ญ๏ฅ, ๏บ .
2๏ป
๏จ
๏ฉ1 ๏ถ
Decreasing on ๏ช , ๏ฅ ๏ท .
๏ซ2 ๏ธ
a.
For f ( x) ๏ฝ ๏ญ3x 2 ๏ซ 3 x ๏ญ 2 , a ๏ฝ ๏ญ3 ,
b ๏ฝ 3 , c ๏ฝ ๏ญ2 . Since a ๏ฝ ๏ญ3 ๏ผ 0 , the graph
opens down.
The x-coordinate of the vertex is
๏ญb
๏ญ3
๏ญ3 1
๏ฝ
๏ฝ
๏ฝ .
x๏ฝ
2a 2(๏ญ3) ๏ญ6 2
The y-coordinate of the vertex is
1๏น
๏ฆ
Increasing on ๏ง ๏ญ๏ฅ, ๏บ .
2๏ป
๏จ
๏ฉ1 ๏ถ
Decreasing on ๏ช , ๏ฅ ๏ท .
๏ซ2 ๏ธ
For f ( x) ๏ฝ 3 x 2 ๏ซ 6 x ๏ซ 2 , a ๏ฝ 3 , b ๏ฝ 6 ,
c ๏ฝ 2 . Since a ๏ฝ 3 ๏พ 0 , the graph opens up.
The x-coordinate of the vertex is
๏ญb
๏ญ6 ๏ญ6
๏ฝ
๏ฝ
๏ฝ ๏ญ1 .
x๏ฝ
2a 2(3) 6
The y-coordinate of the vertex is
๏ฆ ๏ญb ๏ถ
f ๏ง ๏ท ๏ฝ f (๏ญ1) ๏ฝ 3(๏ญ1) 2 ๏ซ 6(๏ญ1) ๏ซ 2
๏จ 2a ๏ธ
๏ฝ 3 ๏ญ 6 ๏ซ 2 ๏ฝ ๏ญ1.
Thus, the vertex is (๏ญ1, ๏ญ 1) .
The axis of symmetry is the line x ๏ฝ ๏ญ1 .
The discriminant is:
b 2 ๏ญ 4ac ๏ฝ 62 ๏ญ 4(3)(2) ๏ฝ 36 ๏ญ 24 ๏ฝ 12 ,
so the graph has two x-intercepts.
The x-intercepts are found by solving:
3x 2 ๏ซ 6 x ๏ซ 2 ๏ฝ 0
x๏ฝ
2
๏ฆ ๏ญb ๏ถ
๏ฆ1๏ถ
๏ฆ1๏ถ
๏ฆ1๏ถ
f ๏ง ๏ท ๏ฝ f ๏ง ๏ท ๏ฝ ๏ญ3 ๏ง ๏ท ๏ซ 3 ๏ง ๏ท ๏ญ 2
๏จ 2a ๏ธ
๏จ2๏ธ
๏จ2๏ธ
๏จ2๏ธ
3 3
5
๏ฝ ๏ญ ๏ซ ๏ญ2 ๏ฝ ๏ญ .
4 2
4
1
5๏ถ
๏ฆ
Thus, the vertex is ๏ง , ๏ญ ๏ท .
๏จ2 4๏ธ
1
The axis of symmetry is the line x ๏ฝ .
2
The discriminant is:
b 2 ๏ญ 4ac ๏ฝ 32 ๏ญ 4(๏ญ3)(๏ญ2) ๏ฝ 9 ๏ญ 24 ๏ฝ ๏ญ15 ,
so the graph has no x-intercepts.
The y-intercept is f (0) ๏ฝ ๏ญ2 .
๏ญb ๏ฑ b 2 ๏ญ 4ac
2a
๏ญ6 ๏ฑ 12 ๏ญ6 ๏ฑ 2 3 ๏ญ3 ๏ฑ 3
๏ฝ
๏ฝ
6
6
3
3
3
The x-intercepts are ๏ญ1 ๏ญ
and ๏ญ1 ๏ซ
.
3
3
The y-intercept is f (0) ๏ฝ 2 .
๏ฝ
b.
The domain is (๏ญ๏ฅ, ๏ฅ) .
The range is ๏ ๏ญ1, ๏ฅ ๏ฉ .
c.
Decreasing on ๏จ ๏ญ๏ฅ, ๏ญ 1๏ .
Increasing on ๏ ๏ญ1, ๏ฅ ๏ฉ .
192
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.4: Properties of Quadratic Functions
46. a.
c.
2
For f ( x) ๏ฝ 2 x ๏ซ 5 x ๏ซ 3 , a ๏ฝ 2 , b ๏ฝ 5 ,
c ๏ฝ 3 . Since a ๏ฝ 2 ๏พ 0 , the graph opens up.
The x-coordinate of the vertex is
๏ญb
๏ญ5
5
๏ฝ
๏ฝ๏ญ .
x๏ฝ
2a 2(2)
4
The y-coordinate of the vertex is
๏ฆ ๏ญb ๏ถ
๏ฆ 5๏ถ
f ๏ง ๏ท ๏ฝ f ๏ง๏ญ ๏ท
๏จ 2a ๏ธ
๏จ 4๏ธ
47. a.
2
๏ฆ 5๏ถ
๏ฆ 5๏ถ
๏ฝ 2๏ง ๏ญ ๏ท ๏ซ 5๏ง ๏ญ ๏ท ๏ซ 3
๏จ 4๏ธ
๏จ 4๏ธ
25 25
๏ฝ
๏ญ ๏ซ3
8
4
1
๏ฝ๏ญ .
8
๏ฆ 5 1๏ถ
Thus, the vertex is ๏ง ๏ญ , ๏ญ ๏ท .
๏จ 4 8๏ธ
The axis of symmetry is the line x ๏ฝ ๏ญ
For f ( x) ๏ฝ ๏ญ4 x 2 ๏ญ 6 x ๏ซ 2 , a ๏ฝ ๏ญ4 , b ๏ฝ ๏ญ6 ,
c ๏ฝ 2 . Since a ๏ฝ ๏ญ4 ๏ผ 0 , the graph opens
down.
The x-coordinate of the vertex is
๏ญb ๏ญ(๏ญ6) 6
3
๏ฝ
๏ฝ
๏ฝ๏ญ .
x๏ฝ
2a 2(๏ญ4) ๏ญ8
4
The y-coordinate of the vertex is
2
๏ฆ ๏ญb ๏ถ
๏ฆ 3๏ถ
๏ฆ 3๏ถ
๏ฆ 3๏ถ
f ๏ง ๏ท ๏ฝ f ๏ง ๏ญ ๏ท ๏ฝ ๏ญ4 ๏ง ๏ญ ๏ท ๏ญ 6 ๏ง ๏ญ ๏ท ๏ซ 2
๏จ 2a ๏ธ
๏จ 4๏ธ
๏จ 4๏ธ
๏จ 4๏ธ
9 9
17
๏ฝ๏ญ ๏ซ ๏ซ2๏ฝ .
4 2
4
๏ฆ 3 17 ๏ถ
Thus, the vertex is ๏ง ๏ญ , ๏ท .
๏จ 4 4๏ธ
3
The axis of symmetry is the line x ๏ฝ ๏ญ .
4
The discriminant is:
b 2 ๏ญ 4ac ๏ฝ (๏ญ6) 2 ๏ญ 4(๏ญ4)(2) ๏ฝ 36 ๏ซ 32 ๏ฝ 68 ,
so the graph has two x-intercepts.
The x-intercepts are found by solving:
๏ญ4 x 2 ๏ญ 6 x ๏ซ 2 ๏ฝ 0
5
.
4
The discriminant is:
b 2 ๏ญ 4ac ๏ฝ 52 ๏ญ 4(2)(3) ๏ฝ 25 ๏ญ 24 ๏ฝ 1 ,
so the graph has two x-intercepts.
The x-intercepts are found by solving:
2 x2 ๏ซ 5x ๏ซ 3 ๏ฝ 0
(2 x ๏ซ 3)( x ๏ซ 1) ๏ฝ 0
3
x ๏ฝ ๏ญ or x ๏ฝ ๏ญ1.
2
3
The x-intercepts are ๏ญ and ๏ญ 1 .
2
The y-intercept is f (0) ๏ฝ 3 .
b.
5๏น
๏ฆ
Decreasing on ๏ง ๏ญ๏ฅ, ๏ญ ๏บ .
4๏ป
๏จ
๏ฉ 5 ๏ถ
Increasing on ๏ช ๏ญ , ๏ฅ ๏ท .
๏ซ 4 ๏ธ
x๏ฝ
๏ญb ๏ฑ b 2 ๏ญ 4ac ๏ญ(๏ญ6) ๏ฑ 68
๏ฝ
2a
2(๏ญ4)
6 ๏ฑ 68 6 ๏ฑ 2 17 3 ๏ฑ 17
๏ฝ
๏ฝ
๏ญ8
๏ญ8
๏ญ4
๏ญ3 ๏ซ 17
๏ญ3 ๏ญ 17
and
.
The x-intercepts are
4
4
The y-intercept is f (0) ๏ฝ 2 .
๏ฝ
The domain is (๏ญ๏ฅ, ๏ฅ) .
๏ฉ 1 ๏ถ
The range is ๏ช ๏ญ , ๏ฅ ๏ท .
๏ซ 8 ๏ธ
b. The domain is (๏ญ๏ฅ, ๏ฅ) .
17 ๏น
๏ฆ
The range is ๏ง ๏ญ๏ฅ, ๏บ .
4๏ป
๏จ
193
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
c.
48. a.
๏ฉ 3 ๏ถ
Decreasing on ๏ช ๏ญ , ๏ฅ ๏ท .
๏ซ 4 ๏ธ
3๏น
๏ฆ
Increasing on ๏ง ๏ญ๏ฅ, ๏ญ ๏บ .
4๏ป
๏จ
c.
4๏น
๏ฆ
Decreasing on ๏ง ๏ญ๏ฅ, ๏บ .
3๏ป
๏จ
๏ฉ4 ๏ถ
Increasing on ๏ช , ๏ฅ ๏ท .
๏ซ3 ๏ธ
49. Consider the form y ๏ฝ a ๏จ x ๏ญ h ๏ฉ ๏ซ k . From the
2
For f ( x) ๏ฝ 3 x 2 ๏ญ 8 x ๏ซ 2, a ๏ฝ 3, b ๏ฝ ๏ญ8, c ๏ฝ 2 .
Since a ๏ฝ 3 ๏พ 0 , the graph opens up.
The x-coordinate of the vertex is
๏ญb ๏ญ(๏ญ8) 8 4
๏ฝ
๏ฝ ๏ฝ .
x๏ฝ
2a
2(3)
6 3
The y-coordinate of the vertex is
graph we know that the vertex is ๏จ ๏ญ1, ๏ญ2 ๏ฉ so we
have h ๏ฝ ๏ญ1 and k ๏ฝ ๏ญ2 . The graph also passes
through the point ๏จ x, y ๏ฉ ๏ฝ ๏จ 0, ๏ญ1๏ฉ . Substituting
these values for x, y, h, and k, we can solve for a:
๏ญ1 ๏ฝ a ๏จ 0 ๏ญ ๏จ ๏ญ1๏ฉ ๏ฉ ๏ซ ๏จ ๏ญ2 ๏ฉ
2
2
๏ฆ ๏ญb ๏ถ
๏ฆ4๏ถ
๏ฆ4๏ถ
๏ฆ4๏ถ
f ๏ง ๏ท ๏ฝ f ๏ง ๏ท ๏ฝ 3๏ง ๏ท ๏ญ 8 ๏ง ๏ท ๏ซ 2
๏จ 2a ๏ธ
๏จ3๏ธ
๏จ3๏ธ
๏จ3๏ธ
16 32
10
๏ฝ ๏ญ ๏ซ2๏ฝ ๏ญ .
3 3
3
๏ฆ 4 10 ๏ถ
Thus, the vertex is ๏ง , ๏ญ ๏ท .
3๏ธ
๏จ3
๏ญ1 ๏ฝ a ๏จ1๏ฉ ๏ญ 2
2
๏ญ1 ๏ฝ a ๏ญ 2
1๏ฝ a
The quadratic function is
f ๏จ x ๏ฉ ๏ฝ ๏จ x ๏ซ 1๏ฉ ๏ญ 2 ๏ฝ x 2 ๏ซ 2 x ๏ญ 1 .
2
4
The axis of symmetry is the line x ๏ฝ .
3
The discriminant is:
b 2 ๏ญ 4ac ๏ฝ (๏ญ8) 2 ๏ญ 4(3)(2) ๏ฝ 64 ๏ญ 24 ๏ฝ 40 ,
so the graph has two x-intercepts.
The x-intercepts are found by solving:
3x 2 ๏ญ 8 x ๏ซ 2 ๏ฝ 0
50. Consider the form y ๏ฝ a ๏จ x ๏ญ h ๏ฉ ๏ซ k . From the
2
graph we know that the vertex is ๏จ 2,1๏ฉ so we
have h ๏ฝ 2 and k ๏ฝ 1 . The graph also passes
through the point ๏จ x, y ๏ฉ ๏ฝ ๏จ 0,5 ๏ฉ . Substituting
these values for x, y, h, and k, we can solve for a:
๏ญb ๏ฑ b 2 ๏ญ 4ac ๏ญ(๏ญ8) ๏ฑ 40
๏ฝ
x๏ฝ
2a
2(3)
5 ๏ฝ a ๏จ 0 ๏ญ 2๏ฉ ๏ซ 1
2
5 ๏ฝ a ๏จ ๏ญ2 ๏ฉ ๏ซ 1
2
8 ๏ฑ 40 8 ๏ฑ 2 10 4 ๏ฑ 10
๏ฝ
๏ฝ
6
6
3
4 ๏ซ 10
4 ๏ญ 10
and
.
The x-intercepts are
3
3
The y-intercept is f (0) ๏ฝ 2 .
๏ฝ
5 ๏ฝ 4a ๏ซ 1
4 ๏ฝ 4a
1๏ฝ a
The quadratic function is
f ๏จ x ๏ฉ ๏ฝ ๏จ x ๏ญ 2๏ฉ ๏ซ 1 ๏ฝ x2 ๏ญ 4 x ๏ซ 5 .
2
51. Consider the form y ๏ฝ a ๏จ x ๏ญ h ๏ฉ ๏ซ k . From the
2
graph we know that the vertex is ๏จ ๏ญ3,5 ๏ฉ so we
have h ๏ฝ ๏ญ3 and k ๏ฝ 5 . The graph also passes
through the point ๏จ x, y ๏ฉ ๏ฝ ๏จ 0, ๏ญ4 ๏ฉ . Substituting
these values for x, y, h, and k, we can solve for a:
๏ญ4 ๏ฝ a ๏จ 0 ๏ญ (๏ญ3) ๏ฉ ๏ซ 5
2
๏ญ4 ๏ฝ a ๏จ 3๏ฉ ๏ซ 5
2
b. The domain is (๏ญ๏ฅ, ๏ฅ) .
๏ญ4 ๏ฝ 9a ๏ซ 5
๏ฉ 10 ๏ถ
The range is ๏ช ๏ญ , ๏ฅ ๏ท .
๏ซ 3
๏ธ
๏ญ9 ๏ฝ 9a
๏ญ1 ๏ฝ a
194
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.4: Properties of Quadratic Functions
The quadratic function is
๏ญ2 ๏ฝ a ๏จ ๏ญ4 ๏ฉ ๏ซ b(๏ญ4) ๏ซ c ๏ ๏ญ2 ๏ฝ 16a ๏ญ 4b ๏ซ c
2
f ๏จ x ๏ฉ ๏ฝ ๏ญ ๏จ x ๏ซ 3๏ฉ ๏ซ 5 ๏ฝ ๏ญ x ๏ญ 6 x ๏ญ 4 .
2
2
and
4 ๏ฝ a ๏จ ๏ญ1๏ฉ ๏ซ b(๏ญ1) ๏ซ c ๏ 4 ๏ฝ a ๏ญ b ๏ซ c
2
and
52. Consider the form y ๏ฝ a ๏จ x ๏ญ h ๏ฉ ๏ซ k . From the
2
๏ญ2 ๏ฝ a ๏จ 0 ๏ฉ ๏ซ b(0) ๏ซ c ๏ ๏ญ2 ๏ฝ c
Since ๏ญ2 ๏ฝ c , we have the following equations:
๏ญ2 ๏ฝ 16a ๏ญ 4b ๏ญ 2, 4 ๏ฝ a ๏ญ b ๏ญ 2, ๏ญ 2 ๏ฝ c
Solving the first two simultaneously we have
๏ญ2 ๏ฝ 16a ๏ญ 4b ๏ญ 2 ๏ถ
๏ท
4 ๏ฝ a ๏ญb๏ญ2
๏ธ
2
graph we know that the vertex is ๏จ 2,3๏ฉ so we
have h ๏ฝ 2 and k ๏ฝ 3 . The graph also passes
through the point ๏จ x, y ๏ฉ ๏ฝ ๏จ 0, ๏ญ1๏ฉ . Substituting
these values for x, y, h, and k, we can solve for a:
๏ญ1 ๏ฝ a ๏จ 0 ๏ญ 2 ๏ฉ ๏ซ 3
2
0 ๏ฝ 16a ๏ญ 4b ๏ถ
๏ท๏ฎ
6 ๏ฝ a ๏ญb
๏ธ
๏ญ1 ๏ฝ a ๏จ ๏ญ2 ๏ฉ ๏ซ 3
2
๏ญ1 ๏ฝ 4a ๏ซ 3
a ๏ฝ ๏ญ2, b ๏ฝ ๏ญ8
The quadratic function is f ๏จ x ๏ฉ ๏ฝ ๏ญ2 x 2 ๏ญ 8 x ๏ญ 2 .
๏ญ4 ๏ฝ 4a
๏ญ1 ๏ฝ a
The quadratic function is
55. For f ( x) ๏ฝ 2 x 2 ๏ซ 12 x, a ๏ฝ 2, b ๏ฝ 12, c ๏ฝ 0 .
Since a ๏ฝ 2 ๏พ 0, the graph opens up, so the
vertex is a minimum point. The minimum
๏ญb ๏ญ12 ๏ญ12
occurs at x ๏ฝ
๏ฝ
๏ฝ
๏ฝ ๏ญ3.
2a 2(2)
4
The minimum value is
f (๏ญ3) ๏ฝ 2(๏ญ3) 2 ๏ซ 12(๏ญ3) ๏ฝ 18 ๏ญ 36 ๏ฝ ๏ญ18 .
f ๏จ x ๏ฉ ๏ฝ ๏ญ ๏จ x ๏ญ 2๏ฉ ๏ซ 3 ๏ฝ ๏ญ x2 ๏ซ 4 x ๏ญ 1 .
2
53. Consider the form y ๏ฝ ax 2 ๏ซ bx ๏ซ c . Substituting
the three points from the graph into the general
form we have the following three equations.
5 ๏ฝ a ๏จ ๏ญ1๏ฉ ๏ซ b(๏ญ1) ๏ซ c ๏ 5 ๏ฝ a ๏ญ b ๏ซ c
2
and
56. For f ( x) ๏ฝ ๏ญ2 x 2 ๏ซ 12 x, a ๏ฝ ๏ญ2, b ๏ฝ 12, c ๏ฝ 0, .
Since a ๏ฝ ๏ญ2 ๏ผ 0, the graph opens down, so the
vertex is a maximum point. The maximum
๏ญb
๏ญ12
๏ญ12
๏ฝ
๏ฝ
๏ฝ 3.
occurs at x ๏ฝ
2a 2(๏ญ2) ๏ญ4
The maximum value is
f (3) ๏ฝ ๏ญ2(3) 2 ๏ซ 12(3) ๏ฝ ๏ญ18 ๏ซ 36 ๏ฝ 18 .
5 ๏ฝ a ๏จ 3๏ฉ ๏ซ b(3) ๏ซ c ๏ 5 ๏ฝ 9a ๏ซ 3b ๏ซ c
2
and
๏ญ1 ๏ฝ a ๏จ 0 ๏ฉ ๏ซ b(0) ๏ซ c ๏ ๏ญ1 ๏ฝ c
Since ๏ญ1 ๏ฝ c , we have the following equations:
5 ๏ฝ a ๏ญ b ๏ญ 1, 5 ๏ฝ 9a ๏ซ 3b ๏ญ 1, ๏ญ 1 ๏ฝ c
Solving the first two simultaneously we have
5 ๏ฝ a ๏ญ b ๏ญ1 ๏ถ
๏ท
5 ๏ฝ 9a ๏ซ 3b ๏ญ 1๏ธ
2
57. For f ( x) ๏ฝ 2 x 2 ๏ซ 12 x ๏ญ 3, a ๏ฝ 2, b ๏ฝ 12, c ๏ฝ ๏ญ3.
Since a ๏ฝ 2 ๏พ 0, the graph opens up, so the vertex
is a minimum point. The minimum occurs at
๏ญb ๏ญ12 ๏ญ12
๏ฝ
๏ฝ
๏ฝ ๏ญ3. The minimum value is
x๏ฝ
2a 2(2)
4
6 ๏ฝ a ๏ญb
๏ถ
๏ท ๏ฎ a ๏ฝ 2, b ๏ฝ ๏ญ4
6 ๏ฝ 9a ๏ซ 3b ๏ธ
The quadratic function is f ๏จ x ๏ฉ ๏ฝ 2 x 2 ๏ญ 4 x ๏ญ 1 .
f (๏ญ3) ๏ฝ 2(๏ญ3) 2 ๏ซ 12(๏ญ3) ๏ญ 3 ๏ฝ 18 ๏ญ 36 ๏ญ 3 ๏ฝ ๏ญ21 .
54. Consider the form y ๏ฝ ax 2 ๏ซ bx ๏ซ c . Substituting
the three points from the graph into the general
form we have the following three equations.
58. For f ( x) ๏ฝ 4 x 2 ๏ญ 8 x ๏ซ 3, a ๏ฝ 4, b ๏ฝ ๏ญ8, c ๏ฝ 3.
Since a ๏ฝ 4 ๏พ 0, the graph opens up, so the vertex
is a minimum point. The minimum occurs at
๏ญb ๏ญ(๏ญ8) 8
๏ฝ
๏ฝ ๏ฝ 1. The minimum value is
x๏ฝ
2a
2(4) 8
f (1) ๏ฝ 4(1) 2 ๏ญ 8(1) ๏ซ 3 ๏ฝ 4 ๏ญ 8 ๏ซ 3 ๏ฝ ๏ญ1 .
195
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
The x-intercepts are found by solving:
x 2 ๏ญ 2 x ๏ญ 15 ๏ฝ 0
( x ๏ซ 3)( x ๏ญ 5) ๏ฝ 0
x ๏ฝ ๏ญ3 or x ๏ฝ 5
The x-intercepts are ๏ญ3 and 5 .
The y-intercept is f (0) ๏ฝ ๏ญ15 .
59. For f ( x) ๏ฝ ๏ญ x 2 ๏ซ 10 x ๏ญ 4 , a ๏ฝ ๏ญ1, b ๏ฝ 10 , c ๏ฝ ๏ญ 4 .
Since a ๏ฝ ๏ญ1 ๏ผ 0, the graph opens down, so the
vertex is a maximum point. The maximum occurs
๏ญb
๏ญ10 ๏ญ10
๏ฝ
๏ฝ
๏ฝ 5 . The maximum
at x ๏ฝ
2a 2(๏ญ1) ๏ญ 2
value is
f (5) ๏ฝ ๏ญ(5) 2 ๏ซ 10(5) ๏ญ 4 ๏ฝ ๏ญ 25 ๏ซ 50 ๏ญ 4 ๏ฝ 21 .
60. For f ( x) ๏ฝ ๏ญ 2 x 2 ๏ซ 8 x ๏ซ 3 , a ๏ฝ ๏ญ2, b ๏ฝ 8, c ๏ฝ 3.
Since a ๏ฝ ๏ญ 2 ๏ผ 0, the graph opens down, so the
vertex is a maximum point. The maximum
๏ญ8
๏ญ8
๏ญb
occurs at x ๏ฝ
๏ฝ
๏ฝ
๏ฝ 2 . The
2a 2(๏ญ 2) ๏ญ 4
maximum value is
f (2) ๏ฝ ๏ญ 2(2) 2 ๏ซ 8(2) ๏ซ 3 ๏ฝ ๏ญ 8 ๏ซ 16 ๏ซ 3 ๏ฝ 11 .
61. For f ( x ) ๏ฝ ๏ญ3x 2 ๏ซ 12 x ๏ซ 1 , a ๏ฝ ๏ญ3, b ๏ฝ 12, c ๏ฝ 1.
Since a ๏ฝ ๏ญ3 ๏ผ 0, the graph opens down, so the
vertex is a maximum point. The maximum occurs
๏ญb
๏ญ12
๏ญ12
๏ฝ
๏ฝ
๏ฝ 2 . The maximum value
at x ๏ฝ
2a 2(๏ญ3) ๏ญ 6
The domain is (๏ญ๏ฅ, ๏ฅ) .
The range is [๏ญ16, ๏ฅ) .
c.
Decreasing on (๏ญ๏ฅ, 1] .
Increasing on [1, ๏ฅ) .
64. a.
is f (2) ๏ฝ ๏ญ3(2) 2 ๏ซ 12(2) ๏ซ 1 ๏ฝ ๏ญ12 ๏ซ 24 ๏ซ 1 ๏ฝ 13 .
62. For f ( x) ๏ฝ 4 x 2 ๏ญ 4 x , a ๏ฝ 4, b ๏ฝ ๏ญ4, c ๏ฝ 0.
Since a ๏ฝ 4 ๏พ 0, the graph opens up, so the vertex
is a minimum point. The minimum occurs at
๏ญb ๏ญ(๏ญ 4) 4 1
๏ฝ
๏ฝ ๏ฝ . The minimum value is
x๏ฝ
2a
2(4)
8 2
2
๏ฆ1๏ถ
๏ฆ1๏ถ
๏ฆ1๏ถ
f ๏ง ๏ท ๏ฝ 4 ๏ง ๏ท ๏ญ 4 ๏ง ๏ท ๏ฝ 1 ๏ญ 2 ๏ฝ ๏ญ1 .
๏จ2๏ธ
๏จ2๏ธ
๏จ2๏ธ
63. a.
b.
For f ( x) ๏ฝ x 2 ๏ญ 2 x ๏ญ 15 , a ๏ฝ 1 , b ๏ฝ ๏ญ2 ,
c ๏ฝ ๏ญ15 . Since a ๏ฝ 1 ๏พ 0 , the graph opens up.
The x-coordinate of the vertex is
๏ญb ๏ญ(๏ญ2) 2
๏ฝ
๏ฝ ๏ฝ1.
x๏ฝ
2a
2(1)
2
The y-coordinate of the vertex is
๏ฆ ๏ญb ๏ถ
f ๏ง ๏ท ๏ฝ f (1) ๏ฝ (1) 2 ๏ญ 2(1) ๏ญ 15
๏จ 2a ๏ธ
๏ฝ 1 ๏ญ 2 ๏ญ 15 ๏ฝ ๏ญ16.
Thus, the vertex is (1, ๏ญ16) .
The discriminant is:
b 2 ๏ญ 4ac ๏ฝ (๏ญ2) 2 ๏ญ 4(1)(๏ญ15) ๏ฝ 4 ๏ซ 60 ๏ฝ 64 ๏พ 0 ,
so the graph has two x-intercepts.
For f ( x) ๏ฝ x 2 ๏ญ 2 x ๏ญ 8 , a ๏ฝ 1 , b ๏ฝ ๏ญ2 ,
c ๏ฝ ๏ญ8 . Since a ๏ฝ 1 ๏พ 0 , the graph opens up.
The x-coordinate of the vertex is
๏ญb ๏ญ(๏ญ2) 2
๏ฝ
๏ฝ ๏ฝ1.
x๏ฝ
2a
2(1)
2
The y-coordinate of the vertex is
๏ฆ ๏ญb ๏ถ
f ๏ง ๏ท ๏ฝ f (1) ๏ฝ (1) 2 ๏ญ 2(1) ๏ญ 8 ๏ฝ 1 ๏ญ 2 ๏ญ 8 ๏ฝ ๏ญ9.
๏จ 2a ๏ธ
Thus, the vertex is (1, ๏ญ9) .
The discriminant is:
b 2 ๏ญ 4ac ๏ฝ (๏ญ2) 2 ๏ญ 4(1)( ๏ญ8) ๏ฝ 4 ๏ซ 32 ๏ฝ 36 ๏พ 0 ,
so the graph has two x-intercepts.
The x-intercepts are found by solving:
x2 ๏ญ 2 x ๏ญ 8 ๏ฝ 0
( x ๏ซ 2)( x ๏ญ 4) ๏ฝ 0
x ๏ฝ ๏ญ2 or x ๏ฝ 4
The x-intercepts are ๏ญ2 and 4 .
The y-intercept is f (0) ๏ฝ ๏ญ8 .
196
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.4: Properties of Quadratic Functions
b.
The domain is (๏ญ๏ฅ, ๏ฅ) . The range is [๏ญ9, ๏ฅ) .
c.
Decreasing on (๏ญ๏ฅ, 1] . Increasing on [1, ๏ฅ) .
65. a.
F ( x) ๏ฝ 2 x ๏ญ 5 is a linear function.
The x-intercept is found by solving:
2x ๏ญ 5 ๏ฝ 0
b.
The domain is (๏ญ๏ฅ, ๏ฅ) .
The range is (๏ญ๏ฅ, ๏ฅ) .
c.
Increasing on (๏ญ๏ฅ, ๏ฅ) .
67. a.
Using the graph of y ๏ฝ x 2 , shift right 3 units,
reflect about the x-axis, stretch vertically by a
factor of 2, then shift up 2 units.
2x ๏ฝ 5
x๏ฝ
g ( x) ๏ฝ ๏ญ2( x ๏ญ 3) 2 ๏ซ 2
5
2
5
.
2
The y-intercept is F (0) ๏ฝ ๏ญ5 .
The x-intercept is
b.
The domain is (๏ญ๏ฅ, ๏ฅ) .
The range is (๏ญ๏ฅ, ๏ฅ) .
c.
Increasing on (๏ญ๏ฅ, ๏ฅ) .
66. a.
b.
The domain is (๏ญ๏ฅ, ๏ฅ) .
The range is (๏ญ๏ฅ, 2] .
c.
Increasing on (๏ญ๏ฅ, 3] .
Decreasing on [3, ๏ฅ) .
68. a.
h( x) ๏ฝ ๏ญ3( x ๏ซ 1) 2 ๏ซ 4
Using the graph of y ๏ฝ x 2 , shift left 1 unit,
reflect about the x-axis, stretch vertically by a
factor of 3, then shift up 4 units.
3
x ๏ญ 2 is a linear function.
2
The x-intercept is found by solving:
3
x๏ญ2 ๏ฝ 0
2
3
x๏ฝ2
2
2 4
x ๏ฝ 2๏ ๏ฝ
3 3
4
The x-intercept is .
3
The y-intercept is f (0) ๏ฝ ๏ญ2 .
f ( x) ๏ฝ
197
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
b.
The domain is (๏ญ๏ฅ, ๏ฅ) .
The range is (๏ญ๏ฅ, 4] .
c.
Increasing on (๏ญ๏ฅ, ๏ญ1] .
Decreasing on [๏ญ1, ๏ฅ) .
69. a.
2
๏ฆ ๏ญb ๏ถ
๏ฆ 1๏ถ
๏ฆ 1๏ถ
๏ฆ 1๏ถ
G ๏ง ๏ท ๏ฝ G ๏ง ๏ญ ๏ท ๏ฝ 3๏ง ๏ญ ๏ท ๏ซ 2 ๏ง ๏ญ ๏ท ๏ซ 5
๏จ 2a ๏ธ
๏จ 3๏ธ
๏จ 3๏ธ
๏จ 3๏ธ
1 2
14
๏ฝ ๏ญ ๏ซ5 ๏ฝ .
3 3
3
๏ฆ 1 14 ๏ถ
Thus, the vertex is ๏ง ๏ญ , ๏ท .
๏จ 3 3๏ธ
The discriminant is:
b 2 ๏ญ 4ac ๏ฝ 22 ๏ญ 4(3)(5) ๏ฝ 4 ๏ญ 60 ๏ฝ ๏ญ56 ,
so the graph has no x-intercepts.
The y-intercept is G (0) ๏ฝ 5 .
For f ( x) ๏ฝ 2 x 2 ๏ซ x ๏ซ 1 , a ๏ฝ 2 , b ๏ฝ 1 , c ๏ฝ 1 .
Since a ๏ฝ 2 ๏พ 0 , the graph opens up.
The x-coordinate of the vertex is
๏ญb
๏ญ1 ๏ญ1
1
x๏ฝ
๏ฝ
๏ฝ
๏ฝ๏ญ .
2a 2(2) 4
4
The y-coordinate of the vertex is
2
๏ฆ ๏ญb ๏ถ
๏ฆ 1๏ถ
๏ฆ 1๏ถ ๏ฆ 1๏ถ
f ๏ง ๏ท ๏ฝ f ๏ง ๏ญ ๏ท ๏ฝ 2๏ง ๏ญ ๏ท ๏ซ ๏ง ๏ญ ๏ท ๏ซ1
๏จ 2a ๏ธ
๏จ 4๏ธ
๏จ 4๏ธ ๏จ 4๏ธ
1 1
7
๏ฝ ๏ญ ๏ซ1 ๏ฝ .
8 4
8
๏ฆ 1 7๏ถ
Thus, the vertex is ๏ง ๏ญ , ๏ท .
๏จ 4 8๏ธ
The discriminant is:
b 2 ๏ญ 4ac ๏ฝ 12 ๏ญ 4(2)(1) ๏ฝ 1 ๏ญ 8 ๏ฝ ๏ญ7 ,
so the graph has no x-intercepts.
The y-intercept is f (0) ๏ฝ 1 .
b.
๏ฉ14 ๏ถ
The range is ๏ช , ๏ฅ ๏ท .
๏ซ3
๏ธ
c.
71. a.
b.
The domain is (๏ญ๏ฅ, ๏ฅ) .
๏ฉ7 ๏ถ
The range is ๏ช , ๏ฅ ๏ท .
๏ซ8 ๏ธ
c.
70. a.
The domain is (๏ญ๏ฅ, ๏ฅ) .
1๏น
๏ฆ
Decreasing on ๏ง ๏ญ๏ฅ, ๏ญ ๏บ .
4๏ป
๏จ
๏ฉ 1 ๏ถ
Increasing on ๏ช ๏ญ , ๏ฅ ๏ท .
๏ซ 4 ๏ธ
1๏น
๏ฆ
Decreasing on ๏ง ๏ญ๏ฅ, ๏ญ ๏บ .
3๏ป
๏จ
๏ฉ 1 ๏ถ
Increasing on ๏ช ๏ญ , ๏ฅ ๏ท .
๏ซ 3 ๏ธ
2
h( x) ๏ฝ ๏ญ x ๏ซ 4 is a linear function.
5
The x-intercept is found by solving:
2
๏ญ x๏ซ4๏ฝ0
5
2
๏ญ x ๏ฝ ๏ญ4
5
๏ฆ 5๏ถ
x ๏ฝ ๏ญ4 ๏ง ๏ญ ๏ท ๏ฝ 10
๏จ 2๏ธ
The x-intercept is 10.
The y-intercept is h(0) ๏ฝ 4 .
For G ( x) ๏ฝ 3 x 2 ๏ซ 2 x ๏ซ 5 , a ๏ฝ 3 , b ๏ฝ 2 , c ๏ฝ 5 .
Since a ๏ฝ 3 ๏พ 0 , the graph opens up.
The x-coordinate of the vertex is
๏ญb
๏ญ2 ๏ญ2
1
๏ฝ
๏ฝ
๏ฝ๏ญ .
x๏ฝ
2a 2(3) 6
3
The y-coordinate of the vertex is
198
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.4: Properties of Quadratic Functions
๏ฆ 1 ๏ถ
Thus, the vertex is ๏ง ๏ญ , 0 ๏ท .
๏จ 2 ๏ธ
The discriminant is:
b 2 ๏ญ 4ac ๏ฝ (๏ญ4) 2 ๏ญ 4(๏ญ4)(๏ญ1) ๏ฝ 16 ๏ญ 16 ๏ฝ 0 ,
so the graph has one x-intercept.
The x-intercept is found by solving:
๏ญ4 x 2 ๏ญ 4 x ๏ญ 1 ๏ฝ 0
4×2 ๏ซ 4 x ๏ซ 1 ๏ฝ 0
b.
The domain is (๏ญ๏ฅ, ๏ฅ) .
The range is (๏ญ๏ฅ, ๏ฅ) .
(2 x ๏ซ 1) 2 ๏ฝ 0
c.
Decreasing on (๏ญ๏ฅ, ๏ฅ) .
x๏ฝ๏ญ
72. a.
2x ๏ซ1 ๏ฝ 0
1
2
1
The x-intercept is ๏ญ .
2
The y-intercept is H (0) ๏ฝ ๏ญ1 .
f ( x) ๏ฝ ๏ญ3 x ๏ซ 2 is a linear function.
The x-intercept is found by solving:
๏ญ3 x ๏ซ 2 ๏ฝ 0
๏ญ3x ๏ฝ ๏ญ2
x๏ฝ
๏ญ2 2
๏ฝ
๏ญ3 3
2
.
3
The y-intercept is f (0) ๏ฝ 2 .
The x-intercept is
b. The domain is (๏ญ๏ฅ, ๏ฅ) .
The range is ๏จ ๏ญ๏ฅ, 0๏ .
c.
b.
c.
73. a.
The domain is (๏ญ๏ฅ, ๏ฅ) .
The range is (๏ญ๏ฅ, ๏ฅ) .
74. a.
Decreasing on (๏ญ๏ฅ, ๏ฅ) .
For H ( x) ๏ฝ ๏ญ4 x 2 ๏ญ 4 x ๏ญ 1 , a ๏ฝ ๏ญ4 , b ๏ฝ ๏ญ4 ,
c ๏ฝ ๏ญ1 . Since a ๏ฝ ๏ญ4 ๏ผ 0 , the graph opens
down. The x-coordinate of the vertex is
๏ญb ๏ญ(๏ญ4) 4
1
๏ฝ
๏ฝ
๏ฝ๏ญ .
x๏ฝ
2a 2(๏ญ4) ๏ญ8
2
The y-coordinate of the vertex is
1๏น
๏ฆ
Increasing on ๏ง ๏ญ๏ฅ, ๏ญ ๏บ .
2๏ป
๏จ
๏ฉ 1 ๏ถ
Decreasing on ๏ช ๏ญ , ๏ฅ ๏ท .
๏ซ 2 ๏ธ
For F ( x) ๏ฝ ๏ญ4 x 2 ๏ซ 20 x ๏ญ 25 , a ๏ฝ ๏ญ4 , b ๏ฝ 20 ,
c ๏ฝ ๏ญ25 . Since a ๏ฝ ๏ญ4 ๏ผ 0 , the graph opens
down. The x-coordinate of the vertex is
๏ญb
๏ญ20
๏ญ20 5
x๏ฝ
๏ฝ
๏ฝ
๏ฝ .
2a 2(๏ญ4) ๏ญ8 2
The y-coordinate of the vertex is
2
๏ฆ ๏ญb ๏ถ
๏ฆ5๏ถ
๏ฆ5๏ถ
๏ฆ5๏ถ
F ๏ง ๏ท ๏ฝ F ๏ง ๏ท ๏ฝ ๏ญ4 ๏ง ๏ท ๏ซ 20 ๏ง ๏ท ๏ญ 25
๏จ 2a ๏ธ
๏จ2๏ธ
๏จ2๏ธ
๏จ2๏ธ
๏ฝ ๏ญ25 ๏ซ 50 ๏ญ 25 ๏ฝ 0
๏ฆ5 ๏ถ
Thus, the vertex is ๏ง , 0 ๏ท .
๏จ2 ๏ธ
The discriminant is:
2
๏ฆ ๏ญb ๏ถ
๏ฆ 1๏ถ
๏ฆ 1๏ถ
๏ฆ 1๏ถ
H ๏ง ๏ท ๏ฝ H ๏ง ๏ญ ๏ท ๏ฝ ๏ญ4 ๏ง ๏ญ ๏ท ๏ญ 4 ๏ง ๏ญ ๏ท ๏ญ 1
2
2
2
a
๏จ ๏ธ
๏จ
๏ธ
๏จ
๏ธ
๏จ 2๏ธ
๏ฝ ๏ญ1 ๏ซ 2 ๏ญ 1 ๏ฝ 0
199
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
b 2 ๏ญ 4ac ๏ฝ (20) 2 ๏ญ 4(๏ญ4)(๏ญ25)
f (๏ญ1) ๏ฝ ๏ญ8 .
๏ฝ 400 ๏ญ 400 ๏ฝ 0,
so the graph has one x-intercept.
The x-intercept is found by solving:
๏ญ4 x 2 ๏ซ 20 x ๏ญ 25 ๏ฝ 0
๏ญ8 ๏ฝ a (๏ญ1 ๏ญ 1) 2 ๏ซ 4
๏ญ8 ๏ฝ a (๏ญ2) 2 ๏ซ 4
๏ญ8 ๏ฝ 4a ๏ซ 4
๏ญ12 ๏ฝ 4a
4 x 2 ๏ญ 20 x ๏ซ 25 ๏ฝ 0
๏ญ3 ๏ฝ a
f ( x) ๏ฝ ๏ญ3( x ๏ญ 1) 2 ๏ซ 4
(2 x ๏ญ 5) 2 ๏ฝ 0
2x ๏ญ 5 ๏ฝ 0
๏ฝ ๏ญ3( x 2 ๏ญ 2 x ๏ซ 1) ๏ซ 4
5
2
5
The x-intercept is .
2
The y-intercept is F (0) ๏ฝ ๏ญ25 .
๏ฝ ๏ญ3 x 2 ๏ซ 6 x ๏ญ 3 ๏ซ 4
x๏ฝ
๏ฝ ๏ญ3 x 2 ๏ซ 6 x ๏ซ 1
a ๏ฝ ๏ญ3, b ๏ฝ 6, c ๏ฝ 1
77. a and d.
b. The domain is (๏ญ๏ฅ, ๏ฅ) .
The range is ๏จ ๏ญ๏ฅ, 0๏ .
c.
5๏น
๏ฆ
Increasing on ๏ง ๏ญ๏ฅ, ๏บ .
2๏ป
๏จ
๏ฉ5 ๏ถ
Decreasing on ๏ช , ๏ฅ ๏ท .
๏ซ2 ๏ธ
b.
f ( x) ๏ฝ g ( x)
2x ๏ญ1 ๏ฝ x2 ๏ญ 4
0 ๏ฝ x2 ๏ญ 2x ๏ญ 3
0 ๏ฝ ( x ๏ซ 1)( x ๏ญ 3)
75. Use the form f ( x) ๏ฝ a ( x ๏ญ h) 2 ๏ซ k .
The vertex is (0, 2) , so h = 0 and k = 2.
x ๏ซ 1 ๏ฝ 0 or x ๏ญ 3 ๏ฝ 0
x ๏ฝ ๏ญ1
x๏ฝ3
f ( x) ๏ฝ a( x ๏ญ 0) 2 ๏ซ 2 ๏ฝ ax 2 ๏ซ 2 .
The solution set is {๏ญ1, 3}.
Since the graph passes through (1, 8) , f (1) ๏ฝ 8 .
c.
f ( x) ๏ฝ ax ๏ซ 2
2
8 ๏ฝ a (1) 2 ๏ซ 2
8๏ฝ a๏ซ2
6๏ฝa
f ๏จ x ๏ฉ ๏ฝ 6 x2 ๏ซ 2 .
f (๏ญ1) ๏ฝ 2(๏ญ1) ๏ญ 1 ๏ฝ ๏ญ2 ๏ญ 1 ๏ฝ ๏ญ3
g (๏ญ1) ๏ฝ (๏ญ1) 2 ๏ญ 4 ๏ฝ 1 ๏ญ 4 ๏ฝ ๏ญ3
f (3) ๏ฝ 2(3) ๏ญ 1 ๏ฝ 6 ๏ญ 1 ๏ฝ 5
g (3) ๏ฝ (3) 2 ๏ญ 4 ๏ฝ 9 ๏ญ 4 ๏ฝ 5
Thus, the graphs of f and g intersect at the
points (๏ญ1, ๏ญ3) and (3, 5) .
a ๏ฝ 6, b ๏ฝ 0, c ๏ฝ 2
76. Use the form f ( x) ๏ฝ a ( x ๏ญ h) 2 ๏ซ k .
The vertex is (1, 4) , so h ๏ฝ 1 and k ๏ฝ 4 .
f ( x) ๏ฝ a ( x ๏ญ 1) 2 ๏ซ 4 .
Since the graph passes through (๏ญ1, ๏ญ 8) ,
200
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.4: Properties of Quadratic Functions
78. a and d.
b.
f ๏จ x๏ฉ ๏ฝ g ๏จ x๏ฉ
๏ญ x 2 ๏ซ 4 ๏ฝ ๏ญ2 x ๏ซ 1
0 ๏ฝ x2 ๏ญ 2x ๏ญ 3
0 ๏ฝ ๏จ x ๏ซ 1๏ฉ๏จ x ๏ญ 3๏ฉ
x ๏ซ 1 ๏ฝ 0 or x ๏ญ 3 ๏ฝ 0
x ๏ฝ ๏ญ1
x๏ฝ3
The solution set is {๏ญ1, 3}.
c.
f ๏จ1๏ฉ ๏ฝ ๏ญ ๏จ ๏ญ1๏ฉ ๏ซ 4 ๏ฝ ๏ญ1 ๏ซ 4 ๏ฝ 3
2
g ๏จ1๏ฉ ๏ฝ ๏ญ2 ๏จ ๏ญ1๏ฉ ๏ซ 1 ๏ฝ 2 ๏ซ 1 ๏ฝ 3
f ๏จ 3๏ฉ ๏ฝ ๏ญ ๏จ 3๏ฉ ๏ซ 4 ๏ฝ ๏ญ9 ๏ซ 4 ๏ฝ ๏ญ5
2
g ๏จ 3๏ฉ ๏ฝ ๏ญ2 ๏จ 3๏ฉ ๏ซ 1 ๏ฝ ๏ญ6 ๏ซ 1 ๏ฝ ๏ญ5
Thus, the graphs of f and g intersect at the
points ๏จ ๏ญ1, 3๏ฉ and ๏จ 3, ๏ญ5 ๏ฉ .
b.
f ( x) ๏ฝ g ( x)
๏ญ2 x ๏ญ 1 ๏ฝ x 2 ๏ญ 9
0 ๏ฝ x2 ๏ซ 2 x ๏ญ 8
0 ๏ฝ ( x ๏ซ 4)( x ๏ญ 2)
80. a and d.
x ๏ซ 4 ๏ฝ 0 or x ๏ญ 2 ๏ฝ 0
x ๏ฝ ๏ญ4
x๏ฝ2
The solution set is {๏ญ4, 2}.
c.
f (๏ญ4) ๏ฝ ๏ญ2(๏ญ4) ๏ญ 1 ๏ฝ 8 ๏ญ 1 ๏ฝ 7
g (๏ญ4) ๏ฝ (๏ญ4) 2 ๏ญ 9 ๏ฝ 16 ๏ญ 9 ๏ฝ 7
f (2) ๏ฝ ๏ญ2(2) ๏ญ 1 ๏ฝ ๏ญ4 ๏ญ 1 ๏ฝ ๏ญ5
g (2) ๏ฝ (2) 2 ๏ญ 9 ๏ฝ 4 ๏ญ 9 ๏ฝ ๏ญ5
Thus, the graphs of f and g intersect at the
points ๏จ ๏ญ4, 7 ๏ฉ and ๏จ 2, ๏ญ5 ๏ฉ .
79. a and d.
b.
f ๏จ x๏ฉ ๏ฝ g ๏จ x๏ฉ
๏ญ x2 ๏ซ 9 ๏ฝ 2 x ๏ซ 1
0 ๏ฝ x2 ๏ซ 2x ๏ญ 8
0 ๏ฝ ๏จ x ๏ซ 4 ๏ฉ๏จ x ๏ญ 2 ๏ฉ
x ๏ซ 4 ๏ฝ 0 or x ๏ญ 2 ๏ฝ 0
x ๏ฝ ๏ญ4
x๏ฝ2
The solution set is {๏ญ4, 2}.
c.
f ๏จ ๏ญ4 ๏ฉ ๏ฝ ๏ญ ๏จ ๏ญ4 ๏ฉ ๏ซ 9 ๏ฝ ๏ญ16 ๏ซ 9 ๏ฝ ๏ญ7
2
g ๏จ ๏ญ4 ๏ฉ ๏ฝ 2 ๏จ ๏ญ4 ๏ฉ ๏ซ 1 ๏ฝ ๏ญ8 ๏ซ 1 ๏ฝ ๏ญ7
f ๏จ 2 ๏ฉ ๏ฝ ๏ญ ๏จ 2 ๏ฉ ๏ซ 9 ๏ฝ ๏ญ4 ๏ซ 9 ๏ฝ 5
2
g ๏จ 2๏ฉ ๏ฝ 2 ๏จ 2๏ฉ ๏ซ 1 ๏ฝ 4 ๏ซ 1 ๏ฝ 5
201
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
Thus, the graphs of f and g intersect at the
points ๏จ ๏ญ4, ๏ญ7 ๏ฉ and ๏จ 2, 5 ๏ฉ .
f ๏จ x๏ฉ ๏ฝ g ๏จ x๏ฉ
b.
๏ญ x ๏ซ 7 x ๏ญ 6 ๏ฝ x2 ๏ซ x ๏ญ 6
2
0 ๏ฝ 2 x2 ๏ญ 6 x
81. a and d.
0 ๏ฝ 2 x ๏จ x ๏ญ 3๏ฉ
2 x ๏ฝ 0 or
x๏ญ3 ๏ฝ 0
x๏ฝ0
x๏ฝ3
The solution set is {0, 3}.
c.
f ๏จ 0 ๏ฉ ๏ฝ ๏ญ ๏จ 0 ๏ฉ ๏ซ 7 ๏จ 0 ๏ฉ ๏ญ 6 ๏ฝ ๏ญ6
2
g ๏จ 0 ๏ฉ ๏ฝ 02 ๏ซ 0 ๏ญ 6 ๏ฝ ๏ญ6
f ๏จ 3๏ฉ ๏ฝ ๏ญ ๏จ 3๏ฉ ๏ซ 7 ๏จ 3๏ฉ ๏ญ 6 ๏ฝ ๏ญ9 ๏ซ 21 ๏ญ 6 ๏ฝ 6
2
g ๏จ 3๏ฉ ๏ฝ 32 ๏ซ 3 ๏ญ 6 ๏ฝ 9 ๏ซ 3 ๏ญ 6 ๏ฝ 6
f ๏จ x๏ฉ ๏ฝ g ๏จ x๏ฉ
b.
Thus, the graphs of f and g intersect at the
points ๏จ 0, ๏ญ6 ๏ฉ and ๏จ 3, 6 ๏ฉ .
๏ญ x 2 ๏ซ 5 x ๏ฝ x 2 ๏ซ 3x ๏ญ 4
0 ๏ฝ 2 x2 ๏ญ 2 x ๏ญ 4
83. a.
0 ๏ฝ x2 ๏ญ x ๏ญ 2
0 ๏ฝ ๏จ x ๏ซ 1๏ฉ๏จ x ๏ญ 2 ๏ฉ
๏ฝ 1( x ๏ญ (๏ญ3))( x ๏ญ 1)
x ๏ซ 1 ๏ฝ 0 or x ๏ญ 2 ๏ฝ 0
x ๏ฝ ๏ญ1
x๏ฝ2
The solution set is {๏ญ1, 2}.
c.
For a ๏ฝ 1:
f ( x) ๏ฝ a ( x ๏ญ r1 )( x ๏ญ r2 )
๏ฝ ( x ๏ซ 3)( x ๏ญ 1) ๏ฝ x 2 ๏ซ 2 x ๏ญ 3
For a ๏ฝ 2 :
f ( x) ๏ฝ 2( x ๏ญ (๏ญ3))( x ๏ญ 1)
๏ฝ 2( x ๏ซ 3)( x ๏ญ 1)
f ๏จ ๏ญ1๏ฉ ๏ฝ ๏ญ ๏จ ๏ญ1๏ฉ ๏ซ 5 ๏จ ๏ญ1๏ฉ ๏ฝ ๏ญ1 ๏ญ 5 ๏ฝ ๏ญ6
2
๏ฝ 2( x 2 ๏ซ 2 x ๏ญ 3) ๏ฝ 2 x 2 ๏ซ 4 x ๏ญ 6
For a ๏ฝ ๏ญ2 :
f ( x) ๏ฝ ๏ญ2( x ๏ญ (๏ญ3))( x ๏ญ 1)
g ๏จ ๏ญ1๏ฉ ๏ฝ ๏จ ๏ญ1๏ฉ ๏ซ 3 ๏จ ๏ญ1๏ฉ ๏ญ 4 ๏ฝ 1 ๏ญ 3 ๏ญ 4 ๏ฝ ๏ญ6
2
f ๏จ 2 ๏ฉ ๏ฝ ๏ญ ๏จ 2 ๏ฉ ๏ซ 5 ๏จ 2 ๏ฉ ๏ฝ ๏ญ4 ๏ซ 10 ๏ฝ 6
2
g ๏จ 2 ๏ฉ ๏ฝ 22 ๏ซ 3 ๏จ 2 ๏ฉ ๏ญ 4 ๏ฝ 4 ๏ซ 6 ๏ญ 4 ๏ฝ 6
๏ฝ ๏ญ2( x ๏ซ 3)( x ๏ญ 1)
๏ฝ ๏ญ2( x 2 ๏ซ 2 x ๏ญ 3) ๏ฝ ๏ญ2 x 2 ๏ญ 4 x ๏ซ 6
For a ๏ฝ 5 :
f ( x) ๏ฝ 5( x ๏ญ (๏ญ3))( x ๏ญ 1)
Thus, the graphs of f and g intersect at the
points ๏จ ๏ญ1, ๏ญ6 ๏ฉ and ๏จ 2, 6 ๏ฉ .
82. a and d.
๏ฝ 5( x ๏ซ 3)( x ๏ญ 1)
๏ฝ 5( x 2 ๏ซ 2 x ๏ญ 3) ๏ฝ 5 x 2 ๏ซ 10 x ๏ญ 15
b. The x-intercepts are not affected by the
value of a. The y-intercept is multiplied by
the value of a .
c.
The axis of symmetry is unaffected by the
value of a . For this problem, the axis of
symmetry is x ๏ฝ ๏ญ1 for all values of a.
d. The x-coordinate of the vertex is not
affected by the value of a. The y-coordinate
of the vertex is multiplied by the value of a .
e.
The x-coordinate of the vertex is the mean of
the x-intercepts.
202
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.4: Properties of Quadratic Functions
84. a.
For a ๏ฝ 1:
f ( x) ๏ฝ 1( x ๏ญ (๏ญ5))( x ๏ญ 3)
x ๏ซ 4 x ๏ญ 21 ๏ฝ ๏ญ21
2
๏ฝ ( x ๏ซ 5)( x ๏ญ 3) ๏ฝ x 2 ๏ซ 2 x ๏ญ 15
For a ๏ฝ 2 :
f ( x) ๏ฝ 2( x ๏ญ (๏ญ5))( x ๏ญ 3)
x2 ๏ซ 4x ๏ฝ 0
x ๏จ x ๏ซ 4๏ฉ ๏ฝ 0
x ๏ฝ 0 or
๏ฝ 2( x ๏ซ 5)( x ๏ญ 3)
x๏ซ4๏ฝ0
x ๏ฝ ๏ญ4
๏ฝ 2( x 2 ๏ซ 2 x ๏ญ 15) ๏ฝ 2 x 2 ๏ซ 4 x ๏ญ 30
For a ๏ฝ ๏ญ2 :
f ( x) ๏ฝ ๏ญ2( x ๏ญ (๏ญ5))( x ๏ญ 3)
The solutions f ๏จ x ๏ฉ ๏ฝ ๏ญ21 are ๏ญ4 and 0.
Thus, the points ๏จ ๏ญ4, ๏ญ21๏ฉ and ๏จ 0, ๏ญ21๏ฉ are
๏ฝ ๏ญ2( x ๏ซ 5)( x ๏ญ 3)
2
f ๏จ x ๏ฉ ๏ฝ ๏ญ21
c.
on the graph of f.
2
d.
๏ฝ ๏ญ2( x ๏ซ 2 x ๏ญ 15) ๏ฝ ๏ญ2 x ๏ญ 4 x ๏ซ 30
For a ๏ฝ 5 :
f ( x) ๏ฝ 5( x ๏ญ (๏ญ5))( x ๏ญ 3)
๏ฝ 5( x ๏ซ 5)( x ๏ญ 3)
๏ญ๏ธ
๏ฝ 5( x 2 ๏ซ 2 x ๏ญ 15) ๏ฝ 5 x 2 ๏ซ 10 x ๏ญ 75
b. The x-intercepts are not affected by the
value of a. The y-intercept is multiplied by
the value of a .
c.
The axis of symmetry is unaffected by the
value of a . For this problem, the axis of
symmetry is x ๏ฝ ๏ญ1 for all values of a.
๏จ๏ฐ๏ฌ๏ ๏ญ๏ฒ๏ฑ๏ฉ
d. The x-coordinate of the vertex is not
affected by the value of a. The y-coordinate
of the vertex is multiplied by the value of a .
e.
85. a.
86. a.
The x-coordinate of the vertex is the mean of
the x-intercepts.
x๏ฝ๏ญ
y ๏ฝ f ๏จ ๏ญ1๏ฉ ๏ฝ ๏จ ๏ญ1๏ฉ ๏ซ 2 ๏จ ๏ญ1๏ฉ ๏ญ 8 ๏ฝ ๏ญ9
2
The vertex is ๏จ ๏ญ1, ๏ญ9 ๏ฉ .
4
b
x๏ฝ๏ญ
๏ฝ๏ญ
๏ฝ ๏ญ2
2a
2 ๏จ1๏ฉ
f ๏จ x๏ฉ ๏ฝ 0
b.
x ๏ซ 2x ๏ญ 8 ๏ฝ 0
2
y ๏ฝ f ๏จ ๏ญ2 ๏ฉ ๏ฝ ๏จ ๏ญ2 ๏ฉ ๏ซ 4 ๏จ ๏ญ2 ๏ฉ ๏ญ 21 ๏ฝ ๏ญ25
2
๏จ x ๏ซ 4 ๏ฉ๏จ x ๏ญ 2 ๏ฉ ๏ฝ 0
The vertex is ๏จ ๏ญ2, ๏ญ25 ๏ฉ .
x๏ซ4๏ฝ0
f ๏จ x๏ฉ ๏ฝ 0
b.
x ๏ฝ ๏ญ7
x๏ฝ2
The x-intercepts of f are (๏ญ4, 0) and (2, 0).
๏จ x ๏ซ 7 ๏ฉ๏จ x ๏ญ 3๏ฉ ๏ฝ 0
or
x๏ญ2 ๏ฝ 0
or
x ๏ฝ ๏ญ4
x 2 ๏ซ 4 x ๏ญ 21 ๏ฝ 0
x๏ซ7 ๏ฝ 0
b
2
๏ฝ๏ญ
๏ฝ ๏ญ1
2a
2 ๏จ1๏ฉ
f ๏จ x ๏ฉ ๏ฝ ๏ญ8
c.
x๏ญ3 ๏ฝ 0
x ๏ซ 2 x ๏ญ 8 ๏ฝ ๏ญ8
2
x๏ฝ3
x2 ๏ซ 2x ๏ฝ 0
The x-intercepts of f are (๏ญ7, 0) and (3, 0).
x ๏จ x ๏ซ 2๏ฉ ๏ฝ 0
x ๏ฝ 0 or
x๏ซ2๏ฝ0
x ๏ฝ ๏ญ2
The solutions f ๏จ x ๏ฉ ๏ฝ ๏ญ8 are ๏ญ2 and 0. Thus,
203
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
the points ๏จ ๏ญ2, ๏ญ8 ๏ฉ and ๏จ 0, ๏ญ8 ๏ฉ are on the
coordinate of the minimum point of ๏ d ( x) ๏ will
graph of f.
also give us the x-coordinate of the minimum of
๏ญb ๏ญ(๏ญ8) 8
d ( x) : x ๏ฝ
๏ฝ
๏ฝ ๏ฝ 2 . So, 2 is the x2a
2(2) 4
coordinate of the point on the line y = x + 1 that is
closest to the point (4, 1). The y-coordinate is
y = 2 + 1 = 3. Thus, the point is (2, 3) is the point
on the line y = x + 1 that is closest to (4, 1).
2
d.
๏จ๏ญ๏ด๏ฌ๏ ๏ฐ๏ฉ
๏จ๏ฒ๏ฌ๏ ๏ฐ๏ฉ
89. R ( p ) ๏ฝ ๏ญ4 p 2 ๏ซ 4000 p , a ๏ฝ ๏ญ 4, b ๏ฝ 4000, c ๏ฝ 0.
Since a ๏ฝ ๏ญ4 ๏ผ 0 the graph is a parabola that opens
down, so the vertex is a maximum point. The
๏ญb ๏ญ 4000
๏ฝ
๏ฝ 500 .
maximum occurs at p ๏ฝ
2a 2(๏ญ 4)
Thus, the unit price should be $500 for maximum
revenue. The maximum revenue is
R (500) ๏ฝ ๏ญ 4(500) 2 ๏ซ 4000(500)
๏ฝ ๏ญ1000000 ๏ซ 2000000
๏ฝ $1, 000, 000
87. Let (x, y) represent a point on the line y = x. Then
the distance from (x, y) to the point (3, 1) is
d๏ฝ
๏จ x ๏ญ 3๏ฉ ๏ซ ๏จ y ๏ญ 1๏ฉ . Since y = x, we can
2
2
replace the y variable with x so that we have the
distance expressed as a function of x:
d ( x) ๏ฝ
๏จ x ๏ญ 3๏ฉ2 ๏ซ ๏จ x ๏ญ 1๏ฉ2
๏ฝ x2 ๏ญ 6x ๏ซ 9 ๏ซ x2 ๏ญ 2 x ๏ซ 1
1 2
1
p ๏ซ 1900 p , a ๏ฝ ๏ญ , b ๏ฝ 1900, c ๏ฝ 0.
2
2
1
Since a ๏ฝ ๏ญ ๏ผ 0, the graph is a parabola that
2
opens down, so the vertex is a maximum point.
The maximum occurs at
๏ญb
๏ญ1900
๏ญ1900
p๏ฝ
๏ฝ
๏ฝ
๏ฝ 1900 . Thus, the
2a 2 ๏จ ๏ญ1/ 2 ๏ฉ
๏ญ1
90. R ( p ) ๏ฝ ๏ญ
๏ฝ 2 x 2 ๏ญ 8 x ๏ซ 10
Squaring both sides of this function, we obtain
๏ d ( x)๏2 ๏ฝ 2 x 2 ๏ญ 8 x ๏ซ 10 .
Now, the expression on the right is quadratic.
Since a = 2 > 0, it has a minimum. Finding the xcoordinate of the minimum point of ๏ d ( x) ๏ will
2
also give us the x-coordinate of the minimum of
๏ญb ๏ญ(๏ญ8) 8
๏ฝ
๏ฝ ๏ฝ 2 . So, 2 is the xd ( x) : x ๏ฝ
2a
2(2) 4
coordinate of the point on the line y = x that is
closest to the point (3, 1). Since y = x, the ycoordinate is also 2. Thus, the point is (2, 2) is the
point on the line y = x that is closest to (3, 1).
unit price should be $1900 for maximum revenue.
The maximum revenue is
1
2
R ๏จ1900 ๏ฉ ๏ฝ ๏ญ ๏จ1900 ๏ฉ ๏ซ 1900 ๏จ1900 ๏ฉ
2
๏ฝ ๏ญ1805000 ๏ซ 3610000
๏ฝ $1,805, 000
88. Let (x, y) represent a point on the line y = x + 1.
Then the distance from (x, y) to the point (4, 1) is
d๏ฝ
91. a.
๏จ x ๏ญ 4 ๏ฉ ๏ซ ๏จ y ๏ญ 1๏ฉ . Replacing the y variable
2
2
with x + 1, we find the distance expressed as a
function of x:
d ( x) ๏ฝ
๏จ x ๏ญ 4 ๏ฉ2 ๏ซ ๏จ ( x ๏ซ 1) ๏ญ 1๏ฉ2
๏ฝ x 2 ๏ญ 8 x ๏ซ 16 ๏ซ x 2
C ( x) ๏ฝ x 2 ๏ญ 140 x ๏ซ 7400 ,
a ๏ฝ 1, b ๏ฝ ๏ญ140, c ๏ฝ 7400. Since a ๏ฝ 1 ๏พ 0,
the graph opens up, so the vertex is a
minimum point. The minimum marginal cost
๏ญb ๏ญ(๏ญ140) 140
๏ฝ
๏ฝ
๏ฝ 70 ,
occurs at x ๏ฝ
2a
2(1)
2
70,000 digital music players produced.
b. The minimum marginal cost is
2
๏ฆ ๏ญb ๏ถ
f ๏ง ๏ท ๏ฝ f ๏จ 70 ๏ฉ ๏ฝ ๏จ 70 ๏ฉ ๏ญ 140 ๏จ 70 ๏ฉ ๏ซ 7400
2
a
๏จ ๏ธ
๏ฝ 4900 ๏ญ 9800 ๏ซ 7400
๏ฝ $2500
๏ฝ 2 x 2 ๏ญ 8 x ๏ซ 16
Squaring both sides of this function, we obtain
๏ d ( x)๏2 ๏ฝ 2 x 2 ๏ญ 8 x ๏ซ 16 .
Now, the expression on the right is quadratic.
Since a = 2 > 0, it has a minimum. Finding the x204
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.4: Properties of Quadratic Functions
92. a.
C ( x) ๏ฝ 5 x 2 ๏ญ 200 x ๏ซ 4000 ,
a ๏ฝ 5, b ๏ฝ ๏ญ200, c ๏ฝ 4000. Since a ๏ฝ 5 ๏พ 0,
the graph opens up, so the vertex is a
minimum point. The minimum marginal cost
๏ญb ๏ญ ๏จ ๏ญ200 ๏ฉ 200
๏ฝ
๏ฝ
๏ฝ 20 ,
occurs at x ๏ฝ
2a
2(5)
10
20,000 thousand smartphones manufactured.
x๏ฝ
๏ฝ 118.75 ๏ป 119 boxes of candy
The maximum revenue is:
R (119) ๏ฝ 9.5 ๏จ119 ๏ฉ ๏ญ 0.04 ๏จ119 ๏ฉ ๏ฝ $564.06
2
b.
๏ฝ ๏ญ0.04 x 2 ๏ซ 8.25 x ๏ญ 250
c.
R ( x) ๏ฝ 75 x ๏ญ 0.2 x 2
a ๏ฝ ๏ญ0.2, b ๏ฝ 75, c ๏ฝ 0
The maximum revenue occurs when
๏ญb
๏ญ75
๏ญ75
x๏ฝ
๏ฝ
๏ฝ
๏ฝ 187.5
2a 2 ๏จ ๏ญ0.2 ๏ฉ ๏ญ0.4
P (103) ๏ฝ ๏ญ0.04 ๏จ103๏ฉ ๏ซ 8.25 ๏จ103๏ฉ ๏ญ 250
2
๏ฝ $175.39
d. Answers will vary.
R (187) ๏ฝ 75 ๏จ187 ๏ฉ ๏ญ 0.2 ๏จ187 ๏ฉ ๏ฝ $7031.20
2
95. a.
R (188) ๏ฝ 75 ๏จ188 ๏ฉ ๏ญ 0.2 ๏จ188 ๏ฉ ๏ฝ $7031.20
P( x) ๏ฝ R ๏จ x ๏ฉ ๏ญ C ๏จ x ๏ฉ
๏ฝ 75 x ๏ญ 0.2 x 2 ๏ญ ๏จ 32 x ๏ซ 1750 ๏ฉ
b.
x ๏ฝ ๏ญ ๏จ1.1๏ฉ ๏ฑ ๏จ1.1๏ฉ ๏ญ 4 ๏จ 0.06 ๏ฉ๏จ ๏ญ200 ๏ฉ
P( x) ๏ฝ ๏ญ0.2 x 2 ๏ซ 43 x ๏ญ 1750
2
2 ๏จ 0.06 ๏ฉ
a ๏ฝ ๏ญ0.2, b ๏ฝ 43, c ๏ฝ ๏ญ1750
๏ญb
๏ญ43
๏ญ43
๏ฝ
๏ฝ
๏ฝ 107.5
2a 2 ๏จ ๏ญ0.2 ๏ฉ ๏ญ0.4
๏ฝ
The maximum profit occurs when x ๏ฝ 107
or x ๏ฝ 108 watches.
The maximum profit is:
๏ป
๏ญ1.1 ๏ฑ 49.21
0.12
๏ญ1.1 ๏ฑ 7.015
0.12
v ๏ป 49 or v ๏ป ๏ญ68
Disregard the negative value since we are
talking about speed. So the maximum speed
you can be traveling would be approximately
49 mph.
P (107) ๏ฝ ๏ญ0.2 ๏จ107 ๏ฉ ๏ซ 43 ๏จ107 ๏ฉ ๏ญ 1750
2
๏ฝ $561.20
P (108) ๏ฝ ๏ญ0.2 ๏จ108 ๏ฉ ๏ซ 43 ๏จ108 ๏ฉ ๏ญ 1750
2
๏ฝ $561.20
c.
d. Answers will vary.
94. a.
200 ๏ฝ 1.1v ๏ซ 0.06v 2
0 ๏ฝ ๏ญ200 ๏ซ 1.1v ๏ซ 0.06v 2
๏ฝ ๏ญ0.2 x 2 ๏ซ 43 x ๏ญ 1750
x๏ฝ
d (v) ๏ฝ 1.1v ๏ซ 0.06v 2
d (45) ๏ฝ 1.1(45) ๏ซ 0.06(45) 2
๏ฝ 49.5 ๏ซ 121.5 ๏ฝ 171 ft.
2
c.
P( x) ๏ฝ ๏ญ0.04 x 2 ๏ซ 8.25 x ๏ญ 250
a ๏ฝ ๏ญ0.04, b ๏ฝ 8.25, c ๏ฝ ๏ญ250
The maximum profit occurs when
๏ญb
๏ญ8.25
๏ญ8.25
x๏ฝ
๏ฝ
๏ฝ
2a 2 ๏จ ๏ญ0.04 ๏ฉ ๏ญ0.08
๏ฝ 103.125 ๏ป 103 boxes of candy
The maximum profit is:
The maximum revenue occurs when
x ๏ฝ 187 or x ๏ฝ 188 watches.
The maximum revenue is:
b.
P( x) ๏ฝ R ๏จ x ๏ฉ ๏ญ C ๏จ x ๏ฉ
๏ฝ 9.5 x ๏ญ 0.04 x 2 ๏ญ ๏จ1.25 x ๏ซ 250 ๏ฉ
b. The minimum marginal cost is
2
๏ฆ ๏ญb ๏ถ
f ๏ง ๏ท ๏ฝ f ๏จ 20 ๏ฉ ๏ฝ 5 ๏จ 20 ๏ฉ ๏ญ 200 ๏จ 20 ๏ฉ ๏ซ 4000
2
a
๏จ ๏ธ
๏ฝ 2000 ๏ญ 4000 ๏ซ 4000
๏ฝ $2000
93. a.
๏ญb
๏ญ9.5
๏ญ9.5
๏ฝ
๏ฝ
2a 2 ๏จ ๏ญ0.04 ๏ฉ ๏ญ0.08
R( x) ๏ฝ 9.5 x ๏ญ 0.04 x 2
a ๏ฝ ๏ญ0.04, b ๏ฝ 9.5, c ๏ฝ 0
The maximum revenue occurs when
96. a.
The 1.1v term might represent the reaction
time.
a๏ฝ
๏ญb
๏ญ19.09
๏ญ19.09
๏ฝ
๏ฝ
๏ฝ 28.1 years old
2a 2 ๏จ ๏ญ0.34 ๏ฉ ๏ญ0.68
205
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
b.
B (28.1) ๏ฝ ๏ญ0.34(28.1) 2 ๏ซ 19.09(28.1) ๏ญ 203.98
๏ป 63.98 births per 1000 unmarried women
c.
B (40) ๏ฝ ๏ญ0.34(40) 2 ๏ซ 19.09(40) ๏ญ 203.98
๏ฝ 15.62 births/1000 unmarried women over 40
97. If x is even, then ax 2 and bx are even. When
two even numbers are added to an odd number
the result is odd. Thus, f ( x) is odd. If x is
odd, then ax 2 and bx are odd. The sum of three
odd numbers is an odd number. Thus, f ( x) is
odd.
Each member of this family will be a parabola
with the following characteristics:
(i) opens upwards since a > 0
(ii) y-intercept occurs at (0, 1).
98. Answers will vary.
99. y ๏ฝ x 2 ๏ซ 2 x ๏ญ 3 ; y ๏ฝ x 2 ๏ซ 2 x ๏ซ 1 ; y ๏ฝ x 2 ๏ซ 2 x
101. The graph of the quadratic function
f ๏จ x ๏ฉ ๏ฝ ax 2 ๏ซ bx ๏ซ c will not have any
x-intercepts whenever b 2 ๏ญ 4ac ๏ผ 0 .
102. By completing the square on the quadratic
function f ๏จ x ๏ฉ ๏ฝ ax 2 ๏ซ bx ๏ซ c we obtain the
2
b ๏ถ
b2
๏ฆ
. We can then
equation y ๏ฝ a ๏ง x ๏ซ ๏ท ๏ซ c ๏ญ
2a ๏ธ
4a
๏จ
draw the graph by applying transformations to
the graph of the basic parabola y ๏ฝ x 2 , which
opens up. When a ๏พ 0 , the basic parabola will
either be stretched or compressed vertically.
When a ๏ผ 0 , the basic parabola will either be
stretched or compressed vertically as well as
reflected across the x-axis. Therefore, when
a ๏พ 0 , the graph of f ( x) ๏ฝ ax 2 ๏ซ bx ๏ซ c will
open up, and when a ๏ผ 0 , the graph of
f ๏จ x ๏ฉ ๏ฝ ax 2 ๏ซ bx ๏ซ c will open down.
Each member of this family will be a parabola
with the following characteristics:
(i) opens upwards since a > 0;
b
2
๏ฝ๏ญ
๏ฝ ๏ญ1 ;
(ii) vertex occurs at x ๏ฝ ๏ญ
2a
2(1)
(iii) There is at least one x-intercept since
b 2 ๏ญ 4ac ๏ณ 0 .
103. No. We know that the graph of a quadratic
function f ๏จ x ๏ฉ ๏ฝ ax 2 ๏ซ bx ๏ซ c is a parabola with
100. y ๏ฝ x 2 ๏ญ 4 x ๏ซ 1 ; y ๏ฝ x 2 ๏ซ 1 ; y ๏ฝ x 2 ๏ซ 4 x ๏ซ 1
๏จ
๏จ
vertex ๏ญ 2ba , f ๏ญ 2ba
๏ฉ ๏ฉ . If a > 0, then the vertex
is a minimum point, so the range is
๏ฉ f ๏ญ b , ๏ฅ . If a 0. Since the maximum height is 25
feet, when x ๏ฝ 0, y ๏ฝ k ๏ฝ 25 . Since the point
(60, 0) is on the parabola, we can find the
constant a : Since 0 ๏ฝ ๏ญ a (60) 2 ๏ซ 25 then
2 x 2 ๏ญ 12 x ๏ซ 16 ๏ฝ 0
x2 ๏ญ 6 x ๏ซ 8 ๏ฝ 0
( x ๏ญ 4)( x ๏ญ 2) ๏ฝ 0
x ๏ฝ 4, x ๏ฝ 2
25
. The equation of the parabola is:
602
25
h( x) ๏ฝ ๏ญ 2 x 2 ๏ซ 25 .
60
a๏ฝ
The graph of A ๏ฝ ๏ญ2 x 2 ๏ซ 12 x is above the graph
of A ๏ฝ 16 where the depth is between 2 and 4
inches.
(0,25)
(โ60,0)
(0,0)
10
20
40
16. Let x ๏ฝ width of the window and y ๏ฝ height of
the rectangular part of the window. The
๏ฐx
perimeter of the window is: x ๏ซ 2 y ๏ซ
๏ฝ 20.
2
40 ๏ญ 2 x ๏ญ ๏ฐx
.
Solving for y : y ๏ฝ
4
The area of the window is:
(60,0)
2
๏ฆ 40 ๏ญ 2 x ๏ญ ๏ฐx ๏ถ 1 ๏ฆ x ๏ถ
A( x) ๏ฝ x ๏ง
๏ท ๏ซ 2 ๏ฐ๏ง 2 ๏ท
4
๏จ
๏ธ
๏จ ๏ธ
x 2 ๏ฐx 2 ๏ฐx 2
๏ฝ 10 x ๏ญ ๏ญ
๏ซ
2
4
8
๏ฆ 1 ๏ฐ๏ถ 2
๏ฝ ๏ง ๏ญ ๏ญ ๏ท x ๏ซ 10 x.
๏จ 2 8๏ธ
This equation is a parabola opening down; thus,
it has a maximum when
At x ๏ฝ 10 :
25
25
(10) 2 ๏ซ 25 ๏ฝ ๏ญ ๏ซ 25 ๏ป 24.3 ft.
36
602
At x ๏ฝ 20 :
25
25
h(20) ๏ฝ ๏ญ 2 (20) 2 ๏ซ 25 ๏ฝ ๏ญ ๏ซ 25 ๏ป 22.2 ft.
9
60
At x ๏ฝ 40 :
25
100
h(40) ๏ฝ ๏ญ 2 (40) 2 ๏ซ 25 ๏ฝ ๏ญ
๏ซ 25 ๏ป 13.9 ft.
9
60
h(10) ๏ฝ ๏ญ
230
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.6: Building Quadratic Models from Verbal Descriptions and From Data
10
๏ญb
๏ญ10
๏ฝ
๏ฝ
๏ป 5.6 feet
2a
1 ๏ฐ๏ถ ๏ฆ ๏ฐ๏ถ
๏ฆ
2 ๏ง ๏ญ ๏ญ ๏ท ๏ง1 ๏ซ ๏ท
๏จ 2 8๏ธ ๏จ 4๏ธ
40 ๏ญ 2(5.60) ๏ญ ๏ฐ(5.60)
๏ป 2.8 feet
y๏ฝ
4
The width of the window is about 5.6 feet and the
height of the rectangular part is approximately 2.8
feet. The radius of the semicircle is roughly 2.8
feet, so the total height is about 5.6 feet.
has a maximum when
x๏ฝ
x๏ฝ
๏ญ8
๏ญb
๏ฝ
2a 2 ๏ญ 3 ๏ซ
๏จ
2
3
4
๏ญ8
๏ฝ
๏ฉ ๏ญ3 ๏ซ
3
2
๏ฝ
๏ญ16
๏ป 3.75 ft.
๏ญ6 ๏ซ 3
The window is approximately 3.75 feet wide.
๏ฆ ๏ญ16 ๏ถ
48
16 ๏ญ 3 ๏ง
๏ท 16 ๏ซ
๏ญ6 ๏ซ 3 ๏ธ
๏ญ
6
๏ซ 3 ๏ฝ 8 ๏ซ 24
๏จ
y๏ฝ
๏ฝ
2
2
๏ญ6 ๏ซ 3
The height of the equilateral triangle is
3 ๏ฆ ๏ญ16 ๏ถ
๏ญ8 3
๏ฝ
feet, so the total height is
2 ๏ง๏จ ๏ญ6 ๏ซ 3 ๏ท๏ธ ๏ญ6 ๏ซ 3
17. Let x ๏ฝ the width of the rectangle or the diameter
of the semicircle and let y ๏ฝ the length of the
๏ฐx
rectangle. The perimeter of each semicircle is
.
2
The perimeter of the track is given
๏ฐx ๏ฐx
by:
๏ซ
๏ซ y ๏ซ y ๏ฝ 1500 .
2
2
Solving for x :
๏ฐ x ๏ซ 2 y ๏ฝ 1500
๏ฐx ๏ฝ 1500 ๏ญ 2 y
1500 ๏ญ 2 y
x๏ฝ
๏ฐ
8๏ซ
๏ญ8 3
24
๏ซ
๏ป 5.62 feet.
๏ญ6 ๏ซ 3 ๏ญ6 ๏ซ 3
19. We are given: V ( x) ๏ฝ kx(a ๏ญ x) ๏ฝ ๏ญkx 2 ๏ซ akx .
The reaction rate is a maximum when:
ak a
๏ญb
๏ญak
x๏ฝ
๏ฝ
๏ฝ
๏ฝ .
2a 2(๏ญk ) 2k 2
20. We have:
a(๏ญ h) 2 ๏ซ b(๏ญh) ๏ซ c ๏ฝ ah 2 ๏ญ bh ๏ซ c ๏ฝ y0
The area of the rectangle is:
๏ญ 2 2 1500
๏ฆ 1500 ๏ญ 2 y ๏ถ
A ๏ฝ xy ๏ฝ ๏ง
y๏ฝ
y ๏ซ
y.
๏ท
๏ฐ
๏ฐ
๏ฐ
๏จ
๏ธ
This equation is a parabola opening down; thus,
it has a maximum when
๏ญ1500
๏ญb
๏ญ1500
๏ฐ
y๏ฝ
๏ฝ
๏ฝ
๏ฝ 375.
2a
๏ญ4
2
๏ญ
๏ฆ
๏ถ
2๏ง
๏ท
๏จ ๏ฐ ๏ธ
1500 ๏ญ 2(375) 750
Thus, x ๏ฝ
๏ฝ
๏ป 238.73
๏ฐ
๏ฐ
The dimensions for the rectangle with maximum
750
๏ป 238.73 meters by 375 meters.
area are
๏ฐ
a(0) 2 ๏ซ b(0) ๏ซ c ๏ฝ c ๏ฝ y1
a(h) 2 ๏ซ b(h) ๏ซ c ๏ฝ ah 2 ๏ซ bh ๏ซ c ๏ฝ y2
Equating the two equations for the area, we have:
y0 ๏ซ 4 y1 ๏ซ y2 ๏ฝ ah 2 ๏ญ bh ๏ซ c ๏ซ 4c ๏ซ ah 2 ๏ซ bh ๏ซ c
๏ฝ 2ah 2 ๏ซ 6c.
Therefore,
h
h
Area ๏ฝ 2ah 2 ๏ซ6c ๏ฝ ๏จ y0 ๏ซ 4 y1 ๏ซ y2 ๏ฉ sq. units.
3
3
๏จ
21.
๏ฉ
f ( x) ๏ฝ ๏ญ5 x 2 ๏ซ 8, h ๏ฝ 1
๏จ
๏ฉ ๏จ
h
1
2ah 2 ๏ซ 6c ๏ฝ 2(๏ญ5)(1) 2 ๏ซ 6(8)
3
3
1
38
๏ฝ (๏ญ10 ๏ซ 48) ๏ฝ
sq. units
3
3
Area ๏ฝ
18. Let x = width of the window and y = height of the
rectangular part of the window. The perimeter of
the window is:
3x ๏ซ 2 y ๏ฝ 16
16 ๏ญ 3 x
y๏ฝ
2
The area of the window is
3 2
3
3 2
๏ฆ 16 ๏ญ 3 x ๏ถ
A( x) ๏ฝ x ๏ง
x ๏ฝ 8x ๏ญ x2 ๏ซ
x
๏ท๏ซ
2
4
๏จ 2 ๏ธ 4
22.
๏ฉ
f ( x) ๏ฝ 2 x 2 ๏ซ 8, h ๏ฝ 2
๏จ
๏ฉ
h
2
(2ah 2 ๏ซ 6c) ๏ฝ 2(2)(2) 2 ๏ซ 6(8)
3
3
2
2
128
๏ฝ ๏จ16 ๏ซ 48 ๏ฉ ๏ฝ (64) ๏ฝ
sq. units
3
3
3
Area ๏ฝ
๏ฆ 3
3๏ถ 2
๏ฝ ๏ง๏ญ ๏ซ
๏ท x ๏ซ 8x
๏จ 2 4 ๏ธ
This equation is a parabola opening down; thus, it
231
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
23.
26. a.
f ( x) ๏ฝ x 2 ๏ซ 3 x ๏ซ 5, h ๏ฝ 4
๏จ
๏ฉ
๏จ
h
4
2ah 2 ๏ซ 6c ๏ฝ 2(1)(4) 2 ๏ซ 6(5)
3
3
4
248
๏ฝ (32 ๏ซ 30) ๏ฝ
sq. units
3
3
Area ๏ฝ
24.
๏ฉ
๏ฐ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ฒ๏ฒ๏ฐ
๏ฐ
From the graph, the data appear to follow a
quadratic relation with a ๏ผ 0 .
f ( x) ๏ฝ ๏ญ x 2 ๏ซ x ๏ซ 4, h ๏ฝ 1
๏จ
๏ฉ
h
1
(2ah 2 ๏ซ 6c) ๏ฝ 2(๏ญ1)(1) 2 ๏ซ 6(4)
3
3
1
1
22
๏ฝ ๏จ ๏ญ 2 ๏ซ 24 ๏ฉ ๏ฝ (22) ๏ฝ
sq. units
3
3
3
Area ๏ฝ
๏ธ๏ฐ
b. Using the QUADratic REGression program
25. a.
h( x) ๏ฝ ๏ญ0.0037 x 2 ๏ซ 1.0318 x ๏ซ 5.6667
c.
๏ญb
๏ญ1.0318
๏ฝ
๏ป 139.4
2a 2(๏ญ0.0037)
The ball will travel about 139.4 feet before
it reaches its maximum height.
x๏ฝ
d. The maximum height will be: h(139.4) ๏ฝ
From the graph, the data appear to follow a
quadratic relation with a ๏ผ 0 .
๏ญ0.0037(139.4) 2 ๏ซ 1.0318(139.4) ๏ซ 5.6667
๏ป 77.6 feet
b. Using the QUADratic REGression program
e.
๏ธ๏ฐ
๏ฐ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ฒ๏ฒ๏ฐ
๏ฐ
27. a.
I ( x) ๏ฝ ๏ญ58.56 x 2 ๏ซ 5301.617 x ๏ญ 46, 236.523
c.
๏ญb ๏ญ5301.617
๏ฝ
๏ป 45.3
2a 2(๏ญ58.56)
An individual will earn the most income at
about 45.3 years of age.
x๏ฝ
d. The maximum income will be: I(48.0) =
๏ญ58.56(45.3) 2 ๏ซ 5301.617(45.3) ๏ญ 46, 236.523
From the graph, the data appear to be
linearly related with m ๏พ 0 .
๏ป $73, 756
b. Using the LINear REGression program
e.
R ( x) ๏ฝ 1.321x ๏ซ 920.161
232
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.6: Building Quadratic Models from Verbal Descriptions and From Data
c.
28. a.
R (875) ๏ฝ 1.321(875) ๏ซ 920.161 ๏ป 2076
The rent for an 875 square-foot apartment in
San Diego will be about $2076 per month.
๏ฒ๏ฑ
30. a.
๏ณ๏ต
๏ถ๏ท๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏น๏ต
๏ฑ๏ณ
From the graph, the data appear to be
linearly related with m ๏พ 0 .
b. Using the LINear REGression program
๏ฒ๏ต๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ท๏ต
๏ฑ๏ต
From the graph, the data appear to follow a
quadratic relation with a ๏ผ 0 .
b. Using the QUADratic REGression program
C ( x) ๏ฝ 0.233x ๏ญ 2.037
C (80) ๏ฝ 0.233(80) ๏ญ 2.037 ๏ป 16.6
When the temperature is 80๏ฐF , there will be
about 16.6 chirps per second.
c.
M ( s ) ๏ฝ ๏ญ0.017 s 2 ๏ซ 1.935s ๏ญ 25.341
c.
31. Answers will vary. One possibility follows: If
the price is $140, no one will buy the calculators,
thus making the revenue $0.
M (63) ๏ฝ ๏ญ0.017(63) 2 ๏ซ 1.935(63) ๏ญ 25.341
๏ป 29.1
A Camry traveling 63 miles per hour will
get about 29.1 miles per gallon.
32. m ๏ฝ
2 ๏ญ ( ๏ญ2)
4
2
๏ฝ
๏ฝ๏ญ
๏ญ5 ๏ญ 1
๏ญ6
3
y ๏ญ y1 ๏ฝ m( x ๏ญ x1 )
29. a.
2
y ๏ญ ( ๏ญ2) ๏ฝ ๏ญ ( x ๏ญ 1)
3
2
2
y๏ซ2๏ฝ ๏ญ x๏ซ
3
3
2
4
y ๏ฝ ๏ญ x๏ญ
3
3
or
3 y ๏ฝ ๏ญ2 x ๏ญ 4
2 x ๏ซ 3 y ๏ฝ ๏ญ4
From the graph, the data appear to follow a
quadratic relation with a ๏ผ 0 .
b. Using the QUADratic REGression program
33. d ๏ฝ ( x2 ๏ญ x1 ) 2 ๏ซ ( y2 ๏ญ y1 ) 2
๏ฝ (( ๏ญ1) ๏ญ 4) 2 ๏ซ (5 ๏ญ ( ๏ญ7))2
๏ฝ ( ๏ญ5) 2 ๏ซ (12) 2
๏ฝ 25 ๏ซ 144 ๏ฝ 169 ๏ฝ 13
2
B (a) ๏ฝ ๏ญ0.563a ๏ซ 32.520a ๏ญ 368.118
c.
34.
B (35) ๏ฝ ๏ญ0.563(35) 2 ๏ซ 32.520(35) ๏ญ 368.118
๏ป 80.4
The birthrate of 35-year-old women is about
80.4 per 1000.
( x ๏ญ h) 2 ๏ซ ( y ๏ญ k ) 2 ๏ฝ r 2
( x ๏ญ ( ๏ญ6)) 2 ๏ซ ( y ๏ญ 0) 2 ๏ฝ ( 7) 2
( x ๏ซ 6) 2 ๏ซ y 2 ๏ฝ 7
233
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
35. 3(0) 2 ๏ญ 4 y ๏ฝ 48
๏ญ4 y ๏ฝ 48
y ๏ฝ ๏ญ12
The y intercept is (0, ๏ญ12)
10.
f ๏จ x๏ฉ ๏ฝ 0
x2 ๏ญ 9 ๏ฝ 0
x2 ๏ฝ 9
x ๏ฝ ๏ฑ 9 ๏ฝ ๏ฑ3
The zeros are ๏ญ3 and 3.
3x 2 ๏ญ 4(0) ๏ฝ 48
3x 2 ๏ฝ 48
x 2 ๏ฝ 16
x ๏ฝ ๏ฑ4
The x intercepts are: (4, 0), ( ๏ญ4, 0)
Section 2.7
1. Integers: ๏ป๏ญ3, 0๏ฝ
๏ป
Rationals: ๏ญ3, 0,
6
5
11.
๏ฝ
f ๏จ x๏ฉ ๏ฝ 0
2
x ๏ญ 16 ๏ฝ 0
x 2 ๏ฝ 16
2. True; the set of real numbers consists of all
rational and irrational numbers.
x ๏ฝ ๏ฑ 16 ๏ฝ ๏ฑ4
The zeros are ๏ญ4 and 4.
3. 10 ๏ญ 5i
4. 2 ๏ญ 5i
5. True
6. 9i
7. 2 ๏ซ 3i
8. True
9.
f ๏จ x๏ฉ ๏ฝ 0
x2 ๏ซ 4 ๏ฝ 0
x 2 ๏ฝ ๏ญ4
x ๏ฝ ๏ฑ ๏ญ4 ๏ฝ ๏ฑ2i
The zero are ๏ญ2i and 2i .
234
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.7: Complex Zeros of a Quadratic Function
f ๏จ x๏ฉ ๏ฝ 0
12.
2
x ๏ซ 25 ๏ฝ 0
x 2 ๏ฝ ๏ญ 25
x ๏ฝ ๏ฑ ๏ญ 25 ๏ฝ ๏ฑ5i
The zeros are ๏ญ5i and 5i .
f ๏จ x๏ฉ ๏ฝ 0
15.
2
x ๏ญ 6 x ๏ซ 10 ๏ฝ 0
a ๏ฝ 1, b ๏ฝ ๏ญ 6, c ๏ฝ 10
b 2 ๏ญ 4ac ๏ฝ (๏ญ 6) 2 ๏ญ 4(1)(10) ๏ฝ 36 ๏ญ 40 ๏ฝ ๏ญ 4
๏ญ (๏ญ 6) ๏ฑ ๏ญ 4 6 ๏ฑ 2i
๏ฝ
๏ฝ 3๏ฑi
2(1)
2
The zeros are 3 ๏ญ i and 3 ๏ซ i .
x๏ฝ
f ๏จ x๏ฉ ๏ฝ 0
13.
2
x ๏ญ 6 x ๏ซ 13 ๏ฝ 0
a ๏ฝ 1, b ๏ฝ ๏ญ 6, c ๏ฝ 13,
b 2 ๏ญ 4ac ๏ฝ (๏ญ 6) 2 ๏ญ 4(1)(13) ๏ฝ 36 ๏ญ 52 ๏ฝ ๏ญ16
๏ญ (๏ญ 6) ๏ฑ ๏ญ16 6 ๏ฑ 4i
๏ฝ
๏ฝ 3 ๏ฑ 2i
2(1)
2
The zeros are 3 ๏ญ 2i and 3 ๏ซ 2i .
x๏ฝ
f ๏จ x๏ฉ ๏ฝ 0
16.
2
x ๏ญ 2x ๏ซ 5 ๏ฝ 0
a ๏ฝ 1, b ๏ฝ ๏ญ 2, c ๏ฝ 5
b 2 ๏ญ 4ac ๏ฝ (๏ญ 2) 2 ๏ญ 4(1)(5) ๏ฝ 4 ๏ญ 20 ๏ฝ ๏ญ16
๏ญ (๏ญ 2) ๏ฑ ๏ญ 16 2 ๏ฑ 4i
๏ฝ
๏ฝ 1 ๏ฑ 2i
2(1)
2
The zeros are 1 ๏ญ 2i and 1 ๏ซ 2i .
x๏ฝ
f ๏จ x๏ฉ ๏ฝ 0
14.
x2 ๏ซ 4 x ๏ซ 8 ๏ฝ 0
a ๏ฝ 1, b ๏ฝ 4, c ๏ฝ 8
b 2 ๏ญ 4ac ๏ฝ 42 ๏ญ 4(1)(8) ๏ฝ 16 ๏ญ 32 ๏ฝ ๏ญ16
๏ญ 4 ๏ฑ ๏ญ16 ๏ญ 4 ๏ฑ 4i
๏ฝ
๏ฝ ๏ญ 2 ๏ฑ 2i
2(1)
2
The zeros are ๏ญ 2 ๏ญ 2i and ๏ญ 2 ๏ซ 2i .
x๏ฝ
235
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
f ๏จ x๏ฉ ๏ฝ 0
17.
2
x ๏ญ 4x ๏ซ1 ๏ฝ 0
a ๏ฝ 1, b ๏ฝ ๏ญ 4, c ๏ฝ 1
b 2 ๏ญ 4ac ๏ฝ (๏ญ 4) 2 ๏ญ 4(1)(1) ๏ฝ 16 ๏ญ 4 ๏ฝ 12
x๏ฝ
๏ญ (๏ญ 4) ๏ฑ 12 4 ๏ฑ 2 3
๏ฝ
๏ฝ 2๏ฑ 3
2(1)
2
The zeros are 2 ๏ญ 3 and 2 ๏ซ 3 , or
approximately 0.27 and 3.73.
f ๏จ x๏ฉ ๏ฝ 0
20.
3x 2 ๏ซ 6 x ๏ซ 4 ๏ฝ 0
a ๏ฝ 3, b ๏ฝ 6, c ๏ฝ 4
b 2 ๏ญ 4ac ๏ฝ ๏จ 6 ๏ฉ ๏ญ 4(3)(4) ๏ฝ 36 ๏ญ 48 ๏ฝ ๏ญ12
2
x๏ฝ
๏ญ 6 ๏ฑ ๏ญ12 ๏ญ6 ๏ฑ 2 3i
3
๏ฝ
๏ฝ ๏ญ1 ๏ฑ
i
2(3)
6
3
The zeros are ๏ญ1 ๏ญ
f ๏จ x๏ฉ ๏ฝ 0
18.
3
3
i and ๏ญ1 ๏ซ
i.
3
3
x2 ๏ซ 6 x ๏ซ 1 ๏ฝ 0
a ๏ฝ 1, b ๏ฝ 6, c ๏ฝ 1
b 2 ๏ญ 4ac ๏ฝ 62 ๏ญ 4(1)(1) ๏ฝ 36 ๏ญ 4 ๏ฝ 32
x๏ฝ
๏ญ 6 ๏ฑ 32 ๏ญ 6 ๏ฑ 4 2
๏ฝ
๏ฝ ๏ญ3 ๏ฑ 2 2
2(1)
2
The zeros are ๏ญ3 ๏ญ 2 2 and ๏ญ3 ๏ซ 2 2 , or
approximately ๏ญ5.83 and ๏ญ0.17 .
f ๏จ x๏ฉ ๏ฝ 0
21.
x2 ๏ซ x ๏ซ 1 ๏ฝ 0
a ๏ฝ 1, b ๏ฝ 1, c ๏ฝ 1,
b 2 ๏ญ 4ac ๏ฝ 12 ๏ญ 4(1)(1) ๏ฝ 1 ๏ญ 4 ๏ฝ ๏ญ3
x๏ฝ
1
3
1
3
i and ๏ญ ๏ซ
i.
The zeros are ๏ญ ๏ญ
2 2
2 2
f ๏จ x๏ฉ ๏ฝ 0
19.
๏ญ1 ๏ฑ ๏ญ3 ๏ญ1 ๏ฑ 3 i
1
3
๏ฝ
๏ฝ๏ญ ๏ฑ
i
2(1)
2
2 2
2
2x ๏ซ 2x ๏ซ 1 ๏ฝ 0
a ๏ฝ 2, b ๏ฝ 2, c ๏ฝ 1
b 2 ๏ญ 4ac ๏ฝ ๏จ 2 ๏ฉ ๏ญ 4(2)(1) ๏ฝ 4 ๏ญ 8 ๏ฝ ๏ญ4
2
๏ญ 2 ๏ฑ ๏ญ4 ๏ญ 2 ๏ฑ 2i
1 1
๏ฝ
๏ฝ๏ญ ๏ฑ i
2(2)
4
2 2
1 1
1 1
The zeros are ๏ญ ๏ญ i and ๏ญ ๏ซ i .
2 2
2 2
x๏ฝ
236
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.7: Complex Zeros of a Quadratic Function
f ๏จ x๏ฉ ๏ฝ 0
22.
2
x ๏ญ x ๏ซ1 ๏ฝ 0
a ๏ฝ 1, b ๏ฝ ๏ญ1, c ๏ฝ 1
b 2 ๏ญ 4ac ๏ฝ (๏ญ1) 2 ๏ญ 4(1)(1) ๏ฝ 1 ๏ญ 4 ๏ฝ ๏ญ3
x๏ฝ
๏ญ (๏ญ1) ๏ฑ ๏ญ3 1 ๏ฑ 3 i 1
3
๏ฝ
๏ฝ ๏ฑ
i
2(1)
2
2 2
The zeros are
1
3
1
3
๏ญ
i and ๏ซ
i.
2 2
2 2
25. 3x 2 ๏ญ 3 x ๏ซ 4 ๏ฝ 0
a ๏ฝ 3, b ๏ฝ ๏ญ 3, c ๏ฝ 4
b 2 ๏ญ 4ac ๏ฝ (๏ญ 3) 2 ๏ญ 4(3)(4) ๏ฝ 9 ๏ญ 48 ๏ฝ ๏ญ39
The equation has two complex solutions that are
conjugates of each other.
26. 2 x 2 ๏ญ 4 x ๏ซ 1 ๏ฝ 0
a ๏ฝ 2, b ๏ฝ ๏ญ 4, c ๏ฝ 1
b 2 ๏ญ 4ac ๏ฝ (๏ญ 4) 2 ๏ญ 4(2)(1) ๏ฝ 16 ๏ญ 8 ๏ฝ 8
The equation has two unequal real number
solutions.
f ๏จ x๏ฉ ๏ฝ 0
23.
2
๏ญ2 x ๏ซ 8 x ๏ซ 1 ๏ฝ 0
a ๏ฝ ๏ญ2, b ๏ฝ 8, c ๏ฝ 1
2
27. 2 x 2 ๏ซ 3x ๏ญ 4 ๏ฝ 0
a ๏ฝ 2, b ๏ฝ 3, c ๏ฝ ๏ญ 4
2
b ๏ญ 4ac ๏ฝ 8 ๏ญ 4(๏ญ2)(1) ๏ฝ 64 ๏ซ 8 ๏ฝ 72
x๏ฝ
๏ญ8 ๏ฑ 72 ๏ญ8 ๏ฑ 6 2 4 ๏ฑ 3 2
3 2
๏ฝ
๏ฝ
๏ฝ 2๏ฑ
2(๏ญ2)
๏ญ4
2
2
b 2 ๏ญ 4ac ๏ฝ 32 ๏ญ 4(2)(๏ญ 4) ๏ฝ 9 ๏ซ 32 ๏ฝ 41
The equation has two unequal real solutions.
4๏ญ3 2
4๏ซ3 2
and
, or
2
2
approximately ๏ญ0.12 and 4.12.
The zeros are
28. x 2 ๏ซ 2 x ๏ซ 6 ๏ฝ 0
a ๏ฝ 1, b ๏ฝ 2, c ๏ฝ 6
b 2 ๏ญ 4ac ๏ฝ ๏จ 2 ๏ฉ ๏ญ 4(1)(6) ๏ฝ 4 ๏ญ 24 ๏ฝ ๏ญ 20
The equation has two complex solutions that are
conjugates of each other.
2
29. 9 x 2 ๏ญ 12 x ๏ซ 4 ๏ฝ 0
a ๏ฝ 9, b ๏ฝ ๏ญ12, c ๏ฝ 4
b 2 ๏ญ 4ac ๏ฝ (๏ญ12) 2 ๏ญ 4(9)(4) ๏ฝ 144 ๏ญ 144 ๏ฝ 0
The equation has a repeated real solution.
24.
30. 4 x 2 ๏ซ 12 x ๏ซ 9 ๏ฝ 0
a ๏ฝ 4, b ๏ฝ 12, c ๏ฝ 9
f ๏จ x๏ฉ ๏ฝ 0
๏ญ3x 2 ๏ซ 6 x ๏ซ 1 ๏ฝ 0
a ๏ฝ ๏ญ3, b ๏ฝ 6, c ๏ฝ 1
b 2 ๏ญ 4ac ๏ฝ 122 ๏ญ 4(4)(9) ๏ฝ 144 ๏ญ 144 ๏ฝ 0
The equation has a repeated real solution.
b 2 ๏ญ 4ac ๏ฝ 62 ๏ญ 4(๏ญ3)(1) ๏ฝ 36 ๏ซ 12 ๏ฝ 48
31. t 4 ๏ญ 16 ๏ฝ 0
๏ญ6 ๏ฑ 48 ๏ญ6 ๏ฑ 4 3 3 ๏ฑ 2 3
2 3
x๏ฝ
๏ฝ
๏ฝ
๏ฝ 1๏ฑ
2(๏ญ3)
๏ญ6
3
3
(t 2 ๏ญ 4)(t 2 ๏ซ 4) ๏ฝ 0
t 2 ๏ฝ 4 t 2 ๏ฝ ๏ญ4
t ๏ฝ ๏ฑ2 t ๏ฝ ๏ฑ2i
3๏ญ 2 3
3๏ซ 2 3
and
, or
3
3
approximately ๏ญ0.15 and 2.15.
The zeros are
237
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
32. y 4 ๏ญ 81 ๏ฝ 0
2
๏ฌ3 3 3 1
๏ผ
3
The solution set is ๏ญ ๏ฑ
i, ๏ฑ
i, ๏ญ3, ๏ญ1๏ฝ
2
2
2
2
๏ฎ
๏พ
2
( y ๏ญ 9)( y ๏ซ 9) ๏ฝ 0
y 2 ๏ฝ 9 y 2 ๏ฝ ๏ญ9
y ๏ฝ ๏ฑ3 y ๏ฝ ๏ฑ3i
35.
33. F ( x) ๏ฝ x 6 ๏ญ 9 x3 ๏ซ 8 ๏ฝ 0
( x3 ๏ญ 8)( x3 ๏ญ 1) ๏ฝ 0
( x ๏ญ 2)( x 2 ๏ซ 2 x ๏ซ 4)( x ๏ญ 1)( x 2 ๏ซ x ๏ซ 1) ๏ฝ 0
๏ฝ
2
x ๏ซ 2 x ๏ซ 4 ๏ฝ 0 ๏ฎ a ๏ฝ 1, b ๏ฝ 2, c ๏ฝ 4
x
x ๏ซ1
g ( x) ๏ฝ
x 2 ๏ซ 3x ๏ซ 2
x2
๏ญ
x( x ๏ซ 1)
x( x ๏ซ 1)
x 2 ๏ซ 3x ๏ซ 2 ๏ญ x2
x( x ๏ซ 1)
3x ๏ซ 2
๏ฝ
x( x ๏ซ 1)
๏ญ2 ๏ฑ 22 ๏ญ 4 ๏จ 4๏ฉ ๏ญ2 ๏ฑ ๏ญ12 ๏ญ2 ๏ฑ 2i 3
๏ฝ
๏ฝ
x๏ฝ
2(1)
2
2
๏ฝ
๏ฝ ๏ญ1 ๏ฑ 3i
Domain: ๏ป x | x ๏น ๏ญ1, x ๏น 0๏ฝ
x 2 ๏ซ x ๏ซ 1 ๏ฝ 0 ๏ฎ a ๏ฝ 1, b ๏ฝ 1, c ๏ฝ 1
x๏ฝ
x๏ซ2
x
x๏ซ2
x
( g ๏ญ f )( x) ๏ฝ
๏ญ
x
x ๏ซ1
x( x)
( x ๏ซ 2)( x ๏ซ 1)
๏ฝ
๏ญ
x( x ๏ซ 1)
x( x ๏ซ 1)
f ( x) ๏ฝ
๏ญ1 ๏ฑ 12 ๏ญ 4 ๏จ1๏ฉ ๏ญ1 ๏ฑ ๏ญ3 ๏ญ1 ๏ฑ i 3
๏ฝ
๏ฝ
2(1)
2
2
36. a.
Domain: ๏ ๏ญ3,3๏ Range: ๏ ๏ญ2, 2๏
b. Intercepts: ๏จ ๏ญ3, 0๏ฉ , ๏จ 0, 0๏ฉ , ๏จ 3, 0๏ฉ
1
3
i
๏ฝ๏ญ ๏ฑ
2 2
c. Symmetric with respect to the orgin.
d. The relation is a function. It passes the
vertical line test.
๏ฌ
๏ผ
1
3
, 2,1๏ฝ
The solution set is ๏ญ๏ญ1 ๏ฑ i 3, ๏ญ ๏ฑ i
2
2
๏ฎ
๏พ
37.
34. P ( z ) ๏ฝ z 6 ๏ซ 28 z 3 ๏ซ 27 ๏ฝ 0
( z 3 ๏ซ 27)( z 3 ๏ซ 1) ๏ฝ 0
( z ๏ซ 3)( z 2 ๏ญ 3 z ๏ซ 9)( z ๏ซ 1)( z 2 ๏ญ z ๏ซ 1) ๏ฝ 0
z 2 ๏ญ 3z ๏ซ 9 ๏ฝ 0
a ๏ฝ 1, b ๏ฝ ๏ญ3, c ๏ฝ 9
z๏ฝ
๏ฝ
๏ญ ๏จ ๏ญ3๏ฉ ๏ฑ
๏จ ๏ญ3๏ฉ2 ๏ญ 4 ๏จ 9 ๏ฉ
2(1)
Local maximum: (0,0)
Local Minima: (-2.12,-20.25), (2.12,-20.25)
Increasing: (-2.12,0), (2.12,4)
Decreasing: (-4, -2.12), (0,2.12)
3 ๏ฑ ๏ญ27
๏ฝ
2
3 ๏ฑ 3i 3 3 3 3
๏ฝ ๏ฑ
i
2
2
2
k
x2
k
k
24 ๏ฝ 2 ๏ฝ
25
5
k ๏ฝ 600
38. y ๏ฝ
z 2 ๏ญ z ๏ซ 1 ๏ฝ 0 ๏ฎ a ๏ฝ 1, b ๏ฝ ๏ญ1, c ๏ฝ 1
z๏ฝ
๏ฝ
๏ญ ๏จ ๏ญ1๏ฉ ๏ฑ
๏จ ๏ญ1๏ฉ 2 ๏ญ 4 ๏จ1๏ฉ
2(1)
๏ฝ
1 ๏ฑ ๏ญ3 1 ๏ฑ i 3
๏ฝ
2
2
y๏ฝ
1
3
๏ฑ
i
2 2
600
x2
238
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.8: Equations and Inequalities Involving the Absolute Value Function
Section 2.8
13. a.
Since the graphs of f and g intersect at the
points (๏ญ9, 6) and (3, 6) , the solution set of
f ( x) ๏ฝ g ( x) is {๏ญ9, 3} .
b.
Since the graph of f is below the graph of g
when x is between ๏ญ9 and 3 , the solution
set of f ( x) ๏ฃ g ( x) is {x | ๏ญ9 ๏ฃ x ๏ฃ 3} or ,
using interval notation, [๏ญ9, 3] .
c.
Since the graph of f is above the graph of g
to the left of x ๏ฝ ๏ญ9 and to the right of
x ๏ฝ 3 , the solution set of f ( x) ๏พ g ( x) is
{x | x ๏ผ ๏ญ9 or x ๏พ 3} or , using interval
notation, (๏ญ๏ฅ, ๏ญ9) ๏ (3, ๏ฅ) .
14. a.
Since the graphs of f and g intersect at the
points (0, 2) and (4, 2) , the solution set of
f ( x) ๏ฝ g ( x) is {0, 4} .
b.
Since the graph of f is below the graph of g
when x is between 0 and 4, the solution set
of f ( x) ๏ฃ g ( x) is {x | 0 ๏ฃ x ๏ฃ 4} or , using
interval notation, [0, 4] .
c.
Since the graph of f is above the graph of g
to the left of x ๏ฝ 0 and to the right of x ๏ฝ 4 ,
the solution set of f ( x) ๏พ g ( x) is
{x | x ๏ผ 0 or x ๏พ 4} or , using interval
notation, (๏ญ๏ฅ, 0) ๏ (4, ๏ฅ) .
15. a.
Since the graphs of f and g intersect at the
points (๏ญ2,5) and (3,5) , the solution set of
f ( x) ๏ฝ g ( x) is {๏ญ2, 3} .
1. x ๏ณ ๏ญ2
๏ ๏ญ๏ธ๏ ๏ ๏ ๏ ๏ ๏ญ๏ถ๏ ๏ ๏ ๏ ๏ ๏ญ๏ด๏ ๏ ๏ ๏ ๏ ๏ญ๏ฒ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ฐ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ฒ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ด๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ธ
2. The distance on a number line from the origin to
a is a for any real number a .
3. 4 x ๏ญ 3 ๏ฝ 9
4 x ๏ฝ 12
x๏ฝ3
The solution set is {3}.
4. 3x ๏ญ 2 ๏พ 7
3x ๏พ 9
x๏พ3
The solution set is {x | x > 3} or, using interval
notation, ๏จ 3, ๏ฅ ๏ฉ .
5. ๏ญ1 ๏ผ 2 x ๏ซ 5 ๏ผ 13
๏ญ6 ๏ผ 2 x ๏ผ 8
๏ญ3 ๏ผ x ๏ผ 4
The solution set is ๏ป x | ๏ญ3 ๏ผ x ๏ผ 4๏ฝ or, using
interval notation, ๏จ ๏ญ3, 4 ๏ฉ .
6. To graph f ๏จ x ๏ฉ ๏ฝ x ๏ญ 3 , shift the graph of
y ๏ฝ x to the right 3 units.
y
f ( x) ๏ฝ x ๏ญ 3
๏ฑ๏ฐ
b. Since the graph of f is above the graph of g
to the left of x ๏ฝ ๏ญ2 and to the right of
x ๏ฝ 3 , the solution set of f ( x) ๏ณ g ( x) is
{x | x ๏ฃ ๏ญ2 or x ๏ณ 3} or , using interval
notation, (๏ญ๏ฅ, ๏ญ2] ๏ [3, ๏ฅ) .
๏ฑ๏ฐ x
๏ญ๏ฑ๏ฐ
๏ญ๏ฑ๏ฐ
c.
Since the graph of f is below the graph of g
when x is between ๏ญ2 and 3, the solution
set of f ( x) ๏ผ g ( x) is {x | ๏ญ2 ๏ผ x ๏ผ 3} or ,
using interval notation, (๏ญ2, 3) .
16. a.
Since the graphs of f and g intersect at the
points (๏ญ4, 7) and (3, 7) , the solution set of
f ( x) ๏ฝ g ( x) is {๏ญ4, 3} .
7. ๏ญa ; a
8. ๏ญa ๏ผ u ๏ผ a
9. ๏ฃ
10. True
11. False. Any real number will be a solution of
x ๏พ ๏ญ2 since the absolute value of any real
b. Since the graph of f is above the graph of g
to the left of x ๏ฝ ๏ญ4 and to the right of
x ๏ฝ 3 , the solution set of f ( x) ๏ณ g ( x) is
{x | x ๏ฃ ๏ญ4 or x ๏ณ 3} or , using interval
notation, (๏ญ๏ฅ, ๏ญ4] ๏ [3, ๏ฅ) .
number is positive.
12. False. u ๏พ a is equivalent to u ๏ผ ๏ญa or u ๏พ a .
239
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
c.
Since the graph of f is below the graph of g
when x is between ๏ญ4 and 3, the solution
set of f ( x) ๏ผ g ( x) is {x | ๏ญ4 ๏ผ x ๏ผ 3} or ,
using interval notation, (๏ญ4, 3) .
17.
x ๏ฝ6
x ๏ฝ 6 or x ๏ฝ ๏ญ 6
The solution set is {โ6, 6}.
18.
x ๏ฝ 12
x ๏ฝ 12 or x ๏ฝ ๏ญ12
23.
๏ญ 2x ๏ฝ 8
or ๏ญ 2 x ๏ฝ ๏ญ 8
x ๏ฝ ๏ญ 4 or
x๏ฝ4
The solution set is {โ4, 4}.
24.
๏ญ 2 x ๏ฝ ๏ญ1
2x ๏ฝ 1
2 x ๏ฝ 1 or 2 x ๏ฝ ๏ญ1
1
1
x๏ฝ
or x ๏ฝ ๏ญ
2
2
2x ๏ซ 3 ๏ฝ 5
2 x ๏ซ 3 ๏ฝ 5 or 2 x ๏ซ 3 ๏ฝ ๏ญ 5
2 x ๏ฝ 2 or
2x ๏ฝ ๏ญ 8
x ๏ฝ 1 or
x ๏ฝ ๏ญ4
The solution set is {โ4, 1}.
20.
3x ๏ญ 1 ๏ฝ 2
3x ๏ญ 1 ๏ฝ 2 or 3x ๏ญ 1 ๏ฝ ๏ญ 2
3x ๏ฝ 3 or
3x ๏ฝ ๏ญ1
1
x ๏ฝ 1 or
x๏ฝ๏ญ
3
1
The solution set is ๏ญ , 1 .
3
26. 5 ๏ญ
1
x ๏ฝ3
2
๏ญ
1
x ๏ฝ ๏ญ2
2
1
x ๏ฝ2
2
1
1
x ๏ฝ 2 or x ๏ฝ ๏ญ2
2
2
x ๏ฝ 4 or x ๏ฝ ๏ญ4
The solution set is ๏ป๏ญ4, 4๏ฝ .
1 ๏ญ 4t ๏ซ 8 ๏ฝ 13
1 ๏ญ 4t ๏ฝ 5
1 ๏ญ 4t ๏ฝ 5 or 1 ๏ญ 4t ๏ฝ ๏ญ5
๏ญ4t ๏ฝ 4 or
๏ญ 4t ๏ฝ ๏ญ6
3
t ๏ฝ ๏ญ1 or
t๏ฝ
2
3
The solution set is ๏ญ1, .
2
27.
๏ป ๏ฝ
22.
๏ป ๏ฝ
1 1
The solution set is ๏ญ , .
2 2
๏ป ๏ฝ
21.
๏ญ x ๏ฝ1
๏ญ x ๏ฝ 1 or ๏ญ x ๏ฝ ๏ญ1
The solution set is {โ1, 1}.
25. 4 ๏ญ 2 x ๏ฝ 3
The solution set is ๏ป๏ญ12, 12๏ฝ .
19.
๏ญ 2x ๏ฝ 8
2
x ๏ฝ9
3
27
x ๏ฝ
2
27
27
x๏ฝ
or x ๏ฝ ๏ญ
2
2
27 27
.
The solution set is ๏ญ ,
2 2
๏ป
1๏ญ 2z ๏ซ 6 ๏ฝ 9
1๏ญ 2z ๏ฝ 3
28.
1 ๏ญ 2 z ๏ฝ 3 or 1 ๏ญ 2 z ๏ฝ ๏ญ3
๏ญ2 z ๏ฝ 2 or
๏ญ 2 z ๏ฝ ๏ญ4
z ๏ฝ ๏ญ1 or
z๏ฝ2
๏ฝ
3
x ๏ฝ9
4
x ๏ฝ 12
x ๏ฝ 12 or x ๏ฝ ๏ญ 12
The solution set is {โ12, 12}.
The solution set is ๏ป๏ญ1, 2๏ฝ .
240
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.8: Equations and Inequalities Involving the Absolute Value Function
29.
x 2
๏ซ ๏ฝ2
3 5
35.
x 2 ๏ญ 2 x ๏ฝ 3 or x 2 ๏ญ 2 x ๏ฝ ๏ญ3
x 2
x 2
๏ซ ๏ฝ 2 or
๏ซ ๏ฝ ๏ญ2
3 5
3 5
5 x ๏ซ 6 ๏ฝ 30 or 5 x ๏ซ 6 ๏ฝ ๏ญ 30
5 x ๏ฝ 24 or
24
x๏ฝ
or
5
x 2 ๏ญ 2 x ๏ญ 3 ๏ฝ 0 or x 2 ๏ญ 2 x ๏ซ 3 ๏ฝ 0
( x ๏ญ 3)( x ๏ซ 1) ๏ฝ 0 or x 2 ๏ญ 2 x ๏ซ 3 ๏ฝ 0
5 x ๏ฝ ๏ญ36
๏ป
๏ฝ
x ๏ฝ 3 or x ๏ฝ ๏ญ1
3x ๏ฝ 8
36.
x 1
๏ญ ๏ฝ ๏ญ1
2 3
or 3 x ๏ญ 2 ๏ฝ ๏ญ 6
or
or
8
x๏ฝ
or
3
32.
( x ๏ญ 3)( x ๏ซ 4) ๏ฝ 0 or x 2 ๏ซ x ๏ซ 3 ๏ฝ 0
๏ญ1 ๏ฑ 1 ๏ญ 48
2
1
47
๏ญ1 ๏ฑ ๏ญ47
๏ฝ๏ญ ๏ฑ
i
2
2
2
x๏ฝ
๏ป ๏ฝ
x ๏ฝ 3 or x ๏ฝ ๏ญ4
The solution set is
๏ฌ
1
47
1
47 ๏ผ
i, ๏ญ ๏ซ
i๏ฝ .
๏ญ๏ญ4,3, ๏ญ ๏ญ
2
2
2
2 ๏พ
๏ฎ
1
2
No solution, since absolute value always yields a
non-negative number.
u๏ญ2 ๏ฝ ๏ญ
2 ๏ญ v ๏ฝ ๏ญ1
37.
x2 ๏ซ x ๏ญ 1 ๏ฝ 1
x2 ๏ซ x ๏ญ 1 ๏ฝ 1
or x 2 ๏ซ x ๏ญ 1 ๏ฝ ๏ญ1
x2 ๏ซ x ๏ญ 2 ๏ฝ 0
x2 ๏ญ 9 ๏ฝ 0
or x 2 ๏ซ x ๏ฝ 0
๏จ x ๏ญ 1๏ฉ๏จ x ๏ซ 2 ๏ฉ ๏ฝ 0 or x ๏จ x ๏ซ 1๏ฉ ๏ฝ 0
x2 ๏ญ 9 ๏ฝ 0
x ๏ฝ 1, x ๏ฝ ๏ญ2 or x ๏ฝ 0, x ๏ฝ ๏ญ1
x2 ๏ฝ 9
The solution set is ๏ป๏ญ2, ๏ญ 1, 0,1๏ฝ .
x ๏ฝ ๏ฑ3
The solution set is ๏ป๏ญ3, 3๏ฝ .
34.
x 2 ๏ซ x ๏ฝ 12
x 2 ๏ซ x ๏ญ 12 ๏ฝ 0 or x 2 ๏ซ x ๏ซ 12 ๏ฝ 0
3x ๏ฝ ๏ญ 4
No solution, since absolute value always yields a
non-negative number.
33.
๏ฝ
x 2 ๏ซ x ๏ฝ 12 or x 2 ๏ซ x ๏ฝ ๏ญ12
4
x๏ฝ๏ญ
3
4 8
The solution set is ๏ญ , .
3 3
31.
๏ป
The solution set is ๏ญ1,3,1 ๏ญ 2i,1 ๏ซ 2i .
x 1
๏ญ ๏ฝ1
2 3
x 1
๏ญ ๏ฝ1
2 3
3x ๏ญ 2 ๏ฝ 6
2 ๏ฑ 4 ๏ญ 12
2
2 ๏ฑ ๏ญ8
๏ฝ
๏ฝ 1 ๏ฑ 2i
2
x๏ฝ
36
x๏ฝ๏ญ
5
36 24
The solution set is ๏ญ ,
.
5 5
30.
x2 ๏ญ 2 x ๏ฝ 3
38.
x 2 ๏ซ 3x ๏ญ 2 ๏ฝ 2
x2 ๏ซ 3x ๏ญ 2 ๏ฝ 2
x 2 ๏ญ 16 ๏ฝ 0
x2 ๏ซ 3x ๏ฝ 4
x 2 ๏ญ 16 ๏ฝ 0
or x 2 ๏ซ 3 x ๏ญ 2 ๏ฝ ๏ญ2
or x 2 ๏ซ 3x ๏ฝ 0
x 2 ๏ซ 3 x ๏ญ 4 ๏ฝ 0 or x ๏จ x ๏ซ 3๏ฉ ๏ฝ 0
x 2 ๏ฝ 16
x ๏ฝ ๏ฑ4
The solution set is ๏ป๏ญ4, 4๏ฝ .
๏จ x ๏ซ 4 ๏ฉ๏จ x ๏ญ 1๏ฉ ๏ฝ 0
or
x ๏ฝ 0, x ๏ฝ ๏ญ3
x ๏ฝ ๏ญ4, x ๏ฝ 1
The solution set is ๏ป๏ญ4, ๏ญ3, 0,1๏ฝ .
241
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
39.
x ๏ผ6
๏ญ6 ๏ผ x ๏ผ 6
46.
2 x ๏ผ ๏ญ6 or 2 x ๏พ 6
๏ป x ๏ญ 6 ๏ผ x ๏ผ 6๏ฝ or ๏จ ๏ญ 6, 6 ๏ฉ
x ๏ผ ๏ญ 3 or x ๏พ 3
๏ฐ
๏ญ๏ถ
40.
2x ๏พ 6
๏ป x x ๏ผ ๏ญ3 or x ๏พ 3๏ฝ or ๏จ ๏ญ๏ฅ, ๏ญ3๏ฉ ๏ ๏จ 3, ๏ฅ ๏ฉ
๏ถ
๏ญ๏ณ
x ๏ผ9
๏ญ9 ๏ผ x ๏ผ 9
47.
๏ณ
๏ฐ
x๏ญ2 ๏ซ2๏ผ3
๏ป x ๏ญ 9 ๏ผ x ๏ผ 9๏ฝ or ๏จ ๏ญ9, 9 ๏ฉ
x ๏ญ2 ๏ผ1
๏ญ1 ๏ผ x ๏ญ 2 ๏ผ 1
๏ญ๏น
41.
๏น
๏ฐ
1๏ผ x๏ผ 3
๏ป x 1 ๏ผ x ๏ผ 3๏ฝ or ๏จ1,3๏ฉ
x ๏พ4
x ๏ผ ๏ญ4 or x ๏พ 4
๏ฐ
๏ป x x ๏ผ ๏ญ 4 or x ๏พ 4๏ฝ or ๏จ ๏ญ๏ฅ, ๏ญ 4 ๏ฉ ๏ ๏จ 4, ๏ฅ ๏ฉ
๏ฐ
๏ญ๏ด
42.
x๏ซ4 ๏ซ3๏ผ 5
x๏ซ4 ๏ผ 2
๏ญ2 ๏ผ x ๏ซ 4 ๏ผ 2
x ๏ผ ๏ญ1 or x ๏พ 1
๏ญ6 ๏ผ x ๏ผ ๏ญ2
๏ป x x ๏ผ ๏ญ1 or x ๏พ 1๏ฝ or ๏จ ๏ญ๏ฅ, ๏ญ1๏ฉ ๏ ๏จ1, ๏ฅ ๏ฉ
๏ป x ๏ญ 6 ๏ผ x ๏ผ ๏ญ2๏ฝ or ๏จ ๏ญ6, ๏ญ 2 ๏ฉ
๏ฐ
๏ญ๏ถ
๏ฑ
49.
2x ๏ผ 8
๏ญ 8 ๏ผ 2x ๏ผ 8
๏ญ4 ๏ผ x ๏ผ 4
๏ญ 2 ๏ฃ 3t ๏ฃ 6
๏ญ๏ด
๏ฐ
2
๏ฃt ๏ฃ2
3
๏ฌ
2
๏ผ
๏ฉ 2 ๏น
๏ญt ๏ญ ๏ฃ t ๏ฃ 2 ๏ฝ or ๏ช ๏ญ , 2 ๏บ
3
๏ซ 3 ๏ป
๏ฎ
๏พ
๏ญ
๏ด
3 x ๏ผ 15
๏ญ15 ๏ผ 3 x ๏ผ 15
๏ญ2
3
๏ญ5 ๏ผ x ๏ผ 5
๏ป x ๏ญ 5 ๏ผ x ๏ผ 5๏ฝ or ๏จ ๏ญ5,5๏ฉ
๏ญ๏ต
45.
๏ฐ
50.
๏ฐ
๏ญ 7 ๏ฃ 2u ๏ซ 5 ๏ฃ 7
๏ต
๏ญ12 ๏ฃ 2u ๏ฃ 2
๏ญ6 ๏ฃ u ๏ฃ1
3x ๏ผ ๏ญ12 or 3 x ๏พ 12
x ๏ผ ๏ญ 4 or x ๏พ 4
๏ปu ๏ญ 6 ๏ฃ u ๏ฃ 1๏ฝ or ๏ ๏ญ6, 1๏
๏ป x x ๏ผ ๏ญ4 or x ๏พ 4๏ฝ or ๏จ ๏ญ๏ฅ, ๏ญ4 ๏ฉ ๏ ๏จ 4, ๏ฅ ๏ฉ
๏ฐ
๏ฒ
2u ๏ซ 5 ๏ฃ 7
3 x ๏พ 12
๏ญ๏ด
๏ฐ
๏ญ๏ฒ
3t ๏ญ 2 ๏ฃ 4
๏ญ 4 ๏ฃ 3t ๏ญ 2 ๏ฃ 4
๏ป x ๏ญ 4 ๏ผ x ๏ผ 4๏ฝ or ๏จ ๏ญ4,4 ๏ฉ
44.
๏ณ
x ๏พ1
๏ญ๏ฑ
43.
48.
๏ด
๏ฑ
๏ญ๏ถ
๏ด
242
Copyright ยฉ 2019 Pearson Education, Inc.
๏ฐ
๏ฑ
Section 2.8: Equations and Inequalities Involving the Absolute Value Function
51.
๏ป x x ๏ผ ๏ญ1 or x ๏พ 2๏ฝ or ๏จ ๏ญ๏ฅ, ๏ญ1๏ฉ ๏ ๏จ 2, ๏ฅ ๏ฉ
x๏ญ3 ๏ณ 2
x ๏ญ 3 ๏ฃ ๏ญ2 or x ๏ญ 3 ๏ณ 2
๏ญ๏ฑ
x ๏ฃ 1 or x ๏ณ 5
๏ป x x ๏ฃ 1 or x ๏ณ 5๏ฝ or ๏จ ๏ญ๏ฅ,1๏ ๏ ๏5, ๏ฅ ๏ฉ
๏ฐ
52.
56.
๏ญ3x ๏ผ ๏ญ 3 or ๏ญ 3x ๏พ ๏ญ1
x ๏พ1
x ๏ฃ ๏ญ6 or x ๏ณ ๏ญ2
๏ป x x ๏ฃ ๏ญ6 or x ๏ณ ๏ญ2๏ฝ or ๏จ ๏ญ๏ฅ, ๏ญ6๏ ๏ ๏ ๏ญ2, ๏ฅ ๏ฉ
๏ญ๏ถ
๏ฐ
1 ๏ญ 4 x ๏ญ 7 ๏ผ ๏ญ2
57.
๏ฑ
2 x ๏ซ 1 ๏ผ ๏ญ1
๏ฐ
or
๏ญ1 ๏ผ x ๏ผ
๏ปx ๏ญ 1 ๏ผ x ๏ผ 32๏ฝ or ๏จ ๏ญ1, 32 ๏ฉ
๏ฐ
๏ญ๏ฑ
3
2
58.
3x ๏ญ 4 ๏ณ 0
All real numbers since absolute value is always
non-negative.
๏ป x x is any real number๏ฝ or ๏จ ๏ญ๏ฅ, ๏ฅ ๏ฉ
3
2
๏ฐ
1 ๏ญ 2 x ๏ญ 4 ๏ผ ๏ญ1
59.
1 ๏ญ 2x ๏ผ 3
1
๏จ 3x ๏ญ 2 ๏ฉ ๏ญ 7 ๏ผ 2
1
2
1
1
๏ญ ๏ผ 3x ๏ญ 9 ๏ผ
2
2
17
19
๏ผ 3x ๏ผ
2
2
17
19
๏ผx๏ผ
6
6
๏ญ3 ๏ผ 1 ๏ญ 2 x ๏ผ 3
3x ๏ญ 9 ๏ผ
๏ญ4 ๏ผ ๏ญ2 x ๏ผ 2
๏ญ4
2
๏พx๏พ
๏ญ2
๏ญ2
2 ๏พ x ๏พ ๏ญ1 or ๏ญ 1 ๏ผ x ๏ผ 2
๏ป x ๏ญ 1 ๏ผ x ๏ผ 2๏ฝ or ๏จ ๏ญ1,2 ๏ฉ
๏ญ๏ฑ
๏ฐ
๏ฒ
๏ปx | 176 ๏ผ x ๏ผ 196 ๏ฝ or ๏ฆ๏ง๏จ 176 , 196 ๏ถ๏ท๏ธ
1 ๏ญ 2 x ๏พ ๏ญ3
1๏ญ 2x ๏พ 3
17
6
1 ๏ญ 2 x ๏ผ ๏ญ3 or 1 ๏ญ 2 x ๏พ 3
๏ญ2 x ๏ผ ๏ญ 4 or ๏ญ 2 x ๏พ 2
x๏พ2
1
3
No solution since absolute value is always nonnegative.
๏ญ6 ๏ผ ๏ญ4 x ๏ผ 4
๏ญ6
4
๏พx๏พ
๏ญ4
๏ญ4
3
๏พ x ๏พ ๏ญ1
2
1
3
๏ฐ
๏ญ๏ฒ
๏ญ5 ๏ผ 1 ๏ญ 4 x ๏ผ 5
55.
x๏ผ
or
๏ฌ
1
๏ผ
1๏ถ
๏ฆ
๏ญ x x ๏ผ or x ๏พ 1๏ฝ or ๏ง ๏ญ๏ฅ, ๏ท ๏ ๏จ1, ๏ฅ ๏ฉ
3
3๏ธ
๏จ
๏ฎ
๏พ
1๏ญ 4x ๏ผ 5
54.
2 ๏ญ 3 x ๏พ ๏ญ1
2 ๏ญ 3x ๏ผ ๏ญ1 or 2 ๏ญ 3 x ๏พ 1
x๏ซ4 ๏ณ 2
x ๏ซ 4 ๏ฃ ๏ญ2 or x ๏ซ 4 ๏ณ 2
53.
๏ฒ
2 ๏ญ 3x ๏พ 1
๏ต
๏ฑ
๏ฐ
or
x ๏ผ ๏ญ1
243
Copyright ยฉ 2019 Pearson Education, Inc.
19
6
Chapter 2: Linear and Quadratic Functions
60.
f ( x) ๏พ g ( x)
b.
1
๏จ 4 x ๏ญ 1๏ฉ ๏ญ 11 ๏ผ 4
๏ญ3 5 x ๏ญ 2 ๏พ ๏ญ9
1
4 x ๏ญ 12 ๏ผ
4
1
1
๏ญ ๏ผ 4 x ๏ญ 12 ๏ผ
4
4
47
49
๏ผ 4x ๏ผ
4
4
47
49
๏ผx๏ผ
16
16
5x ๏ญ 2 ๏ผ 3
๏ญ3 ๏ผ 5 x ๏ญ 2 ๏ผ 3
๏ญ1 ๏ผ 5 x ๏ผ 5
1
๏ญ ๏ผ x ๏ผ1
5
๏ปx | ๏ญ 15 ๏ผ x ๏ผ 1๏ฝ or ๏ฆ๏ง๏จ ๏ญ 15 ,1๏ถ๏ท๏ธ
๏ปx | 1647 ๏ผ x ๏ผ 1649๏ฝ or ๏ฆ๏ง๏จ 1647 , 1649 ๏ถ๏ท๏ธ
f ( x) ๏ฃ g ( x)
c.
๏ญ3 5 x ๏ญ 2 ๏ฃ ๏ญ9
5x ๏ญ 2 ๏ณ 3
49
16
47
16
5 x ๏ญ 2 ๏ณ 3 or 5 x ๏ญ 2 ๏ฃ ๏ญ3
5 x ๏ณ 5 or
61. 5 ๏ญ x ๏ญ 1 ๏พ 2
๏ญ x ๏ญ 1 ๏พ ๏ญ3
๏ป
x ๏ญ1 ๏ผ 3
๏ญ3 ๏ผ x ๏ญ 1 ๏ผ 3
๏ญ2 ๏ผ x ๏ผ 4
๏ป x | ๏ญ2 ๏ผ x ๏ผ 4๏ฝ or
๏ญ๏ฒ
64. a.
๏จ ๏ญ2, 4 ๏ฉ
๏ฝ
f ( x) ๏ฝ g ( x)
2x ๏ญ 3 ๏ฝ 6
๏ด
๏ฐ
1
5
1๏น
๏ฆ
x | x ๏ฃ ๏ญ 15 or x ๏ณ 1 or ๏ง ๏ญ๏ฅ, ๏ญ ๏บ ๏ ๏ซ๏ฉ1, ๏ฅ ๏ฉ
5๏ป
๏จ
2 x ๏ญ 3 ๏ฝ 6 or 2 x ๏ญ 3 ๏ฝ ๏ญ6
๏ญ x ๏ซ 3 ๏ณ ๏ญ4
2 x ๏ฝ 9 or
2 x ๏ฝ ๏ญ3
9 or
2
x๏ฝ๏ญ
x๏ฝ
x๏ซ3 ๏ฃ 4
๏ญ4 ๏ฃ x ๏ซ 3 ๏ฃ 4
๏ญ7 ๏ฃ x ๏ฃ 1
๏ป x | ๏ญ7 ๏ฃ x ๏ฃ 1๏ฝ or ๏ฉ๏ซ ๏ญ7,1๏น๏ป
๏ญ๏ท
b.
f ( x) ๏ฝ g ( x)
2x ๏ญ 3 ๏ฃ 6
๏ญ6 ๏ฃ 2 x ๏ญ 3 ๏ฃ 6
๏ญ3 ๏ฃ 2 x ๏ฃ 9
๏ฑ
f ( x) ๏ฝ g ( x)
๏ญ
๏ญ3 5 x ๏ญ 2 ๏ฝ ๏ญ9
5 x ๏ญ 2 ๏ฝ 3 or 5 x ๏ญ 2 ๏ฝ ๏ญ3
c.
5 x ๏ฝ ๏ญ1
x๏ฝ๏ญ
3
9
๏ฃx๏ฃ
2
2
๏ปx | ๏ญ 32 ๏ฃ x ๏ฃ 92๏ฝ or ๏ฉ๏ช๏ซ๏ญ 32 , 92 ๏น๏บ๏ป
5x ๏ญ 2 ๏ฝ 3
x ๏ฝ 1 or
3
2
๏ญ2 2 x ๏ญ 3 ๏ณ ๏ญ12
๏ฐ
5 x ๏ฝ 5 or
x๏ฃ๏ญ
๏ญ2 2 x ๏ญ 3 ๏ฝ ๏ญ12
62. 6 ๏ญ x ๏ซ 3 ๏ณ 2
63. a.
5 x ๏ฃ ๏ญ1
x ๏ณ 1 or
f ( x) ๏ฝ g ( x)
๏ญ2 2 x ๏ญ 3 ๏ผ ๏ญ12
1
5
2x ๏ญ 3 ๏พ 6
244
Copyright ยฉ 2019 Pearson Education, Inc.
Section 2.8: Equations and Inequalities Involving the Absolute Value Function
2 x ๏ญ 3 ๏พ 6 or 2 x ๏ญ 3 ๏ผ ๏ญ6
2 x ๏พ 9 or
2 x ๏ผ ๏ญ3
9 or
2
x๏ผ๏ญ
x๏พ
Look at the graph of f ( x) and g ( x) and
see where the graph of f ( x) ๏พ g ( x) . We
see that this occurs where x ๏ผ 15 or x ๏พ 53 .
3
2
65. a.
๏ป
๏จ ๏ญ๏ฅ, 15 ๏ฉ ๏ ๏จ 53 , ๏ฅ ๏ฉ
f ( x) ๏ฝ g ( x)
c.
๏ญ3 x ๏ซ 2 ๏ฝ x ๏ซ 10
๏ญ 3x ๏ซ 2 ๏ฝ ๏ญ ๏จ x ๏ซ 10 ๏ฉ
๏ญ 3x ๏ซ 2 ๏ฝ x ๏ซ 10
or
๏ญ4 x ๏ฝ 8
๏ญ3x ๏ซ 2 ๏ฝ ๏ญ x ๏ญ 10
or
x ๏ฝ ๏ญ2
๏ญ2 x ๏ฝ ๏ญ12
or
x๏ฝ6
Look at the graph of f ( x) and g ( x) and
see where the graph of f ( x) ๏ฃ g ( x) . We
see that this occurs where x is between 15
and 53 . So the solution set is:
๏ปx | 15 ๏ฃ x ๏ฃ 53๏ฝ or ๏ฉ๏ซ 15 , 53 ๏น๏ป .
b.
67.
x ๏ญ 10 ๏ผ 2
๏ญ2 ๏ผ x ๏ญ 10 ๏ผ 2
8 ๏ผ x ๏ผ 12
Solution set: ๏ป x | 8 ๏ผ x ๏ผ 12๏ฝ or (8, 12)
Look at the graph of f ( x ) and g ( x) and
see where the graph of f ( x) ๏ณ g ( x) . We
see that this occurs where x ๏ฃ ๏ญ2 or x ๏ณ 6 .
So the solution set is: ๏ป x | x ๏ฃ ๏ญ2 or x ๏ณ 6๏ฝ
68.
66. a.
x ๏ญ ๏จ ๏ญ6 ๏ฉ ๏ผ 3
x๏ซ6 ๏ผ3
๏ญ3 ๏ผ x ๏ซ 6 ๏ผ 3
๏ญ9 ๏ผ x ๏ผ ๏ญ3
Solution set: ๏ป x | ๏ญ9 ๏ผ x ๏ผ ๏ญ3๏ฝ or (๏ญ9, ๏ญ3)
or ๏จ ๏ญ๏ฅ, ๏ญ2 ๏น๏ป ๏ ๏ฉ๏ซ6, ๏ฅ ๏ฉ .
c.
๏ฝ
So the solution set is: x | x ๏ผ 15 or x ๏พ 53 or
๏ปx | x ๏ผ ๏ญ 32 or x ๏พ 92๏ฝ or ๏จ ๏ญ๏ฅ, ๏ญ 32 ๏ฉ ๏ ๏จ 92 , ๏ฅ ๏ฉ
Look at the graph of f ( x ) and g ( x) and
see where the graph of f ( x) ๏ผ g ( x) . We
see that this occurs where x is between -2
and 6. So the solution set is:
๏ป x | ๏ญ2 ๏ผ x ๏ผ 6๏ฝ or ๏จ ๏ญ2, 6 ๏ฉ .
69.
2 x ๏ญ ๏จ ๏ญ1๏ฉ ๏พ 5
2x ๏ซ1 ๏พ 5
2 x ๏ซ 1 ๏ผ ๏ญ5 or 2 x ๏ซ 1 ๏พ 5
2 x ๏ผ ๏ญ6 or
2x ๏พ 4
x ๏ผ ๏ญ3 or
x๏พ2
f ( x) ๏ฝ g ( x)
4x ๏ญ 3 ๏ฝ x ๏ซ 2
Solution set: ๏ป x | x ๏ผ ๏ญ3 or x ๏พ 2๏ฝ or
4x ๏ญ 3 ๏ฝ ๏ญ ๏จ x ๏ซ 2๏ฉ
4x ๏ญ 3 ๏ฝ x ๏ซ 2
or 4 x ๏ญ 3 ๏ฝ ๏ญ x ๏ญ 2
3x ๏ฝ 5
or
5
5x ๏ฝ 1
x๏ฝ
or
3
1
x๏ฝ
5
๏จ ๏ญ๏ฅ, ๏ญ3๏ฉ ๏ ๏จ 2, ๏ฅ ๏ฉ
70.
2x ๏ญ 3 ๏พ 1
2 x ๏ญ 3 ๏ผ ๏ญ1 or 2 x ๏ญ 3 ๏พ 1
2 x ๏ผ 2 or
2x ๏พ 4
x ๏ผ 1 or
x๏พ2
b.
Solution set: ๏ป x | x ๏ผ 1 or x ๏พ 2๏ฝ or
๏จ ๏ญ๏ฅ,1๏ฉ ๏ ๏จ 2, ๏ฅ ๏ฉ
245
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
71.
the equation must always be zero or larger.
Thus, the only solution to the inequality above
will be when the absolute value expression
equals 0:
2x ๏ญ1 ๏ฝ 0
x ๏ญ 5.7 ๏ฃ 0.0005
๏ญ0.0005 ๏ผ x ๏ญ 5.7 ๏ผ 0.0005
5.6995 ๏ผ x ๏ผ 5.7005
The acceptable lengths of the rod is from 5.6995
inches to 5.7005 inches.
72.
2x ๏ญ1 ๏ฝ 0
2x ๏ฝ 1
1
x๏ฝ
2
x ๏ญ 6.125 ๏ฃ 0.0005
๏ญ0.0005 ๏ผ x ๏ญ 6.125 ๏ผ 0.0005
6.1245 ๏ผ x ๏ผ 6.1255
The acceptable lengths of the rod is from 6.1245
inches to 6.1255 inches.
73.
74.
๏ฌ1 ๏ผ
Thus, the solution set is ๏ญ ๏ฝ .
๏ฎ2๏พ
x ๏ญ 100
๏พ 1.96
15
x ๏ญ 100
x ๏ญ 100
๏ผ ๏ญ1.96 or
๏พ 1.96
15
15
x ๏ญ 100 ๏ผ ๏ญ29.4 or x ๏ญ 100 ๏พ 29.4
x ๏ผ 70.6 or
x ๏พ 129.4
Since IQ scores are whole numbers, any IQ less
than 71 or greater than 129 would be considered
unusual.
78.
f ( ๏ญ4) ๏ฝ 2( ๏ญ4) ๏ญ 7
๏ฝ ๏ญ8 ๏ญ 7 ๏ฝ ๏ญ15 ๏ฝ 15
79. 2( x ๏ซ 4) ๏ซ x ๏ผ 4( x ๏ซ 2)
2x ๏ซ 8 ๏ซ x ๏ผ 4x ๏ซ 8
3x ๏ซ 8 ๏ผ 4 x ๏ซ 8
๏ญx ๏ผ 0
x๏พ0
x ๏ญ 266
๏พ 1.96
16
x ๏ญ 266
x ๏ญ 266
๏ผ ๏ญ1.96 or
๏พ 1.96
16
16
x ๏ญ 266 ๏ผ ๏ญ31.36 or x ๏ญ 266 ๏พ 31.36
x ๏ผ 234.64 or
x ๏พ 297.36
Pregnancies less than 235 days long or greater
than 297 days long would be considered unusual.
80.
c. Increasing: ๏3,5๏ :Decreasing: ๏ ๏ญ2,1๏
Constant: ๏1, 3๏
5 x ๏ซ 1 ๏ฝ ๏ญ2
No matter what real number is substituted for x,
the absolute value expression on the left side of
the equation must always be zero or larger.
Thus, it can never equal ๏ญ2 .
d. Neither
2 x ๏ซ 5 ๏ซ 3 ๏พ 1 ๏ 2 x ๏ซ 5 ๏พ ๏ญ2
Chapter 2 Review Exercises
No matter what real number is substituted for x,
the absolute value expression on the left side of
the equation must always be zero or larger.
Thus, it will always be larger than ๏ญ2 . Thus, the
solution is the set of all real numbers.
77.
(5 ๏ญ i )(3 ๏ซ 2i ) ๏ฝ
15 ๏ซ 10i ๏ญ 3i ๏ญ 2i 2 ๏ฝ
15 ๏ซ 7i ๏ซ 2 ๏ฝ 17 ๏ซ 7i
81. a. Intercepts: (0,0), (4,0)
b. Domain: ๏ ๏ญ2,5๏ , Range: ๏ ๏ญ2, 4๏
75. 5 x ๏ซ 1 ๏ซ 7 ๏ฝ 5
76.
f ( x) ๏ฝ 2 x ๏ญ 7
1.
f ๏จ x๏ฉ ๏ฝ 2x ๏ญ 5
a. Slope = 2; y-intercept = ๏ญ5
b. Plot the point (0, ๏ญ5) . Use the slope to find
an additional point by moving 1 unit to the
right and 2 units up.
2x ๏ญ1 ๏ฃ 0
No matter what real number is substituted for x,
the absolute value expression on the left side of
246
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2 Review Exercises
c.
Domain and Range: ๏จ ๏ญ๏ฅ, ๏ฅ ๏ฉ
Domain: ๏จ ๏ญ๏ฅ, ๏ฅ ๏ฉ
c.
Range: ๏ป y | y ๏ฝ 4๏ฝ
d. Average rate of change = slope = 2
e.
Increasing
2. h( x) ๏ฝ
a.
d.
e.
4
x๏ญ6
5
4.
4
Slope = ; y-intercept = ๏ญ6
5
Domain and Range: ๏จ ๏ญ๏ฅ, ๏ฅ ๏ฉ
d.
Average rate of change = slope =
e.
Increasing
5.
4
5
3. G ๏จ x ๏ฉ ๏ฝ 4
a.
f ๏จ x ๏ฉ ๏ฝ 2 x ๏ซ 14
zero: f ๏จ x ๏ฉ ๏ฝ 2 x ๏ซ 14 ๏ฝ 0
2 x ๏ฝ ๏ญ14
x ๏ฝ ๏ญ7
y-intercept = 14
b. Plot the point (0, ๏ญ6) . Use the slope to find
an additional point by moving 5 units to the
right and 4 units up.
c.
Average rate of change = slope = 0
Constant
Slope = 0; y-intercept = 4
b. Plot the point (0, 4) and draw a horizontal
line through it.
x
y ๏ฝ f ๏จ x๏ฉ
โ2
โ7
0
3
1
8
3
18
6
33
247
Copyright ยฉ 2019 Pearson Education, Inc.
Avg. rate of change =
3 ๏ญ ๏จ ๏ญ7 ๏ฉ
0 ๏ญ ๏จ ๏ญ2 ๏ฉ
๏ฝ
10
๏ฝ5
2
8๏ญ3 5
๏ฝ ๏ฝ5
1๏ญ 0 1
18 ๏ญ 8 10
๏ฝ
๏ฝ5
3 ๏ญ1
2
33 ๏ญ 18 15
๏ฝ
๏ฝ5
6๏ญ3
3
๏y
๏x
Chapter 2: Linear and Quadratic Functions
This is a linear function with slope = 5, since the
average rate of change is constant at 5. To find
the equation of the line, we use the point-slope
formula and one of the points.
๏จ x ๏ญ 3๏ฉ2 ๏ญ 4 ๏ฝ 0
๏จ x ๏ญ 3๏ฉ2 ๏ฝ 4
y ๏ญ y1 ๏ฝ m ๏จ x ๏ญ x1 ๏ฉ
x๏ญ3 ๏ฝ ๏ฑ 4
x ๏ญ 3 ๏ฝ ๏ฑ2
x ๏ฝ 3๏ฑ 2
x ๏ฝ 3 ๏ญ 2 ๏ฝ 1 or x ๏ฝ 3 ๏ซ 2 ๏ฝ 5
y ๏ญ 3 ๏ฝ 5 ๏จ x ๏ญ 0๏ฉ
y ๏ฝ 5x ๏ซ 3
6.
x
y ๏ฝ f ๏จ x๏ฉ
โ1
โ3
0
4
1
7
2
3
6
1
Avg. rate of change =
4 ๏ญ ๏จ ๏ญ3๏ฉ
0 ๏ญ ๏จ ๏ญ1๏ฉ
๏ฝ
๏y
๏x
The zeros of g ๏จ x ๏ฉ ๏ฝ ๏จ x ๏ญ 3๏ฉ ๏ญ 4 are 1 and 5. The
2
x-intercepts of the graph of g are 1 and 5.
7
๏ฝ7
1
2
9x ๏ซ 6x ๏ซ1 ๏ฝ 0
7๏ญ4 3
๏ฝ ๏ฝ3
1๏ญ 0 1
(3x ๏ซ 1)(3 x ๏ซ 1) ๏ฝ 0
3x ๏ซ 1 ๏ฝ 0
x ๏ซ x ๏ญ 72 ๏ฝ 0
๏จ x ๏ซ 9 ๏ฉ๏จ x ๏ญ 8๏ฉ ๏ฝ 0
2
2x ๏ญ 4x ๏ญ1 ๏ฝ 0
1
x2 ๏ญ 2 x ๏ญ ๏ฝ 0
2
1
2
x ๏ญ 2x ๏ฝ
2
1
2
x ๏ญ 2x ๏ซ 1 ๏ฝ ๏ซ 1
2
3
2
๏จ x ๏ญ 1๏ฉ ๏ฝ 2
3
3 2
6
๏ฝ๏ฑ
๏
๏ฝ๏ฑ
x ๏ญ1 ๏ฝ ๏ฑ
2
2
2 2
x ๏ฝ8
The zeros of f ๏จ x ๏ฉ ๏ฝ x 2 ๏ซ x ๏ญ 72 are ๏ญ9 and 8.
The x-intercepts of the graph of f are ๏ญ9 and 8.
P ๏จt ๏ฉ ๏ฝ 0
8.
2
6t ๏ญ 13t ๏ญ 5 ๏ฝ 0
(3t ๏ซ 1)(2t ๏ญ 5) ๏ฝ 0
3t ๏ซ 1 ๏ฝ 0
t๏ฝ๏ญ
or 2t ๏ญ 5 ๏ฝ 0
1
3
t๏ฝ
1
3
G ๏จ x๏ฉ ๏ฝ 0
11.
x ๏ญ8 ๏ฝ 0
x ๏ฝ ๏ญ9
x๏ฝ๏ญ
1
The only zero of h ๏จ x ๏ฉ ๏ฝ 9 x 2 ๏ซ 6 x ๏ซ 1 is ๏ญ .
3
1
The only x-intercept of the graph of h is ๏ญ .
3
f ๏จ x๏ฉ ๏ฝ 0
or
or 3 x ๏ซ 1 ๏ฝ 0
1
x๏ฝ๏ญ
3
2
x๏ซ9 ๏ฝ 0
h ๏จ x๏ฉ ๏ฝ 0
10.
This is not a linear function, since the average
rate of change is not constant.
7.
g ๏จ x๏ฉ ๏ฝ 0
9.
5
2
x ๏ฝ 1๏ฑ
1
5
and .
3
2
1
5
The t-intercepts of the graph of P are ๏ญ and .
3
2
The zeros of P ๏จ t ๏ฉ ๏ฝ 6t 2 ๏ญ 13t ๏ญ 5 are ๏ญ
6 2๏ฑ 6
๏ฝ
2
2
The zeros of G ๏จ x ๏ฉ ๏ฝ 2 x 2 ๏ญ 4 x ๏ญ 1 are
2๏ญ 6
2
2๏ซ 6
. The x-intercepts of the graph of G
2
2๏ญ 6
2๏ซ 6
are
and
.
2
2
and
248
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2 Review Exercises
f ๏จ x๏ฉ ๏ฝ 0
g ๏จ 2 ๏ฉ ๏ฝ 4 ๏จ 2 ๏ฉ ๏ญ 1 ๏ฝ 8 ๏ญ 1 ๏ฝ 7 . The graphs of the f
๏ญ2 x ๏ซ x ๏ซ 1 ๏ฝ 0
and g intersect at the points (๏ญ2, ๏ญ9) and ๏จ 2, 7 ๏ฉ .
12.
2
2
2x ๏ญ x ๏ญ1 ๏ฝ 0
(2 x ๏ซ 1)( x ๏ญ 1) ๏ฝ 0
2x ๏ซ1 ๏ฝ 0
or x ๏ญ 1 ๏ฝ 0
1
x ๏ฝ1
x๏ฝ๏ญ
2
1
and 1.
2
1
The x-intercepts of the graph of f are ๏ญ and 1.
2
The zeros of f ๏จ x ๏ฉ ๏ฝ ๏ญ2 x 2 ๏ซ x ๏ซ 1 are ๏ญ
13.
f ๏จ x๏ฉ ๏ฝ g ๏จ x๏ฉ
f ๏จ x๏ฉ ๏ฝ 0
15.
๏จ x ๏ญ 3๏ฉ2 ๏ฝ 16
x4 ๏ญ 5×2 ๏ซ 4 ๏ฝ 0
๏จ x ๏ญ 4 ๏ฉ๏จ x ๏ญ 1๏ฉ ๏ฝ 0
2
x ๏ญ 3 ๏ฝ ๏ฑ 16 ๏ฝ ๏ฑ4
x ๏ฝ 3๏ฑ 4
x ๏ฝ 3 ๏ญ 4 ๏ฝ ๏ญ1 or x ๏ฝ 3 ๏ซ 4 ๏ฝ 7
The solution set is {๏ญ1, 7} .
The x-coordinates of the points of intersection are
๏ญ1 and 7. The y-coordinates are g ๏จ ๏ญ1๏ฉ ๏ฝ 16 and
2
x 2 ๏ญ 4 ๏ฝ 0 or x 2 ๏ญ 1 ๏ฝ 0
x ๏ฝ ๏ฑ2 or x ๏ฝ ๏ฑ1
The zeros of f ๏จ x ๏ฉ ๏ฝ x 4 ๏ญ 5 x 2 ๏ซ 4 are ๏ญ2 , ๏ญ1 ,
1, and 2. The x-intercepts of the graph of f are
๏ญ2 , ๏ญ1 , 1, and 2.
g ๏จ 7 ๏ฉ ๏ฝ 16 . The graphs of the f and g intersect at
F ๏จ x๏ฉ ๏ฝ 0
16.
the points (๏ญ1, 16) and (7, 16) .
๏จ x ๏ญ 3๏ฉ ๏ญ 2 ๏จ x ๏ญ 3๏ฉ ๏ญ 48 ๏ฝ 0
2
Let u ๏ฝ x ๏ญ 3 ๏ฎ u 2 ๏ฝ ๏จ x ๏ญ 3๏ฉ
2
u 2 ๏ญ 2u ๏ญ 48 ๏ฝ 0
๏จ u ๏ซ 6 ๏ฉ๏จ u ๏ญ 8 ๏ฉ ๏ฝ 0
u ๏ซ 6 ๏ฝ 0 or u ๏ญ 8 ๏ฝ 0
u ๏ฝ ๏ญ6
u ๏ฝ8
14.
x ๏ญ 3 ๏ฝ ๏ญ6
x๏ญ3 ๏ฝ 8
x ๏ฝ ๏ญ3
x ๏ฝ 11
The zeros of F ๏จ x ๏ฉ ๏ฝ ๏จ x ๏ญ 3๏ฉ ๏ญ 2 ๏จ x ๏ญ 3๏ฉ ๏ญ 48 are
2
f ๏จ x๏ฉ ๏ฝ g ๏จ x๏ฉ
๏ญ3 and 11. The x-intercepts of the graph of F
are ๏ญ3 and 11.
x2 ๏ซ 4 x ๏ญ 5 ๏ฝ 4x ๏ญ 1
x2 ๏ญ 4 ๏ฝ 0
๏จ x ๏ซ 2 ๏ฉ๏จ x ๏ญ 2 ๏ฉ ๏ฝ 0
17.
x ๏ซ 2 ๏ฝ 0 or x ๏ญ 2 ๏ฝ 0
x ๏ฝ ๏ญ2
x๏ฝ2
The solution set is {๏ญ2, 2} .
The x-coordinates of the points of intersection
are ๏ญ2 and 2. The y-coordinates are
g ๏จ ๏ญ2 ๏ฉ ๏ฝ 4 ๏จ ๏ญ2 ๏ฉ ๏ญ 1 ๏ฝ ๏ญ8 ๏ญ 1 ๏ฝ ๏ญ9 and
h ๏จ x๏ฉ ๏ฝ 0
3x ๏ญ 13 x ๏ญ 10 ๏ฝ 0
Let u ๏ฝ x ๏ฎ u 2 ๏ฝ x
249
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
then shift up 2 units.
3u 2 ๏ญ 13u ๏ญ 10 ๏ฝ 0
๏จ 3u ๏ซ 2 ๏ฉ๏จ u ๏ญ 5 ๏ฉ ๏ฝ 0
3u ๏ซ 2 ๏ฝ 0
or u ๏ญ 5 ๏ฝ 0
u ๏ฝ5
2
3
2
x ๏ฝ๏ญ
3
x ๏ฝ not real
u๏ฝ๏ญ
x ๏ฝ5
x ๏ฝ 52 ๏ฝ 25
Check: h ๏จ 25 ๏ฉ ๏ฝ 3 ๏จ 25 ๏ฉ ๏ญ 13 25 ๏ญ 10
20.
๏ฝ 3 ๏จ 25 ๏ฉ ๏ญ 13 ๏จ 5 ๏ฉ ๏ญ 10
f ( x) ๏ฝ ๏ญ ( x ๏ญ 4) 2
Using the graph of y ๏ฝ x 2 , shift the graph 4
units right, then reflect about the x-axis.
๏ฝ 75 ๏ญ 65 ๏ญ 10 ๏ฝ 0
The only zero of h ๏จ x ๏ฉ ๏ฝ 3 x ๏ญ 13 x ๏ญ 10 is 25.
The only x-intercept of the graph of h is 25.
f ๏จ x๏ฉ ๏ฝ 0
18.
2
๏ฆ1๏ถ
๏ฆ1๏ถ
๏ง x ๏ท ๏ญ 4 ๏ง x ๏ท ๏ญ 12 ๏ฝ 0
๏จ ๏ธ
๏จ ๏ธ
Let u ๏ฝ
1
๏ฆ1๏ถ
๏ฎ u2 ๏ฝ ๏ง ๏ท
x
๏จx๏ธ
2
u 2 ๏ญ 4u ๏ญ 12 ๏ฝ 0
๏จ u ๏ซ 2 ๏ฉ๏จ u ๏ญ 6 ๏ฉ ๏ฝ 0
21.
u๏ซ2๏ฝ0
or u ๏ญ 6 ๏ฝ 0
u ๏ฝ ๏ญ2
u๏ฝ6
1
1
๏ฝ ๏ญ2
๏ฝ6
x
x
1
1
x๏ฝ๏ญ
x๏ฝ
2
6
f ( x) ๏ฝ 2( x ๏ซ 1) 2 ๏ซ 4
Using the graph of y ๏ฝ x 2 , stretch vertically by a
factor of 2, then shift 1 unit left, then shift 4 units
up.
2
1
๏ฆ1๏ถ
๏ฆ1๏ถ
The zeros of f ๏จ x ๏ฉ ๏ฝ ๏ง ๏ท ๏ญ 4 ๏ง ๏ท ๏ญ 12 are ๏ญ
2
x
x
๏จ ๏ธ
๏จ ๏ธ
1
. The x-intercepts of the graph of f are
6
1
1
๏ญ and .
2
6
and
19.
22. a.
f ( x) ๏ฝ ๏จ x ๏ญ 2 ๏ฉ ๏ซ 2
2
f ๏จ x ๏ฉ ๏ฝ ๏จ x ๏ญ 2๏ฉ ๏ซ 2
2
๏ฝ x2 ๏ญ 4 x ๏ซ 4 ๏ซ 2
Using the graph of y ๏ฝ x 2 , shift right 2 units,
๏ฝ x2 ๏ญ 4 x ๏ซ 6
a ๏ฝ 1, b ๏ฝ ๏ญ4, c ๏ฝ 6. Since a ๏ฝ 1 ๏พ 0, the
graph opens up. The x-coordinate of the
b
๏ญ4 4
vertex is x ๏ฝ ๏ญ
๏ฝ๏ญ
๏ฝ ๏ฝ 2.
2a
2(1) 2
The y-coordinate of the vertex is
๏ฆ b ๏ถ
f ๏ง ๏ญ ๏ท ๏ฝ f (2) ๏ฝ (2) 2 ๏ญ 4 ๏จ 2 ๏ฉ ๏ซ 6 ๏ฝ 2 .
๏จ 2a ๏ธ
250
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2 Review Exercises
The y-intercept is f (0) ๏ฝ ๏ญ16 .
Thus, the vertex is (2, 2).
The axis of symmetry is the line x ๏ฝ 2 .
The discriminant is:
b 2 ๏ญ 4ac ๏ฝ (๏ญ4) 2 ๏ญ 4 ๏จ1๏ฉ (6) ๏ฝ ๏ญ8 ๏ผ 0 , so the
graph has no x-intercepts.
The y-intercept is f (0) ๏ฝ 6 .
b.
Domain: (๏ญ๏ฅ, ๏ฅ) . Range: [๏ญ16, ๏ฅ) .
c.
Decreasing on ๏จ ๏ญ๏ฅ, 0๏ ; increasing on
๏ 0, ๏ฅ ๏ฉ .
b.
Domain: (๏ญ๏ฅ, ๏ฅ) . Range: [2, ๏ฅ) .
c.
Decreasing on ๏จ ๏ญ๏ฅ, 2๏ ; increasing on
24. a.
a ๏ฝ ๏ญ 4, b ๏ฝ 4, c ๏ฝ 0. Since a ๏ฝ ๏ญ 4 ๏ผ 0, the
graph opens down. The x-coordinate of the
b
4
4
1
vertex is x ๏ฝ ๏ญ
๏ฝ๏ญ
๏ฝ๏ญ
๏ฝ .
๏ญ8 2
2a
2(๏ญ 4)
The y-coordinate of the vertex is
๏จ 2, ๏ฅ ๏ .
23. a.
f ( x) ๏ฝ
f ( x) ๏ฝ ๏ญ 4 x 2 ๏ซ 4 x
1 2
x ๏ญ 16
4
2
๏ฆ b ๏ถ
๏ฆ1๏ถ
๏ฆ1๏ถ
๏ฆ1๏ถ
f ๏ง ๏ญ ๏ท ๏ฝ f ๏ง ๏ท ๏ฝ ๏ญ 4๏ง ๏ท ๏ซ 4๏ง ๏ท
๏จ 2a ๏ธ
๏จ2๏ธ
๏จ2๏ธ
๏จ2๏ธ
๏ฝ ๏ญ1 ๏ซ 2 ๏ฝ 1
๏ฆ1 ๏ถ
Thus, the vertex is ๏ง , 1๏ท .
๏จ2 ๏ธ
1
The axis of symmetry is the line x ๏ฝ .
2
The discriminant is:
b 2 ๏ญ 4ac ๏ฝ 42 ๏ญ 4(๏ญ 4)(0) ๏ฝ 16 ๏พ 0 , so the
graph has two x-intercepts.
The x-intercepts are found by solving:
๏ญ 4×2 ๏ซ 4 x ๏ฝ 0
1
1
, b ๏ฝ 0, c ๏ฝ ๏ญ16. Since a ๏ฝ ๏พ 0, the
4
4
graph opens up. The x-coordinate of the
๏ญ0
b
0
๏ฝ๏ญ
๏ฝ ๏ญ ๏ฝ 0.
vertex is x ๏ฝ ๏ญ
1
2a
๏ฆ1๏ถ
2๏ง ๏ท
2
4
๏จ ๏ธ
The y-coordinate of the vertex is
1
๏ฆ b ๏ถ
f ๏ง ๏ญ ๏ท ๏ฝ f (0) ๏ฝ (0) 2 ๏ญ 16 ๏ฝ ๏ญ16 .
4
๏จ 2a ๏ธ
Thus, the vertex is (0, โ16).
The axis of symmetry is the line x ๏ฝ 0 .
The discriminant is:
๏ฆ1๏ถ
b 2 ๏ญ 4ac ๏ฝ (0) 2 ๏ญ 4 ๏ง ๏ท (๏ญ16) ๏ฝ 16 ๏พ 0 , so
๏จ4๏ธ
the graph has two x-intercepts.
The x-intercepts are found by solving:
1 2
x ๏ญ 16 ๏ฝ 0
4
x 2 ๏ญ 64 ๏ฝ 0
a๏ฝ
๏ญ 4 x( x ๏ญ 1) ๏ฝ 0
x ๏ฝ 0 or x ๏ฝ 1
The x-intercepts are 0 and 1.
The y-intercept is f (0) ๏ฝ ๏ญ 4(0) 2 ๏ซ 4(0) ๏ฝ 0 .
x 2 ๏ฝ 64
x ๏ฝ 8 or x ๏ฝ ๏ญ 8
The x-intercepts are โ8 and 8.
251
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
b.
c.
25. a.
Domain: (๏ญ๏ฅ, ๏ฅ) . Range: ๏จ ๏ญ๏ฅ, 1๏ .
b.
1๏น
๏ฆ
Increasing on ๏ง ๏ญ๏ฅ, ๏บ ; decreasing on
2๏ป
๏จ
๏ฉ1 ๏ถ
๏ช๏ซ 2 , ๏ฅ ๏ท๏ธ .
f ( x) ๏ฝ
c.
9 2
x ๏ซ 3x ๏ซ 1
2
26. a.
9
9
, b ๏ฝ 3, c ๏ฝ 1. Since a ๏ฝ ๏พ 0, the
2
2
graph opens up. The x-coordinate of the
3
3
b
1
๏ฝ๏ญ
๏ฝ๏ญ ๏ฝ๏ญ .
vertex is x ๏ฝ ๏ญ
2a
9
3
๏ฆ9๏ถ
2๏ง ๏ท
๏จ2๏ธ
The y-coordinate of the vertex is
๏ฉ1 ๏ถ
Domain: (๏ญ๏ฅ, ๏ฅ) . Range: ๏ช , ๏ฅ ๏ท .
๏ซ2 ๏ธ
1๏น
๏ฆ
Decreasing on ๏ง ๏ญ๏ฅ, ๏ญ ๏บ ; increasing on
3๏ป
๏จ
๏ฉ 1 ๏ถ
๏ช๏ซ ๏ญ 3 , ๏ฅ ๏ท๏ธ .
f ( x) ๏ฝ 3x 2 ๏ซ 4 x ๏ญ 1
a ๏ฝ 3, b ๏ฝ 4, c ๏ฝ ๏ญ1. Since a ๏ฝ 3 ๏พ 0, the
graph opens up. The x-coordinate of the
b
4
4
2
vertex is x ๏ฝ ๏ญ
๏ฝ๏ญ
๏ฝ๏ญ ๏ฝ๏ญ .
2a
2(3)
6
3
The y-coordinate of the vertex is
a๏ฝ
2
๏ฆ b ๏ถ
๏ฆ 2๏ถ
๏ฆ 2๏ถ
๏ฆ 2๏ถ
f ๏ง ๏ญ ๏ท ๏ฝ f ๏ง ๏ญ ๏ท ๏ฝ 3๏ง ๏ญ ๏ท ๏ซ 4 ๏ง ๏ญ ๏ท ๏ญ1
2
a
3
3
๏จ
๏ธ
๏จ
๏ธ
๏จ
๏ธ
๏จ 3๏ธ
4 8
7
๏ฝ ๏ญ ๏ญ1 ๏ฝ ๏ญ
3 3
3
๏ฆ 2 7๏ถ
Thus, the vertex is ๏ง ๏ญ , ๏ญ ๏ท .
๏จ 3 3๏ธ
2
The axis of symmetry is the line x ๏ฝ ๏ญ .
3
The discriminant is:
b 2 ๏ญ 4ac ๏ฝ (4) 2 ๏ญ 4(3)(๏ญ1) ๏ฝ 28 ๏พ 0 , so the
graph has two x-intercepts.
The x-intercepts are found by solving:
3x 2 ๏ซ 4 x ๏ญ 1 ๏ฝ 0 .
2
๏ฆ b ๏ถ
๏ฆ 1๏ถ 9๏ฆ 1๏ถ
๏ฆ 1๏ถ
f ๏ง ๏ญ ๏ท ๏ฝ f ๏ง ๏ญ ๏ท ๏ฝ ๏ง ๏ญ ๏ท ๏ซ 3๏ง ๏ญ ๏ท ๏ซ1
a
2
3
2
3
๏จ
๏ธ
๏จ
๏ธ
๏จ
๏ธ
๏จ 3๏ธ
1
1
๏ฝ ๏ญ1 ๏ซ1 ๏ฝ
2
2
๏ฆ 1 1๏ถ
Thus, the vertex is ๏ง ๏ญ , ๏ท .
๏จ 3 2๏ธ
1
The axis of symmetry is the line x ๏ฝ ๏ญ .
3
The discriminant is:
๏ฆ9๏ถ
b 2 ๏ญ 4ac ๏ฝ 32 ๏ญ 4 ๏ง ๏ท (1) ๏ฝ 9 ๏ญ 18 ๏ฝ ๏ญ 9 ๏ผ 0 ,
๏จ2๏ธ
so the graph has no x-intercepts. The y9
2
intercept is f ๏จ 0 ๏ฉ ๏ฝ ๏จ 0 ๏ฉ ๏ซ 3 ๏จ 0 ๏ฉ ๏ซ 1 ๏ฝ 1 .
2
x๏ฝ
๏ฝ
๏ญb ๏ฑ b 2 ๏ญ 4ac ๏ญ 4 ๏ฑ 28
๏ฝ
2a
2(3)
๏ญ4 ๏ฑ 2 7 ๏ญ2 ๏ฑ 7
๏ฝ
6
3
The x-intercepts are
252
Copyright ยฉ 2019 Pearson Education, Inc.
๏ญ2 ๏ญ 7
๏ป ๏ญ1.55 and
3
Chapter 2 Review Exercises
12
12
b
๏ฝ๏ญ
๏ฝ๏ญ
๏ฝ2.
2a
2(๏ญ3)
๏ญ6
The maximum value is
2
๏ฆ b ๏ถ
f ๏ง ๏ญ ๏ท ๏ฝ f ๏จ 2 ๏ฉ ๏ฝ ๏ญ3 ๏จ 2 ๏ฉ ๏ซ 12 ๏จ 2 ๏ฉ ๏ซ 4
๏จ 2a ๏ธ
๏ฝ ๏ญ12 ๏ซ 24 ๏ซ 4 ๏ฝ 16
๏ญ2 ๏ซ 7
๏ป 0.22 .
3
x๏ฝ๏ญ
The y-intercept is f (0) ๏ฝ 3(0) 2 ๏ซ 4(0) ๏ญ 1 ๏ฝ ๏ญ1 .
30. Consider the form y ๏ฝ a ๏จ x ๏ญ h ๏ฉ ๏ซ k . The vertex
2
is ๏จ 2, ๏ญ4๏ฉ so we have h ๏ฝ 2 and k ๏ฝ ๏ญ4 . The
function also contains the point ๏จ 0, ๏ญ16๏ฉ .
Substituting these values for x, y, h, and k, we
can solve for a:
๏ญ16 ๏ฝ a ๏จ 0 ๏ญ ๏จ 2๏ฉ ๏ฉ ๏ซ ๏จ ๏ญ4๏ฉ
2
b.
c.
27.
๏ฉ 7 ๏ถ
Domain: (๏ญ๏ฅ, ๏ฅ) . Range: ๏ช ๏ญ , ๏ฅ ๏ท .
๏ซ 3 ๏ธ
๏ญ16 ๏ฝ a ๏จ ๏ญ2๏ฉ ๏ญ 4
2
๏ญ16 ๏ฝ 4a ๏ญ 4
2๏น
๏ฆ
Decreasing on ๏ง ๏ญ๏ฅ, ๏ญ ๏บ ; increasing on
3๏ป
๏จ
๏ฉ 2 ๏ถ
๏ช๏ซ ๏ญ 3 , ๏ฅ ๏ท๏ธ .
๏ญ12 ๏ฝ 4a
a ๏ฝ ๏ญ3
The quadratic function is
f ๏จ x ๏ฉ ๏ฝ ๏ญ3 ๏จ x ๏ญ 2๏ฉ ๏ญ 4 ๏ฝ ๏ญ3 x 2 ๏ซ 12 x ๏ญ 16 .
2
f ( x) ๏ฝ 3 x 2 ๏ญ 6 x ๏ซ 4
31. Use the form f ( x) ๏ฝ a ( x ๏ญ h) 2 ๏ซ k .
The vertex is ( ๏ญ1, 2) , so h ๏ฝ ๏ญ1 and k ๏ฝ 2 .
a ๏ฝ 3, b ๏ฝ ๏ญ 6, c ๏ฝ 4. Since a ๏ฝ 3 ๏พ 0, the graph
opens up, so the vertex is a minimum point.
The minimum occurs at
b
๏ญ6 6
x๏ฝ๏ญ
๏ฝ๏ญ
๏ฝ ๏ฝ1.
2a
2(3) 6
The minimum value is
2
๏ฆ b ๏ถ
f ๏ง ๏ญ ๏ท ๏ฝ f ๏จ1๏ฉ ๏ฝ 3 ๏จ1๏ฉ ๏ญ 6 ๏จ1๏ฉ ๏ซ 4
2
a
๏จ
๏ธ
๏ฝ 3๏ญ6๏ซ 4 ๏ฝ1
28.
f ( x) ๏ฝ a( x ๏ซ 1) 2 ๏ซ 2 .
Since the graph passes through (1, 6) , f (1) ๏ฝ 6 .
6 ๏ฝ a (1 ๏ซ 1) 2 ๏ซ 2
6 ๏ฝ a (2) 2 ๏ซ 2
6 ๏ฝ 4a ๏ซ 2
4 ๏ฝ 4a
1๏ฝ a
f ( x) ๏ฝ ( x ๏ซ 1) 2 ๏ซ 2
f ( x) ๏ฝ ๏ญ x 2 ๏ซ 8 x ๏ญ 4
a ๏ฝ ๏ญ1, b ๏ฝ 8, c ๏ฝ ๏ญ 4. Since a ๏ฝ ๏ญ1 ๏ผ 0, the
graph opens down, so the vertex is a maximum
point. The maximum occurs at
b
8
8
x๏ฝ๏ญ
๏ฝ๏ญ
๏ฝ๏ญ
๏ฝ 4.
2a
2(๏ญ1)
๏ญ2
The maximum value is
2
๏ฆ b ๏ถ
f ๏ง ๏ญ ๏ท ๏ฝ f ๏จ 4๏ฉ ๏ฝ ๏ญ ๏จ 4๏ฉ ๏ซ 8 ๏จ 4๏ฉ ๏ญ 4
๏จ 2a ๏ธ
๏ฝ ๏ญ16 ๏ซ 32 ๏ญ 4 ๏ฝ 12
29.
๏ฝ ( x 2 ๏ซ 2 x ๏ซ 1) ๏ซ 2
๏ฝ x2 ๏ซ 2 x ๏ซ 3
32. x 2 ๏ซ 6 x ๏ญ 16 ๏ผ 0
f ( x) ๏ฝ x 2 ๏ซ 6 x ๏ญ 16
x 2 ๏ซ 6 x ๏ญ 16 ๏ฝ 0
( x ๏ซ 8)( x ๏ญ 2) ๏ฝ 0
x ๏ฝ ๏ญ 8, x ๏ฝ 2 are the zeros of f .
Interval
( ๏ญ๏ฅ, ๏ญ 8) ๏จ ๏ญ8, 2 ๏ฉ
๏จ 2, ๏ฅ ๏ฉ
Test Number
๏ญ9
0
3
Value of f
11
๏ญ16
11
Conclusion
Positive Negative Positive
f ( x) ๏ฝ ๏ญ3x 2 ๏ซ 12 x ๏ซ 4
a ๏ฝ ๏ญ3, b ๏ฝ 12, c ๏ฝ 4. Since a ๏ฝ ๏ญ3 ๏ผ 0, the
graph opens down, so the vertex is a maximum
point. The maximum occurs at
253
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
The solution set is ๏ป x | ๏ญ8 ๏ผ x ๏ผ 2๏ฝ or, using
interval notation, ๏จ ๏ญ8, 2 ๏ฉ .
3x 2 ๏ณ 14 x ๏ซ 5
33.
3x 2 ๏ญ 14 x ๏ญ 5 ๏ณ 0
f ( x) ๏ฝ 3 x 2 ๏ญ 14 x ๏ญ 5
3x 2 ๏ญ 14 x ๏ญ 5 ๏ฝ 0
(3 x ๏ซ 1)( x ๏ญ 5) ๏ฝ 0
1
x ๏ฝ ๏ญ , x ๏ฝ 5 are the zeros of f .
3
2
๏ญ2 x ๏ซ 4 x ๏ญ 3 ๏ฝ 0
a ๏ฝ ๏ญ2, b ๏ฝ 4, c ๏ฝ ๏ญ3
1๏ถ ๏ฆ 1 ๏ถ
๏ฆ
๏จ 5, ๏ฅ ๏ฉ
๏ง ๏ญ๏ฅ, ๏ญ ๏ท ๏ง ๏ญ , 5 ๏ท
3๏ธ ๏จ 3 ๏ธ
๏จ
Test Number
๏ญ1
0
2
Value of f
12
๏ญ5
19
Conclusion
Positive Negative Positive
Interval
b 2 ๏ญ 4ac ๏ฝ 42 ๏ญ 4(๏ญ2)(๏ญ3) ๏ฝ 16 ๏ญ 24 ๏ฝ ๏ญ8
x๏ฝ
1
๏ฌ
๏ผ
The solution set is ๏ญ x x ๏ฃ ๏ญ or x ๏ณ 5๏ฝ or,
3
๏ฎ
๏พ
1๏น
๏ฆ
using interval notation, ๏ง ๏ญ๏ฅ, ๏ญ ๏บ ๏ ๏5, ๏ฅ ๏ฉ .
3๏ป
๏จ
34.
p ๏จ x๏ฉ ๏ฝ 0
36.
๏ญ4 ๏ฑ ๏ญ8 ๏ญ4 ๏ฑ 2 2 i
2
๏ฝ
๏ฝ 1๏ฑ
i
๏ญ4
2(๏ญ2)
2
The zeros are 1 ๏ญ
2
2
i and 1 ๏ซ
i.
2
2
๏จ๏ฑ๏ฌ๏ ๏ญ๏ฑ๏ฉ
f ๏จ x๏ฉ ๏ฝ 0
x2 ๏ซ 8 ๏ฝ 0
x 2 ๏ฝ ๏ญ8
x ๏ฝ ๏ฑ ๏ญ8 ๏ฝ ๏ฑ2 2 i
The zero are ๏ญ2 2 i and 2 2 i .
f ๏จ x๏ฉ ๏ฝ 0
37.
4 x2 ๏ซ 4 x ๏ซ 3 ๏ฝ 0
a ๏ฝ 4, b ๏ฝ 4, c ๏ฝ 3
b 2 ๏ญ 4ac ๏ฝ 42 ๏ญ 4(4)(3) ๏ฝ 16 ๏ญ 48 ๏ฝ ๏ญ32
x๏ฝ
๏ญ4 ๏ฑ ๏ญ32 ๏ญ4 ๏ฑ 4 2 i
1
2
๏ฝ
๏ฝ๏ญ ๏ฑ
i
2(4)
8
2 2
g ๏จ x๏ฉ ๏ฝ 0
35.
2
x ๏ซ 2x ๏ญ 4 ๏ฝ 0
a ๏ฝ 1, b ๏ฝ 2, c ๏ฝ ๏ญ4
b 2 ๏ญ 4ac ๏ฝ 22 ๏ญ 4(1)(๏ญ4) ๏ฝ 4 ๏ซ 16 ๏ฝ 20
x๏ฝ
๏ญ 2 ๏ฑ 20 ๏ญ 2 ๏ฑ 2 5
๏ฝ
๏ฝ ๏ญ1 ๏ฑ 5
2(1)
2
The zeros are ๏ญ1 ๏ญ 5 and ๏ญ1 ๏ซ 5 .
254
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2 Review Exercises
๏ป x x ๏ฃ ๏ญ 2 or x ๏ณ 7๏ฝ or ๏จ ๏ญ๏ฅ, ๏ญ 2๏ ๏ ๏7, ๏ฅ ๏ฉ
1
2
1
2
The zeros are ๏ญ ๏ญ
i and ๏ญ ๏ซ
i.
2 2
2 2
42. 2 ๏ซ 2 ๏ญ 3x ๏ฃ 4
2 ๏ญ 3x ๏ฃ 2
๏ญ2 ๏ฃ 2 ๏ญ 3 x ๏ฃ 2
38.
39.
๏ญ4 ๏ฃ ๏ญ3 x ๏ฃ 0
4
๏ณx๏ณ0
3
๏ฌ
4๏ผ
๏ฉ 4๏น
๏ญ x 0 ๏ฃ x ๏ฃ ๏ฝ or ๏ช0, ๏บ
3
๏ซ 3๏ป
๏ฎ
๏พ
2x ๏ซ 3 ๏ฝ 7
2 x ๏ซ 3 ๏ฝ 7 or 2x ๏ซ 3 ๏ฝ ๏ญ7
2 x ๏ฝ 4 or
2 x ๏ฝ ๏ญ 10
x ๏ฝ 2 or
x ๏ฝ ๏ญ5
The solution set is ๏ป๏ญ5, 2๏ฝ .
43. 1 ๏ญ 2 ๏ญ 3 x ๏ผ ๏ญ4
๏ญ 2 ๏ญ 3 x ๏ผ ๏ญ5
2 ๏ญ 3x ๏ซ 2 ๏ฝ 9
2 ๏ญ 3x ๏พ 5
2 ๏ญ 3x ๏ฝ 7
2 ๏ญ 3x ๏ฝ 7
๏ญ3x ๏ฝ 5
x๏ฝ๏ญ
2 ๏ญ 3x ๏ผ ๏ญ5 or 2 ๏ญ 3x ๏พ 5
7 ๏ผ 3x or ๏ญ 3 ๏พ 3x
7
๏ผ x or ๏ญ 1 ๏พ x
3
7
x ๏ผ ๏ญ1 or x ๏พ
3
๏ฌ
7๏ผ
๏ฆ7 ๏ถ
๏ญ x x ๏ผ ๏ญ 1 or x ๏พ ๏ฝ or ๏จ ๏ญ๏ฅ, ๏ญ 1๏ฉ ๏ ๏ง , ๏ฅ ๏ท
3
๏จ3 ๏ธ
๏ฎ
๏พ
or 2 ๏ญ 3x ๏ฝ ๏ญ7
or ๏ญ 3 x ๏ฝ ๏ญ 9
5
or
3
x๏ฝ3
๏ป ๏ฝ
5
The solution set is ๏ญ , 3 .
3
40.
3x ๏ซ 4 ๏ผ
1
2
1
1
๏ผ 3x ๏ซ 4 ๏ผ
2
2
9
7
๏ญ ๏ผ 3x ๏ผ ๏ญ
2
2
3
7
๏ญ ๏ผ x ๏ผ๏ญ
2
6
๏ฌ
3
7๏ผ
๏ฆ 3 7๏ถ
๏ญ x ๏ญ ๏ผ x ๏ผ ๏ญ ๏ฝ or ๏ง ๏ญ , ๏ญ ๏ท
2
6
๏จ 2 6๏ธ
๏ฎ
๏พ
๏ญ
41.
44. a.
2x ๏ญ 5 ๏ณ 9
2 x ๏ญ 5 ๏ฃ ๏ญ 9 or 2 x ๏ญ 5 ๏ณ 9
2 x ๏ฃ ๏ญ 4 or
2x ๏ณ 14
x ๏ฃ ๏ญ 2 or
x๏ณ7
S ( x) ๏ฝ 0.01x ๏ซ 25, 000
b.
S (1, 000, 000) ๏ฝ 0.01(1, 000, 000) ๏ซ 25, 000
๏ฝ 10, 000 ๏ซ 25, 000 ๏ฝ 35, 000
Billโs salary would be $35,000.
c.
0.01x ๏ซ 25, 000 ๏ฝ 100, 000
0.01x ๏ฝ 75, 000
x ๏ฝ 7,500, 000
Billโs sales would have to be $7,500,000 in
order to earn $100,000.
d.
0.01x ๏ซ 25, 000 ๏พ 150, 000
0.01x ๏พ 125, 000
x ๏พ 12,500, 000
Billโs sales would have to be more than
255
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
Disregard the negative answer because the width
of a rectangle must be positive. Thus, the width
is 6 inches, and the length is 8 inches
$12,500,000 in order for his salary to exceed
$150,000.
45. a.
If x ๏ฝ 1500 ๏ญ 10 p, then p ๏ฝ
1500 ๏ญ x
.
10
47. C ( x) ๏ฝ 4.9 x 2 ๏ญ 617.4 x ๏ซ 19, 600 ;
a ๏ฝ 4.9, b ๏ฝ ๏ญ617.4, c ๏ฝ 19, 600. Since
a ๏ฝ 4.9 ๏พ 0, the graph opens up, so the vertex is
a minimum point.
a. The minimum marginal cost occurs at
๏ญ 617.40 617.40
b
x๏ฝ๏ญ
๏ฝ๏ญ
๏ฝ
๏ฝ 63 .
2a
2(4.9)
9.8
Thus, 63 golf clubs should be manufactured
in order to minimize the marginal cost.
R ( p ) ๏ฝ px ๏ฝ p (1500 ๏ญ 10 p ) ๏ฝ ๏ญ10 p 2 ๏ซ 1500 p
b. Domain: ๏ป p 0 ๏ผ p ๏ฃ 150๏ฝ
c.
p๏ฝ
๏ญb ๏ญ1500 ๏ญ1500
๏ฝ
๏ฝ
๏ฝ $75
2a 2 ๏จ ๏ญ10 ๏ฉ
๏ญ20
d. The maximum revenue is
R(75) ๏ฝ ๏ญ10(75) 2 ๏ซ 1500(75)
๏ฝ ๏ญ56250 ๏ซ 112500 ๏ฝ $56, 250
e.
x ๏ฝ 1500 ๏ญ 10(75) ๏ฝ 1500 ๏ญ 750 ๏ฝ 750
f.
Graph R ๏ฝ ๏ญ10 p 2 ๏ซ 1500 p and R ๏ฝ 56000 .
b. The minimum marginal cost is
๏ฆ b ๏ถ
C ๏ง ๏ญ ๏ท ๏ฝ C ๏จ 63๏ฉ
๏จ 2a ๏ธ
๏ฝ 4.9 ๏จ 63 ๏ฉ ๏ญ ๏จ 617.40 ๏ฉ๏จ 63 ๏ฉ ๏ซ 19600
2
๏ฝ $151.90
48. Since there are 200 feet of border, we know that
2 x ๏ซ 2 y ๏ฝ 200 . The area is to be maximized, so
A ๏ฝ x ๏ y . Solving the perimeter formula for y :
2 x ๏ซ 2 y ๏ฝ 200
2 y ๏ฝ 200 ๏ญ 2 x
y ๏ฝ 100 ๏ญ x
The area function is:
A( x) ๏ฝ x(100 ๏ญ x) ๏ฝ ๏ญ x 2 ๏ซ 100 x
The maximum value occurs at the vertex:
b
100
100
x๏ฝ๏ญ
๏ฝ๏ญ
๏ฝ๏ญ
๏ฝ 50
2a
2(๏ญ1)
๏ญ2
The pond should be 50 feet by 50 feet for
maximum area.
49. The area function is:
A( x) ๏ฝ x(10 ๏ญ x) ๏ฝ ๏ญ x 2 ๏ซ 10 x
The maximum value occurs at the vertex:
b
10
10
x๏ฝ๏ญ
๏ฝ๏ญ
๏ฝ๏ญ
๏ฝ5
2a
2(๏ญ1)
๏ญ2
The maximum area is:
Find where the graphs intersect by solving
56000 ๏ฝ ๏ญ10 p 2 ๏ซ 1500 p .
10 p 2 ๏ญ 1500 p ๏ซ 56000 ๏ฝ 0
p 2 ๏ญ 150 p ๏ซ 5600 ๏ฝ 0
( p ๏ญ 70)( p ๏ญ 80) ๏ฝ 0
p ๏ฝ 70, p ๏ฝ 80
The company should charge between $70
and $80.
46. Let w = the width. Then w + 2 = the length.
w
๏ฑ๏ฐ in.
w๏ ๏ซ๏ ๏ฒ
By the Pythagorean Theorem we have:
w2 ๏ซ ๏จ w ๏ซ 2 ๏ฉ ๏ฝ ๏จ10 ๏ฉ
2
2
w2 ๏ซ w2 ๏ซ 4w ๏ซ 4 ๏ฝ 100
2w2 ๏ซ 4 w ๏ญ 96 ๏ฝ 0
w2 ๏ซ 2w ๏ญ 48 ๏ฝ 0
๏จ w ๏ซ 8๏ฉ๏จ w ๏ญ 6 ๏ฉ ๏ฝ 0
w ๏ฝ ๏ญ8 or w ๏ฝ 6
256
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2 Review Exercises
Since each input (price) corresponds to a
single output (quantity demanded), we know
that the quantity demanded is a function of
price. Also, because the average rate of
change is constant at ๏ญ$0.8 per LCD
monitor, the function is linear.
A(5) ๏ฝ ๏ญ(5)2 ๏ซ 10(5)
๏ฝ ๏ญ 25 ๏ซ 50 ๏ฝ 25 square units
10
(x,10-x)
(0,10-x)
c.
(x,0)
10
50. Locate the origin at the point directly under the
highest point of the arch. Then the equation is in
the form: y ๏ฝ ๏ญax 2 ๏ซ k , where a ๏พ 0 . Since the
maximum height is 10 feet, when x ๏ฝ 0,
y ๏ฝ k ๏ฝ 10 . Since the point (10, 0) is on the
parabola, we can find the constant:
0 ๏ฝ ๏ญ a(10) 2 ๏ซ 10
10
1
๏ฝ 0.10
a๏ฝ 2 ๏ฝ
10
10
The equation of the parabola is:
1
y ๏ฝ ๏ญ x 2 ๏ซ 10
10
At x ๏ฝ 8 :
1
y ๏ฝ ๏ญ (8) 2 ๏ซ 10 ๏ฝ ๏ญ 6.4 ๏ซ 10 ๏ฝ 3.6 feet
10
From part (b), we know m ๏ฝ ๏ญ0.8 . Using
( p1 , q1 ) ๏ฝ (75, 100) , we get the equation:
q ๏ญ q1 ๏ฝ m( p ๏ญ p1 )
q ๏ญ 100 ๏ฝ ๏ญ0.8( p ๏ญ 75)
q ๏ญ 100 ๏ฝ ๏ญ0.8 p ๏ซ 60
q ๏ฝ ๏ญ0.8 p ๏ซ 160
Using function notation, we have
q( p ) ๏ฝ ๏ญ0.8 p ๏ซ 160 .
d. The price cannot be negative, so p ๏ณ 0 .
Likewise, the quantity cannot be negative,
so, q( p) ๏ณ 0 .
๏ญ0.8 p ๏ซ 160 ๏ณ 0
๏ญ0.8 p ๏ณ ๏ญ160
p ๏ฃ 200
Thus, the implied domain for q(p) is
{ p | 0 ๏ฃ p ๏ฃ 200} or [0, 200] .
e.
51. a.
f.
b.
Avg. rate of change =
๏q
๏p
p
q
75
100
100
80
80 ๏ญ 100 ๏ญ20
๏ฝ
๏ฝ ๏ญ0.8
100 ๏ญ 75 25
125
60
60 ๏ญ 80
๏ญ20
๏ฝ
๏ฝ ๏ญ0.8
125 ๏ญ 100 25
150
40
40 ๏ญ 60
๏ญ20
๏ฝ
๏ฝ ๏ญ0.8
150 ๏ญ 125 25
g.
If the price increases by $1, then the
quantity demanded of LCD monitors
decreases by 0.8 monitor.
p-intercept: If the price is $0, then 160 LCD
monitors will be demanded.
q-intercept: There will be 0 LCD monitors
demanded when the price is $200.
257
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
The maximum revenue occurs at
๏ญb ๏ญ ๏จ 411.88 ๏ฉ
A๏ฝ
๏ฝ
2a
2(๏ญ7.76)
๏ญ411.88
๏ฝ
๏ป $26.5 thousand
๏ญ15.52
52. a.
c.
The maximum revenue is
๏ฆ ๏ญb ๏ถ
R๏ง
๏ท ๏ฝ R ๏จ 26.53866 ๏ฉ
๏จ 2a ๏ธ
๏ฝ ๏ญ7.76 ๏จ 26.5 ๏ฉ ๏ซ ๏จ 411.88 ๏ฉ๏จ 26.5 ๏ฉ ๏ซ 942.72
2
๏ป $6408 thousand
b. Yes, the two variables appear to have a
linear relationship.
c. Using the LINear REGression program, the
line of best fit is:
y ๏ฝ 1.390171918 x ๏ซ 1.113952697
d.
d.
y ๏ฝ 1.390171918 ๏จ 26.5 ๏ฉ ๏ซ 1.113952697
๏ป 38.0 mm
Chapter 2 Test
53. a.
1.
The data appear to be quadratic
f ๏จ x ๏ฉ ๏ฝ ๏ญ4 x ๏ซ 3
a. The slope f is ๏ญ4 .
b. The slope is negative, so the graph is
decreasing.
c.
Plot the point (0, 3) . Use the slope to find
an additional point by moving 1 unit to the
right and 4 units down.
with
a < 0.
b. Using the QUADratic REGression program,
the quadratic function of best fit is:
y ๏ฝ ๏ญ7.76 x 2 ๏ซ 411.88 x ๏ซ 942.72 .
258
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2 Test
2.
x
y
๏ญ2
12
Avg. rate of change =
๏y
๏x
f ๏จ x๏ฉ ๏ฝ g ๏จ x๏ฉ
5.
2
x ๏ซ 3x ๏ฝ 5 x ๏ซ 3
2
๏ญ1
7
7 ๏ญ 12
๏ญ5
๏ฝ
๏ฝ ๏ญ5
๏ญ1 ๏ญ (๏ญ2) 1
0
2
๏ญ5
2๏ญ7
๏ฝ
๏ฝ ๏ญ5
0 ๏ญ (๏ญ1) 1
1
๏ญ3
๏ญ3 ๏ญ 2 ๏ญ5
๏ฝ
๏ฝ ๏ญ5
1๏ญ 0
1
2
๏ญ8
๏ญ8 ๏ญ (๏ญ3) ๏ญ5
๏ฝ
๏ฝ ๏ญ5
2 ๏ญ1
1
x ๏ญ 2x ๏ญ 3 ๏ฝ 0
( x ๏ซ 1)( x ๏ญ 3) ๏ฝ 0
x ๏ซ 1 ๏ฝ 0 or x ๏ญ 3 ๏ฝ 0
x ๏ฝ ๏ญ1
x๏ฝ3
The solution set is ๏ป๏ญ1, 3๏ฝ .
Since the average rate of change is constant at
๏ญ5 , this is a linear function with slope = ๏ญ5 .
To find the equation of the line, we use the
point-slope formula and one of the points.
y ๏ญ y1 ๏ฝ m ๏จ x ๏ญ x1 ๏ฉ
y ๏ญ 2 ๏ฝ ๏ญ5 ๏จ x ๏ญ 0 ๏ฉ
y ๏ฝ ๏ญ5 x ๏ซ 2
3.
๏จ x ๏ญ 1๏ฉ ๏ซ 5 ๏จ x ๏ญ 1๏ฉ ๏ซ 4 ๏ฝ 0
2
Let u ๏ฝ x ๏ญ 1 ๏ฎ u 2 ๏ฝ ๏จ x ๏ญ 1๏ฉ
2
f ๏จ x๏ฉ ๏ฝ 0
3x 2 ๏ญ 2 x ๏ญ 8 ๏ฝ 0
(3x ๏ซ 4)( x ๏ญ 2) ๏ฝ 0
u 2 ๏ซ 5u ๏ซ 4 ๏ฝ 0
๏จ u ๏ซ 4 ๏ฉ๏จ u ๏ซ 1๏ฉ ๏ฝ 0
3x ๏ซ 4 ๏ฝ 0
u ๏ซ 4 ๏ฝ 0 or u ๏ซ 1 ๏ฝ 0
u ๏ฝ ๏ญ4
u ๏ฝ ๏ญ1
x ๏ญ 1 ๏ฝ ๏ญ4
x ๏ญ 1 ๏ฝ ๏ญ1
x ๏ฝ ๏ญ3
x๏ฝ0
The zeros of G are ๏ญ3 and 0.
or x ๏ญ 2 ๏ฝ 0
4
x๏ฝ2
x๏ฝ๏ญ
3
The zeros of f are ๏ญ
4.
f ๏จ x๏ฉ ๏ฝ 0
6.
4
and 2.
3
G ๏จ x๏ฉ ๏ฝ 0
7.
๏ญ2 x 2 ๏ซ 4 x ๏ซ 1 ๏ฝ 0
a ๏ฝ ๏ญ2, b ๏ฝ 4, c ๏ฝ 1
f ( x) ๏ฝ ๏จ x ๏ญ 3๏ฉ ๏ญ 2
2
Using the graph of y ๏ฝ x 2 , shift right 3 units,
then shift down 2 units.
y
2
๏ญb ๏ฑ b 2 ๏ญ 4ac ๏ญ4 ๏ฑ 4 ๏ญ 4 ๏จ ๏ญ2 ๏ฉ๏จ1๏ฉ
x๏ฝ
๏ฝ
2a
2 ๏จ ๏ญ2 ๏ฉ
๏จ๏ฐ๏ฌ๏ ๏ท๏ฉ
๏ญ4 ๏ฑ 24 ๏ญ4 ๏ฑ 2 6 2 ๏ฑ 6
๏ฝ
๏ฝ
๏ฝ
2
๏ญ4
๏ญ4
2๏ญ 6
2๏ซ 6
The zeros of G are
and
.
2
2
๏จ๏ถ๏ฌ๏ ๏ท๏ฉ
๏ด
๏ญ๏ด
๏จ๏ฒ๏ฌ๏ญ๏ฑ๏ฉ
๏ญ๏ด
259
Copyright ยฉ 2019 Pearson Education, Inc.
๏จ๏ด๏ฌ๏ญ๏ฑ๏ฉ ๏ธ
๏จ๏ณ๏ฌ๏ญ๏ฒ๏ฉ
x
Chapter 2: Linear and Quadratic Functions
b. The x-coordinate of the vertex is
b
4
4
x๏ฝ๏ญ
๏ฝ๏ญ
๏ฝ๏ญ
๏ฝ 1.
2a
2(๏ญ2)
๏ญ4
The y-coordinate of the vertex is
2
๏ฆ b ๏ถ
g ๏ง ๏ญ ๏ท ๏ฝ g ๏จ1๏ฉ ๏ฝ ๏ญ2 ๏จ1๏ฉ ๏ซ 4 ๏จ1๏ฉ ๏ญ 5
2
a
๏จ
๏ธ
๏ฝ ๏ญ2 ๏ซ 4 ๏ญ 5 ๏ฝ ๏ญ3
Thus, the vertex is ๏จ1, ๏ญ3๏ฉ .
f ( x) ๏ฝ 3 x 2 ๏ญ 12 x ๏ซ 4
a ๏ฝ 3, b ๏ฝ ๏ญ12, c ๏ฝ 4. Since a ๏ฝ 3 ๏พ 0, the
graph opens up.
b. The x-coordinate of the vertex is
b
๏ญ 12
๏ญ12
x๏ฝ๏ญ
๏ฝ๏ญ
๏ฝ๏ญ
๏ฝ2.
2a
2 ๏จ 3๏ฉ
6
8. a.
The y-coordinate of the vertex is
2
๏ฆ b ๏ถ
f ๏ง ๏ญ ๏ท ๏ฝ f ๏จ 2 ๏ฉ ๏ฝ 3 ๏จ 2 ๏ฉ ๏ญ 12 ๏จ 2 ๏ฉ ๏ซ 4
2
a
๏จ
๏ธ
๏ฝ 12 ๏ญ 24 ๏ซ 4 ๏ฝ ๏ญ8
Thus, the vertex is ๏จ 2, ๏ญ8 ๏ฉ .
c.
c.
The axis of symmetry is the line x ๏ฝ 1 .
d. The discriminant is:
b 2 ๏ญ 4ac ๏ฝ ๏จ 4 ๏ฉ ๏ญ 4 ๏จ ๏ญ2 ๏ฉ๏จ ๏ญ5 ๏ฉ ๏ฝ ๏ญ24 ๏ผ 0 , so the
2
graph has no x-intercepts. The y-intercept is
g (0) ๏ฝ ๏ญ2(0) 2 ๏ซ 4(0) ๏ญ 5 ๏ฝ ๏ญ5 .
The axis of symmetry is the line x ๏ฝ 2 .
d. The discriminant is:
b 2 ๏ญ 4ac ๏ฝ ๏จ ๏ญ12 ๏ฉ ๏ญ 4 ๏จ 3๏ฉ๏จ 4 ๏ฉ ๏ฝ 96 ๏พ 0 , so the
2
e.
graph has two x-intercepts. The x-intercepts
are found by solving: 3x 2 ๏ญ 12 x ๏ซ 4 ๏ฝ 0 .
x๏ฝ
๏ฝ
๏ญb ๏ฑ b 2 ๏ญ 4ac ๏ญ(๏ญ12) ๏ฑ 96
๏ฝ
2a
2(3)
12 ๏ฑ 4 6 6 ๏ฑ 2 6
๏ฝ
6
3
The x-intercepts are
6๏ญ2 6
๏ป 0.37 and
3
6๏ฑ2 6
๏ป 3.63 . The y-intercept is
3
f (0) ๏ฝ 3(0) 2 ๏ญ 12(0) ๏ซ 4 ๏ฝ 4 .
f.
The domain is (๏ญ๏ฅ, ๏ฅ) .
The range is (๏ญ๏ฅ, ๏ญ3] .
g.
Increasing on ๏จ ๏ญ๏ฅ, 1๏ .
Decreasing on ๏1, ๏ฅ ๏ฉ .
e.
10. Consider the form y ๏ฝ a ๏จ x ๏ญ h ๏ฉ ๏ซ k . From the
2
graph we know that the vertex is ๏จ1, ๏ญ32 ๏ฉ so we
have h ๏ฝ 1 and k ๏ฝ ๏ญ32 . The graph also passes
through the point ๏จ x, y ๏ฉ ๏ฝ ๏จ 0, ๏ญ30 ๏ฉ . Substituting
these values for x, y, h, and k, we can solve for a:
๏ญ30 ๏ฝ a (0 ๏ญ 1) 2 ๏ซ (๏ญ32) The quadratic function is
f.
The domain is (๏ญ๏ฅ, ๏ฅ) .
The range is [๏ญ8, ๏ฅ) .
g.
Decreasing on ๏จ ๏ญ๏ฅ, 2๏ .
๏ญ30 ๏ฝ a (๏ญ1) 2 ๏ญ 32
๏ญ30 ๏ฝ a ๏ญ 32
2๏ฝa
f ( x) ๏ฝ 2( x ๏ญ 1) 2 ๏ญ 32 ๏ฝ 2 x 2 ๏ญ 4 x ๏ญ 30 .
Increasing on ๏ 2, ๏ฅ ๏ฉ .
9. a.
g ( x) ๏ฝ ๏ญ2 x 2 ๏ซ 4 x ๏ญ 5
a ๏ฝ ๏ญ2, b ๏ฝ 4, c ๏ฝ ๏ญ5. Since a ๏ฝ ๏ญ2 ๏ผ 0, the
graph opens down.
260
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2 Test
11.
f ( x) ๏ฝ ๏ญ2 x 2 ๏ซ 12 x ๏ซ 3
15.
a ๏ฝ ๏ญ2, b ๏ฝ 12, c ๏ฝ 3. Since a ๏ฝ ๏ญ2 ๏ผ 0, the
graph opens down, so the vertex is a maximum
point. The maximum occurs at
b
12
12
x๏ฝ๏ญ
๏ฝ๏ญ
๏ฝ๏ญ
๏ฝ3.
2a
2(๏ญ2)
๏ญ4
The maximum value is
x๏ซ3
๏ผ2
4
x๏ซ3
๏ญ2 ๏ผ
๏ผ2
4
๏ญ8 ๏ผ x ๏ซ 3 ๏ผ 8
๏ญ11 ๏ผ
๏ป x ๏ญ 11 ๏ผ x ๏ผ 5๏ฝ or ๏จ ๏ญ11, 5๏ฉ
f ๏จ 3๏ฉ ๏ฝ ๏ญ2 ๏จ 3๏ฉ ๏ซ 12 ๏จ 3๏ฉ ๏ซ 3 ๏ฝ ๏ญ18 ๏ซ 36 ๏ซ 3 ๏ฝ 21 .
2
12. x 2 ๏ญ 10 x ๏ซ 24 ๏ณ 0
f ( x) ๏ฝ x 2 ๏ญ 10 x ๏ซ 24
16.
x 2 ๏ญ 10 x ๏ซ 24 ๏ฝ 0
2x ๏ซ 3 ๏ญ 4 ๏ณ 3
2x ๏ซ 3 ๏ณ 7
( x ๏ญ 4)( x ๏ญ 6) ๏ฝ 0
x ๏ฝ 4, x ๏ฝ 6 are the zeros of f.
2 x ๏ซ 3 ๏ฃ ๏ญ7
Interval
๏จ ๏ญ๏ฅ, 4 ๏ฉ ๏จ 4, 6 ๏ฉ
๏จ 6, ๏ฅ ๏ฉ
Test Number
0
5
7
Value of f
24
๏ญ1
3
Conclusion Positive Negative Positive
interval notation, ๏จ ๏ญ๏ฅ, 4๏ ๏ ๏ 6, ๏ฅ ๏ฉ .
17. a.
b.
f ๏จ x๏ฉ ๏ฝ 0
x๏ฝ
2
๏ญb ๏ฑ b 2 ๏ญ 4ac ๏ญ4 ๏ฑ 4 ๏ญ 4 ๏จ 2 ๏ฉ๏จ 5 ๏ฉ
๏ฝ
2a
2 ๏จ 2๏ฉ
๏ฝ
6
๏ญ4 ๏ฑ ๏ญ24 ๏ญ4 ๏ฑ 2 6 i
i
๏ฝ
๏ฝ ๏ญ1 ๏ฑ
4
4
2
The complex zeros of f are ๏ญ1 ๏ญ
14.
2x ๏ณ 4
x ๏ฃ ๏ญ 5 or
x๏ณ2
C ๏จ m ๏ฉ ๏ฝ 0.15m ๏ซ 129.50
C ๏จ 860 ๏ฉ ๏ฝ 0.15 ๏จ 860 ๏ฉ ๏ซ 129.50
C ๏จ m ๏ฉ ๏ฝ 213.80
c.
0.15m ๏ซ 129.50 ๏ฝ 213.80
0.15m ๏ฝ 84.30
m ๏ฝ 562
The rental cost is $213.80 if 562 miles were
driven.
6
i and
2
6
i.
2
18. a.
3x ๏ซ 1 ๏ฝ 8
b.
3x ๏ซ 1 ๏ฝ 8
2 x ๏ฃ ๏ญ10 or
๏ฝ 129 ๏ซ 129.50 ๏ฝ 258.50
If 860 miles are driven, the rental cost is
$258.50.
2 x2 ๏ซ 4 x ๏ซ 5 ๏ฝ 0
a ๏ฝ 2, b ๏ฝ 4, c ๏ฝ 5
๏ญ1 ๏ซ
or 2 x ๏ซ 3 ๏ณ 7
๏ป x x ๏ฃ ๏ญ5 or x ๏ณ 2๏ฝ or ๏จ ๏ญ๏ฅ, ๏ญ5๏ ๏ ๏ 2, ๏ฅ ๏ฉ
The solution set is ๏ป x x ๏ฃ 4 or x ๏ณ 6๏ฝ or, using
13.
x ๏ผ5
1
๏ฆ 1
๏ถ
R ( x ) ๏ฝ x ๏ง ๏ญ x ๏ซ 1000 ๏ท ๏ฝ ๏ญ x 2 ๏ซ 1000 x
10
10
๏จ
๏ธ
1
(400) 2 ๏ซ 1000(400)
10
๏ฝ ๏ญ16, 000 ๏ซ 400, 000
R (400) ๏ฝ ๏ญ
or 3x ๏ซ 1 ๏ฝ ๏ญ8
3x ๏ฝ 7
or
3x ๏ฝ ๏ญ9
7
x๏ฝ
3
or
x ๏ฝ ๏ญ3
๏ฝ $384, 000
c.
๏ป ๏ฝ
The solution set is ๏ญ3,
7
.
3
x๏ฝ
๏ญb ๏ญ1000 ๏ญ1000
๏ฝ
๏ฝ
๏ฝ 5000
2a 2 ๏จ ๏ญ 1 ๏ฉ ๏จ ๏ญ 1 ๏ฉ
10
5
The maximum revenue is
261
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
Chapter 2 Cumulative Review
1
(5000) 2 ๏ซ 1000(5000)
10
๏ฝ ๏ญ250, 000 ๏ซ 5, 000, 000
R (5000) ๏ฝ ๏ญ
1. P ๏ฝ ๏จ ๏ญ1,3๏ฉ ; Q ๏ฝ ๏จ 4, ๏ญ2 ๏ฉ
๏ฝ $2,500, 000
Thus, 5000 units maximizes revenue at
$2,500,000.
d.
Distance between P and Q:
d ๏จ P, Q ๏ฉ ๏ฝ
๏ฝ
1
p ๏ฝ ๏ญ (5000) ๏ซ 1000
10
๏ฝ ๏ญ500 ๏ซ 1000
Set A:
๏จ 5๏ฉ ๏ซ ๏จ 5๏ฉ
2
2
2
๏ฝ 50 ๏ฝ 5 2
Midpoint between P and Q:
๏ฆ ๏ญ1 ๏ซ 4 3 ๏ญ 2 ๏ถ ๏ฆ 3 1 ๏ถ
,
๏ง
๏ท ๏ฝ ๏ง , ๏ท ๏ฝ ๏จ1.5, 0.5 ๏ฉ
2 ๏ธ ๏จ2 2๏ธ
๏จ 2
๏ฑ๏ฐ
2. y ๏ฝ x 3 ๏ญ 3x ๏ซ 1
๏ญ๏ณ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ณ
a.
๏จ ๏ญ2, ๏ญ1๏ฉ : ๏ญ1 ๏ฝ ๏จ ๏ญ2 ๏ฉ ๏ญ 3 ๏จ ๏ญ2 ๏ฉ ๏ซ 1
3
๏ญ1 ๏ฝ ๏ญ8 ๏ซ 6 ๏ซ 1
๏ญ1 ๏ฝ ๏ญ1
Yes, ๏จ ๏ญ2, ๏ญ1๏ฉ is on the graph.
๏ญ๏ฑ๏ต
The data appear to be linear with a negative
slope.
Set B:
2
๏ฝ 25 ๏ซ 25
๏ฝ $500
19. a.
๏จ 4 ๏ญ ๏จ ๏ญ1๏ฉ ๏ฉ ๏ซ ๏จ ๏ญ2 ๏ญ 3๏ฉ
b.
๏จ 2,3๏ฉ : 3 ๏ฝ ๏จ 2 ๏ฉ ๏ญ 3 ๏จ 2 ๏ฉ ๏ซ 1
3
3 ๏ฝ 8 ๏ญ 6 ๏ซ1
๏ฑ๏ต
3๏ฝ3
Yes, ๏จ 2,3๏ฉ is on the graph.
c.
๏จ 3,1๏ฉ : 1 ๏ฝ ๏จ 3๏ฉ ๏ญ 3 ๏จ 3๏ฉ ๏ซ 1
3
1 ๏ฝ ๏ญ27 ๏ญ 9 ๏ซ 1
๏ญ๏ณ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ ๏ณ
๏ฐ
The data appear to be quadratic and opens
up.
1 ๏น ๏ญ35
No, ๏จ 3,1๏ฉ is not on the graph.
3. 5 x ๏ซ 3 ๏ณ 0
5 x ๏ณ ๏ญ3
3
x๏ณ๏ญ
5
b. Using the LINear REGression program, the
linear function of best fit is:
y ๏ฝ ๏ญ4.234 x ๏ญ 2.362 .
๏ฌ
3๏ผ
๏ฉ 3
๏ถ
The solution set is ๏ญ x x ๏ณ ๏ญ ๏ฝ or ๏ช ๏ญ , ๏ซ๏ฅ ๏ท .
5
5
๏ซ
๏ธ
๏ฎ
๏พ
c.
Using the QUADratic REGression program,
the quadratic function of best fit is:
y ๏ฝ 1.993 x 2 ๏ซ 0.289 x ๏ซ 2.503 .
262
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2 Cumulative Review
4. (โ1,4) and (2,โ2) are points on the line.
๏ญ2 ๏ญ 4
๏ญ6
Slope ๏ฝ
๏ฝ
๏ฝ ๏ญ2
2 ๏ญ ๏จ ๏ญ1๏ฉ 3
y ๏ญ y1 ๏ฝ m ๏จ x ๏ญ x1 ๏ฉ
y ๏ญ 4 ๏ฝ ๏ญ2 ๏จ x ๏ญ ๏จ ๏ญ1๏ฉ ๏ฉ
y ๏ญ 4 ๏ฝ ๏ญ2 ๏จ x ๏ซ 1๏ฉ
y ๏ญ 4 ๏ฝ ๏ญ2 x ๏ญ 2
y ๏ฝ ๏ญ2 x ๏ซ 2
7. Yes, this is a function since each x-value is
paired with exactly one y-value.
8.
f ( x) ๏ฝ x 2 ๏ญ 4 x ๏ซ 1
a.
f (2) ๏ฝ 22 ๏ญ 4 ๏จ 2 ๏ฉ ๏ซ 1 ๏ฝ 4 ๏ญ 8 ๏ซ 1 ๏ฝ ๏ญ3
b.
f ( x) ๏ซ f ๏จ 2 ๏ฉ ๏ฝ x 2 ๏ญ 4 x ๏ซ 1 ๏ซ ๏จ ๏ญ3๏ฉ
๏ฝ x2 ๏ญ 4x ๏ญ 2
5. Perpendicular to y ๏ฝ 2 x ๏ซ 1 ;
Containing (3,5)
1
Slope of perpendicular = ๏ญ
2
y ๏ญ y1 ๏ฝ m( x ๏ญ x1 )
c.
f (๏ญ x) ๏ฝ ๏จ ๏ญ x ๏ฉ ๏ญ 4 ๏จ ๏ญ x ๏ฉ ๏ซ 1 ๏ฝ x 2 ๏ซ 4 x ๏ซ 1
d.
๏ญ f ( x) ๏ฝ ๏ญ ๏จ x 2 ๏ญ 4 x ๏ซ 1๏ฉ ๏ฝ ๏ญ x 2 ๏ซ 4 x ๏ญ 1
e.
f ( x ๏ซ 2) ๏ฝ ๏จ x ๏ซ 2 ๏ฉ ๏ญ 4 ๏จ x ๏ซ 2 ๏ฉ ๏ซ 1
2
2
๏ฝ x2 ๏ซ 4 x ๏ซ 4 ๏ญ 4 x ๏ญ 8 ๏ซ 1
๏ฝ x2 ๏ญ 3
1
๏จ x ๏ญ 3๏ฉ
2
1
3
y ๏ญ5 ๏ฝ ๏ญ x๏ซ
2
2
1
13
y ๏ฝ ๏ญ x๏ซ
2
2
y ๏ญ5 ๏ฝ ๏ญ
f.
f ( x ๏ซ h) ๏ญ f ๏จ x ๏ฉ
h
๏จ x ๏ซ h ๏ฉ ๏ญ 4 ๏จ x ๏ซ h ๏ฉ ๏ซ 1 ๏ญ ๏จ x 2 ๏ญ 4 x ๏ซ 1๏ฉ
2
๏ฝ
h
x ๏ซ 2 xh ๏ซ h ๏ญ 4 x ๏ญ 4h ๏ซ 1 ๏ญ x 2 ๏ซ 4 x ๏ญ 1
๏ฝ
h
2
2 xh ๏ซ h ๏ญ 4h
๏ฝ
h
h ๏จ 2x ๏ซ h ๏ญ 4๏ฉ
๏ฝ
๏ฝ 2x ๏ซ h ๏ญ 4
h
2
2
3z ๏ญ 1
6z ๏ญ 7
The denominator cannot be zero:
6z ๏ญ 7 ๏น 0
6z ๏น 7
9. h( z ) ๏ฝ
6. x 2 ๏ซ y 2 ๏ญ 4 x ๏ซ 8 y ๏ญ 5 ๏ฝ 0
x2 ๏ญ 4x ๏ซ y2 ๏ซ 8 y ๏ฝ 5
( x 2 ๏ญ 4 x ๏ซ 4) ๏ซ ( y 2 ๏ซ 8 y ๏ซ 16) ๏ฝ 5 ๏ซ 4 ๏ซ 16
7
6
๏ฌ
7๏ผ
Domain: ๏ญ z z ๏น ๏ฝ
6๏พ
๏ฎ
z๏น
( x ๏ญ 2) ๏ซ ( y ๏ซ 4) ๏ฝ 25
2
2
( x ๏ญ 2) 2 ๏ซ ( y ๏ซ 4) 2 ๏ฝ 52
Center: (2,โ4) Radius = 5
10. Yes, the graph represents a function since it
passes the Vertical Line Test.
263
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
11.
f ( x) ๏ฝ
a.
b.
c.
12.
x
x๏ซ4
15. a.
Range: ๏ป y | ๏ญ1 ๏ฃ y ๏ฃ 3๏ฝ or ๏ ๏ญ1, 3๏
1
1 1
๏ฆ 1๏ถ
f (1) ๏ฝ
๏ฝ ๏น , so ๏ง 1, ๏ท is not on
1๏ซ 4 5 4
๏จ 4๏ธ
the graph of f.
b. Intercepts: ๏จ ๏ญ1, 0 ๏ฉ , ๏จ 0, ๏ญ1๏ฉ , ๏จ1, 0 ๏ฉ
๏ญ2
๏ญ2
๏ฝ
๏ฝ ๏ญ1, so ๏จ ๏ญ2, ๏ญ 1๏ฉ is a
๏ญ2 ๏ซ 4 2
point on the graph of f.
c.
x-intercepts: ๏ญ1, 1
y-intercept: ๏ญ1
f (๏ญ2) ๏ฝ
The graph is symmetric with respect to the
y-axis.
d. When x ๏ฝ 2 , the function takes on a value
of 1. Therefore, f ๏จ 2 ๏ฉ ๏ฝ 1 .
Solve for x:
x
2๏ฝ
x๏ซ4
2x ๏ซ 8 ๏ฝ x
x ๏ฝ ๏ญ8
So, (๏ญ8, 2) is a point on the graph of f.
e.
The function takes on the value 3 at x ๏ฝ ๏ญ4
and x ๏ฝ 4 .
f.
f ๏จ x ๏ฉ ๏ผ 0 means that the graph lies below
the x-axis. This happens for x values
between ๏ญ1 and 1. Thus, the solution set is
๏ป x | ๏ญ1 ๏ผ x ๏ผ 1๏ฝ or ๏จ ๏ญ1, 1๏ฉ .
x2
f ( x) ๏ฝ
2x ๏ซ1
๏จ๏ญx๏ฉ
x2
๏ฝ
๏น f ๏จ x ๏ฉ or ๏ญ f ๏จ x ๏ฉ
2 ๏จ ๏ญ x ๏ฉ ๏ซ 1 ๏ญ2 x ๏ซ 1
2
f (๏ญ x) ๏ฝ
g.
The graph of y ๏ฝ f ๏จ x ๏ฉ ๏ซ 2 is the graph of
y ๏ฝ f ๏จ x ๏ฉ but shifted up 2 units.
Therefore, f is neither even nor odd.
13.
Domain: ๏ป x | ๏ญ4 ๏ฃ x ๏ฃ 4๏ฝ or ๏ ๏ญ4, 4๏
y
๏จ๏ญ๏ด๏ฌ๏ ๏ต๏ฉ
f ๏จ x ๏ฉ ๏ฝ x ๏ญ 5 x ๏ซ 4 on the interval ๏จ ๏ญ4, 4 ๏ฉ
3
5
๏จ๏ญ๏ฒ๏ฌ๏ ๏ณ๏ฉ
Use MAXIMUM and MINIMUM on the graph
of y1 ๏ฝ x3 ๏ญ 5 x ๏ซ 4 .
๏จ๏ญ๏ฑ๏ฌ๏ ๏ฒ๏ฉ
๏จ๏ฐ๏ฌ๏ ๏ฑ๏ฉ
๏จ๏ด๏ฌ๏ ๏ต๏ฉ
๏จ๏ฒ๏ฌ๏ ๏ณ๏ฉ
๏จ๏ฑ๏ฌ๏ ๏ฒ๏ฉ
๏ญ5
5
x
๏ญ5
h.
The graph of y ๏ฝ f ๏จ ๏ญ x ๏ฉ is the graph of
y ๏ฝ f ๏จ x ๏ฉ but reflected about the y-axis.
Local maximum is 5.30 and occurs at x ๏ป ๏ญ1.29 ;
Local minimum is โ3.30 and occurs at x ๏ป 1.29 ;
f is increasing on ๏ ๏ญ4, ๏ญ1.29๏ or ๏1.29, 4๏ ;
y
5
๏จ๏ญ๏ด๏ฌ๏ ๏ณ๏ฉ
f is decreasing on ๏ ๏ญ1.29,1.29๏ .
14.
f ๏จ x ๏ฉ ๏ฝ 3 x ๏ซ 5;
a.
๏จ๏ญ๏ฒ๏ฌ๏ ๏ฑ๏ฉ
๏ญ5
g ๏จ x๏ฉ ๏ฝ 2x ๏ซ1
f ๏จ x๏ฉ ๏ฝ g ๏จ x๏ฉ
๏จ๏ฑ๏ฌ๏ ๏ฐ๏ฉ
5
x
๏ญ5
3x ๏ซ 5 ๏ฝ 2 x ๏ซ 1
3x ๏ซ 5 ๏ฝ 2 x ๏ซ 1
b.
๏จ๏ญ๏ฑ๏ฌ๏ ๏ฐ๏ฉ
๏จ๏ฐ๏ฌ๏ ๏ญ๏ฑ๏ฉ
๏จ๏ด๏ฌ๏ ๏ณ๏ฉ
๏จ๏ฒ๏ฌ๏ ๏ฑ๏ฉ
i.
The graph of y ๏ฝ 2 f ๏จ x ๏ฉ is the graph of
x ๏ฝ ๏ญ4
y ๏ฝ f ๏จ x ๏ฉ but stretched vertically by a
f ๏จ x๏ฉ ๏พ g ๏จ x๏ฉ
factor of 2. That is, the coordinate of each
point is multiplied by 2.
3x ๏ซ 5 ๏พ 2 x ๏ซ 1
3x ๏ซ 5 ๏พ 2 x ๏ซ 1
x ๏พ ๏ญ4
The solution set is ๏ป x x ๏พ ๏ญ4๏ฝ or ๏จ ๏ญ4, ๏ฅ ๏ฉ .
264
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2 Projects
y
10
๏จ๏ญ๏ด๏ฌ๏ ๏ถ๏ฉ
๏จ๏ญ๏ฒ๏ฌ๏ ๏ฒ๏ฉ
๏จ๏ด๏ฌ๏ ๏ถ๏ฉ
๏จ๏ฒ๏ฌ๏ ๏ฒ๏ฉ
๏จ๏ญ๏ฑ๏ฌ๏ ๏ฐ๏ฉ
๏จ๏ฐ๏ฌ๏ ๏ญ๏ฒ๏ฉ
๏ญ5
๏จ๏ฑ๏ฌ๏ ๏ฐ๏ฉ
5
x
๏ญ๏ฑ๏ฐ
j.
Since the graph is symmetric about the yaxis, the function is even.
k.
The function is increasing on the open
interval ๏จ 0, 4 ๏ฉ .
Chapter 2 Projects
Project I โ Internet-based Project
Answers will vary.
Project II
a.
b. The data would be best fit by a quadratic function.
1000
m/sec
๏ฑ๏ท๏ต
๏ฐ
y ๏ฝ 0.085 x 2 ๏ญ 14.46 x ๏ซ 1069.52
kg
1000
m/sec
๏ฐ
๏ฑ๏ท๏ต
kg
These results seem reasonable since the function
fits the data well.
265
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
c.
s0 = 0m
Type
Weight
kg
Velocity
m/sec
MG 17
10.2
905
2
v0 t ๏ซ s0
2
s (t ) ๏ฝ ๏ญ4.9t 2 ๏ซ 639.93t Best. (It goes the highest)
MG 131
19.7
710
s (t ) ๏ฝ ๏ญ4.9t 2 ๏ซ 502.05t
MG 151
41.5
850
s (t ) ๏ฝ ๏ญ4.9t 2 ๏ซ 601.04t
MG 151/20
42.3
695
s (t ) ๏ฝ ๏ญ4.9t 2 ๏ซ 491.44t
MG/FF
35.7
575
s (t ) ๏ฝ ๏ญ4.9t 2 ๏ซ 406.59t
MK 103
145
860
s (t ) ๏ฝ ๏ญ4.9t 2 ๏ซ 608.11t
MK 108
58
520
s (t ) ๏ฝ ๏ญ4.9t 2 ๏ซ 367.70t
WGr 21
111
315
s (t ) ๏ฝ ๏ญ4.9t 2 ๏ซ 222.74t
Type
Weight
kg
Velocity
m/sec
MG 17
10.2
905
2
v0 t ๏ซ s0
2
s (t ) ๏ฝ ๏ญ4.9t 2 ๏ซ 639.93t ๏ซ 200 Best. (It goes the highest)
MG 131
19.7
710
s (t ) ๏ฝ ๏ญ4.9t 2 ๏ซ 502.05t ๏ซ 200
MG 151
41.5
850
s (t ) ๏ฝ ๏ญ4.9t 2 ๏ซ 601.04t ๏ซ 200
MG 151/20
42.3
695
s (t ) ๏ฝ ๏ญ4.9t 2 ๏ซ 491.44t ๏ซ 200
MG/FF
35.7
575
s (t ) ๏ฝ ๏ญ4.9t 2 ๏ซ 406.59t ๏ซ 200
MK 103
145
860
s (t ) ๏ฝ ๏ญ4.9t 2 ๏ซ 608.11t ๏ซ 200
MK 108
58
520
s (t ) ๏ฝ ๏ญ4.9t 2 ๏ซ 367.70t ๏ซ 200
WGr 21
111
315
s (t ) ๏ฝ ๏ญ4.9t 2 ๏ซ 222.74t ๏ซ 200
Type
Weight
kg
Velocity
m/sec
MG 17
10.2
905
2
v0 t ๏ซ s0
2
s (t ) ๏ฝ ๏ญ4.9t 2 ๏ซ 639.93t ๏ซ 30 Best. (It goes the highest)
MG 131
19.7
710
s (t ) ๏ฝ ๏ญ4.9t 2 ๏ซ 502.05t ๏ซ 30
MG 151
41.5
850
s (t ) ๏ฝ ๏ญ4.9t 2 ๏ซ 601.04t ๏ซ 30
MG 151/20
42.3
695
s (t ) ๏ฝ ๏ญ4.9t 2 ๏ซ 491.44t ๏ซ 30
MG/FF
35.7
575
s (t ) ๏ฝ ๏ญ4.9t 2 ๏ซ 406.59t ๏ซ 30
MK 103
145
860
s (t ) ๏ฝ ๏ญ4.9t 2 ๏ซ 608.11t ๏ซ 30
MK 108
58
520
s (t ) ๏ฝ ๏ญ4.9t 2 ๏ซ 367.70t ๏ซ 30
WGr 21
111
315
s (t ) ๏ฝ ๏ญ4.9t 2 ๏ซ 222.74t ๏ซ 30
Equation in the form: s (t ) ๏ฝ ๏ญ4.9t 2 ๏ซ
s0 = 200m
Equation in the form: s (t ) ๏ฝ ๏ญ4.9t 2 ๏ซ
s0 = 30m
Equation in the form: s (t ) ๏ฝ ๏ญ4.9t 2 ๏ซ
Notice that the gun is what makes the difference, not how high it is mounted necessarily. The only way
to change the true maximum height that the projectile can go is to change the angle at which it fires.
266
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2 Projects
Project III
a.
x
1 2
3
4
5
y ๏ฝ ๏ญ2 x ๏ซ 5 3 1 ๏ญ1 ๏ญ3 ๏ญ5
b.
๏y y2 ๏ญ y1 1 ๏ญ 3
๏ฝ
๏ฝ
๏ฝ ๏ญ2
1
๏x x2 ๏ญ x1
๏y y2 ๏ญ y1 ๏ญ1 ๏ญ 1
๏ฝ
๏ฝ
๏ฝ ๏ญ2
1
๏x x2 ๏ญ x1
๏y y2 ๏ญ y1 ๏ญ3 ๏ญ (๏ญ1)
๏ฝ
๏ฝ
๏ฝ ๏ญ2
1
๏x x2 ๏ญ x1
๏y y2 ๏ญ y1 ๏ญ5 ๏ญ (๏ญ3)
๏ฝ
๏ฝ
๏ฝ ๏ญ2
1
๏x x2 ๏ญ x1
All of the values of
๏y
are the same.
๏x
๏ต๏ฐ๏ฌ๏ฐ๏ฐ๏ฐ
c.
Median
Income ($)
๏ฐ
d.
e.
๏ฑ๏ฐ๏ฐ
Age Class Midpoint
๏I 30633 ๏ญ 9548
๏ฝ
๏ฝ 2108.50
๏x
10
๏I 37088 ๏ญ 30633
๏ฝ
๏ฝ 645.50
๏x
10
๏I 41072 ๏ญ 37088
๏ฝ
๏ฝ 398.40
๏x
10
๏I 34414 ๏ญ 41072
๏ฝ
๏ฝ ๏ญ665.80
10
๏x
๏I 19167 ๏ญ 34414
๏ฝ
๏ฝ ๏ญ1524.70
๏x
10
๏I
values are not all equal. The data are not linearly related.
These
๏x
x
๏ญ2
๏ญ1
0
1
y
23
9
3
5 15 33 59
๏y
๏x
2
3
4
๏ญ14 ๏ญ6 2 10 18 26
As x increases,
๏y
increases. This makes sense because the parabola is increasing (going up) steeply as x
๏x
increases.
267
Copyright ยฉ 2019 Pearson Education, Inc.
Chapter 2: Linear and Quadratic Functions
f.
x
๏ญ2 ๏ญ1 0 1
y
23
๏2 y
๏x2
9
2
3
4
3 5 15 33 59
8 8
8
8
8
The second differences are all the same.
g. The paragraph should mention at least two observations:
1. The first differences for a linear function are all the same.
2. The second differences for a quadratic function are the same.
Project IV
a. โ i.
Answers will vary , depending on where the CBL is located above the bouncing ball.
j.
The ratio of the heights between bounces will be the same.
268
Copyright ยฉ 2019 Pearson Education, Inc.
Document Preview (120 of 1684 Pages)
User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.
-37%
Solution Manual for Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry, 4th Edition
$18.99 $29.99Save:$11.00(37%)
24/7 Live Chat
Instant Download
100% Confidential
Store
Liam Anderson
0 (0 Reviews)
Best Selling
Data Structures and Other Objects Using C++ 4th Edition Solution Manual
$18.99 $29.99Save:$11.00(37%)
Chemistry: Principles And Reactions, 7th Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Test Bank for Hospitality Facilities Management and Design, 4th Edition
$18.99 $29.99Save:$11.00(37%)
Solution Manual for Designing the User Interface: Strategies for Effective Human-Computer Interaction, 6th Edition
$18.99 $29.99Save:$11.00(37%)
Test Bank for Strategies For Reading Assessment And Instruction: Helping Every Child Succeed, 6th Edition
$18.99 $29.99Save:$11.00(37%)
2023-2024 ATI Pediatrics Proctored Exam with Answers (139 Solved Questions)
$18.99 $29.99Save:$11.00(37%)