Preview Extract
2
LIMITS AND DERIVATIVES
2.1 The Tangent and Velocity Problems
1. (a) Using ๏ (15๏ป 250), we construct the following table:
๏ด
๏
slope = ๏ญ๏ ๏
5
(5๏ป 694)
694โ250
= โ 444
= โ44๏บ4
5โ15
10
10
(10๏ป 444)
444โ250
= โ 194
= โ38๏บ8
10โ15
5
20
(20๏ป 111)
111โ250
= โ 139
= โ27๏บ8
20โ15
5
25
(25๏ป 28)
28โ250
222
25โ15 = โ 10 = โ22๏บ2
30
(30๏ป 0)
0โ250
250
30โ15 = โ 15 = โ16๏บ6
(b) Using the values of ๏ด that correspond to the points
closest to ๏ (๏ด = 10 and ๏ด = 20), we have
โ38๏บ8 + (โ27๏บ8)
= โ33๏บ3
2
(c) From the graph, we can estimate the slope of the
tangent line at ๏ to be โ300
= โ33๏บ3.
9
โ 2530
2. (a) Slope = 2948
= 418
42 โ 36
6 โ 69๏บ67
โ 2661
(b) Slope = 2948
= 287
42 โ 38
4 = 71๏บ75
โ 2948
= 132
(d) Slope = 3080
44 โ 42
2 = 66
โ 2806
= 142
= 71
(c) Slope = 2948
42 โ 40
2
From the data, we see that the patientโs heart rate is decreasing from 71 to 66 heartbeats๏ฝminute after 42 minutes.
After being stable for a while, the patientโs heart rate is dropping.
3. (a) ๏น =
1
, ๏ (2๏ป โ1)
1โ๏ธ
๏ธ
(i)
1๏บ5
(ii)
1๏บ9
(iii)
1๏บ99
(iv)
1๏บ999
(v)
2๏บ5
(vi)
2๏บ1
(vii)
2๏บ01
(viii)
2๏บ001
(b) The slope appears to be 1.
(c) Using ๏ญ = 1, an equation of the tangent line to the
๏(๏ธ๏ป 1๏ฝ(1 โ ๏ธ))
๏ญ๏ ๏
(1๏บ5๏ป โ2)
2
(1๏บ99๏ป โ1๏บ010 101)
1๏บ010 101
(2๏บ5๏ป โ0๏บ666 667)
0๏บ666 667
(2๏บ01๏ป โ0๏บ990 099)
0๏บ990 099
(1๏บ9๏ป โ1๏บ111 111)
1๏บ111 111
(1๏บ999๏ป โ1๏บ001 001)
1๏บ001 001
(2๏บ1๏ป โ0๏บ909 091)
0๏บ909 091
(2๏บ001๏ป โ0๏บ999 001)
0๏บ999 001
curve at ๏ (2๏ป โ1) is ๏น โ (โ1) = 1(๏ธ โ 2), or
๏น = ๏ธ โ 3.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
67
68
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
4. (a) ๏น = cos ๏ผ๏ธ, ๏ (0๏บ5๏ป 0)
๏ธ
(b) The slope appears to be โ๏ผ.
๏
๏ญ๏ ๏
(i)
0
(0๏ป 1)
(ii)
0๏บ4
(0๏บ4๏ป 0๏บ309017)
(iii)
0๏บ49
(0๏บ49๏ป 0๏บ031411)
(iv)
0๏บ499
(0๏บ499๏ป 0๏บ003142)
(1๏ป โ1)
(v)
1
(vi)
0๏บ6
(vii)
0๏บ51
(viii)
0๏บ501
โ2
(0๏บ6๏ป โ0๏บ309017)
(0๏บ51๏ป โ0๏บ031411)
(0๏บ501๏ป โ0๏บ003142)
(c) ๏น โ 0 = โ๏ผ(๏ธ โ 0๏บ5) or ๏น = โ๏ผ๏ธ + 12 ๏ผ.
(d)
โ3๏บ090170
โ3๏บ141076
โ3๏บ141587
โ2
โ3๏บ090170
โ3๏บ141076
โ3๏บ141587
5. (a) ๏น = ๏น(๏ด) = 40๏ด โ 16๏ด2 . At ๏ด = 2, ๏น = 40(2) โ 16(2)2 = 16. The average velocity between times 2 and 2 + ๏จ is
๏ถave =
๏ค
๏ฃ
40(2 + ๏จ) โ 16(2 + ๏จ)2 โ 16
โ24๏จ โ 16๏จ2
๏น(2 + ๏จ) โ ๏น(2)
=
=
= โ24 โ 16๏จ, if ๏จ 6= 0.
(2 + ๏จ) โ 2
๏จ
๏จ
(i) [2๏ป 2๏บ5]: ๏จ = 0๏บ5, ๏ถave = โ32 ft๏ฝs
(ii) [2๏ป 2๏บ1]: ๏จ = 0๏บ1, ๏ถave = โ25๏บ6 ft๏ฝs
(iii) [2๏ป 2๏บ05]: ๏จ = 0๏บ05, ๏ถave = โ24๏บ8 ft๏ฝs
(iv) [2๏ป 2๏บ01]: ๏จ = 0๏บ01, ๏ถave = โ24๏บ16 ft๏ฝs
(b) The instantaneous velocity when ๏ด = 2 (๏จ approaches 0) is โ24 ft๏ฝs.
6. (a) ๏น = ๏น(๏ด) = 10๏ด โ 1๏บ86๏ด2 . At ๏ด = 1, ๏น = 10(1) โ 1๏บ86(1)2 = 8๏บ14. The average velocity between times 1 and 1 + ๏จ is
๏ถave =
๏ค
๏ฃ
10(1 + ๏จ) โ 1๏บ86(1 + ๏จ)2 โ 8๏บ14
6๏บ28๏จ โ 1๏บ86๏จ2
๏น(1 + ๏จ) โ ๏น(1)
=
=
= 6๏บ28 โ 1๏บ86๏จ, if ๏จ 6= 0.
(1 + ๏จ) โ 1
๏จ
๏จ
(i) [1๏ป 2]: ๏จ = 1, ๏ถave = 4๏บ42 m๏ฝs
(ii) [1๏ป 1๏บ5]: ๏จ = 0๏บ5, ๏ถave = 5๏บ35 m๏ฝs
(iii) [1๏ป 1๏บ1]: ๏จ = 0๏บ1, ๏ถave = 6๏บ094 m๏ฝs
(iv) [1๏ป 1๏บ01]: ๏จ = 0๏บ01, ๏ถave = 6๏บ2614 m๏ฝs
(v) [1๏ป 1๏บ001]: ๏จ = 0๏บ001, ๏ถave = 6๏บ27814 m๏ฝs
(b) The instantaneous velocity when ๏ด = 1 (๏จ approaches 0) is 6๏บ28 m๏ฝs.
7. (a)
(i) On the interval [2๏ป 4] , ๏ถave =
๏ณ(4) โ ๏ณ(2)
79๏บ2 โ 20๏บ6
=
= 29๏บ3 ft๏ฝs.
4โ2
2
(ii) On the interval [3๏ป 4] , ๏ถave =
79๏บ2 โ 46๏บ5
๏ณ(4) โ ๏ณ(3)
=
= 32๏บ7 ft๏ฝs.
4โ3
1
(iii) On the interval [4๏ป 5] , ๏ถave =
124๏บ8 โ 79๏บ2
๏ณ(5) โ ๏ณ(4)
=
= 45๏บ6 ft๏ฝs.
5โ4
1
(iv) On the interval [4๏ป 6] , ๏ถave =
176๏บ7 โ 79๏บ2
๏ณ(6) โ ๏ณ(4)
=
= 48๏บ75 ft๏ฝs.
6โ4
2
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.1
THE TANGENT AND VELOCITY PROBLEMS
ยค
(b) Using the points (2๏ป 16) and (5๏ป 105) from the approximate
tangent line, the instantaneous velocity at ๏ด = 3 is about
89
105 โ 16
=
โ 29๏บ7 ft๏ฝs.
5โ2
3
8. (a) (i) ๏ณ = ๏ณ(๏ด) = 2 sin ๏ผ๏ด + 3 cos ๏ผ๏ด. On the interval [1๏ป 2], ๏ถave =
(ii) On the interval [1๏ป 1๏บ1], ๏ถave =
3 โ (โ3)
๏ณ(2) โ ๏ณ(1)
=
= 6 cm๏ฝs.
2โ1
1
โ3๏บ471 โ (โ3)
๏ณ(1๏บ1) โ ๏ณ(1)
โ
= โ4๏บ71 cm๏ฝs.
1๏บ1 โ 1
0๏บ1
(iii) On the interval [1๏ป 1๏บ01], ๏ถave =
โ3๏บ0613 โ (โ3)
๏ณ(1๏บ01) โ ๏ณ(1)
โ
= โ6๏บ13 cm๏ฝs.
1๏บ01 โ 1
0๏บ01
(iv) On the interval [1๏ป 1๏บ001], ๏ถave =
โ3๏บ00627 โ (โ3)
๏ณ(1๏บ001) โ ๏ณ(1)
โ
= โ6๏บ27 cm๏ฝs.
1๏บ001 โ 1
0๏บ001
(b) The instantaneous velocity of the particle when ๏ด = 1 appears to be about โ6๏บ3 cm๏ฝs.
9. (a) For the curve ๏น = sin(10๏ผ๏ฝ๏ธ) and the point ๏ (1๏ป 0):
๏ญ๏ ๏
๏ธ
๏
2
๏ธ
(2๏ป 0)
0
0๏บ5
(0๏บ5๏ป 0)
1๏บ5
(1๏บ5๏ป 0๏บ8660)
1๏บ7321
0๏บ6
(0๏บ6๏ป 0๏บ8660)
1๏บ4
(1๏บ4๏ป โ0๏บ4339)
โ1๏บ0847
0๏บ7
(0๏บ7๏ป 0๏บ7818)
0๏บ8
(0๏บ8๏ป 1)
(1๏บ2๏ป 0๏บ8660)
4๏บ3301
0๏บ9
(0๏บ9๏ป โ0๏บ3420)
1๏บ3
1๏บ2
1๏บ1
๏
(1๏บ3๏ป โ0๏บ8230)
(1๏บ1๏ป โ0๏บ2817)
โ2๏บ7433
โ2๏บ8173
๏ญ๏ ๏
0
โ2๏บ1651
โ2๏บ6061
โ5
3๏บ4202
As ๏ธ approaches 1, the slopes do not appear to be approaching any particular value.
We see that problems with estimation are caused by the frequent
(b)
oscillations of the graph. The tangent is so steep at ๏ that we need to
take ๏ธ-values much closer to 1 in order to get accurate estimates of
its slope.
(c) If we choose ๏ธ = 1๏บ001, then the point ๏ is (1๏บ001๏ป โ0๏บ0314) and ๏ญ๏ ๏ โ โ31๏บ3794. If ๏ธ = 0๏บ999, then ๏ is
(0๏บ999๏ป 0๏บ0314) and ๏ญ๏ ๏ = โ31๏บ4422. The average of these slopes is โ31๏บ4108. So we estimate that the slope of the
tangent line at ๏ is about โ31๏บ4.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
69
70
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
2.2 The Limit of a Function
1. As ๏ธ approaches 2, ๏ฆ (๏ธ) approaches 5. [Or, the values of ๏ฆ (๏ธ) can be made as close to 5 as we like by taking ๏ธ suf๏ฌciently
close to 2 (but ๏ธ 6= 2).] Yes, the graph could have a hole at (2๏ป 5) and be de๏ฌned such that ๏ฆ (2) = 3.
2. As ๏ธ approaches 1 from the left, ๏ฆ (๏ธ) approaches 3; and as ๏ธ approaches 1 from the right, ๏ฆ(๏ธ) approaches 7. No, the limit
does not exist because the left- and right-hand limits are different.
3. (a) lim ๏ฆ (๏ธ) = โ means that the values of ๏ฆ (๏ธ) can be made arbitrarily large (as large as we please) by taking ๏ธ
๏ธโโ3
suf๏ฌciently close to โ3 (but not equal to โ3).
(b) lim ๏ฆ(๏ธ) = โโ means that the values of ๏ฆ (๏ธ) can be made arbitrarily large negative by taking ๏ธ suf๏ฌciently close to 4
๏ธโ4+
through values larger than 4.
4. (a) As ๏ธ approaches 2 from the left, the values of ๏ฆ (๏ธ) approach 3, so lim ๏ฆ (๏ธ) = 3.
๏ธโ2โ
(b) As ๏ธ approaches 2 from the right, the values of ๏ฆ (๏ธ) approach 1, so lim ๏ฆ(๏ธ) = 1.
๏ธโ2+
(c) lim ๏ฆ (๏ธ) does not exist since the left-hand limit does not equal the right-hand limit.
๏ธโ2
(d) When ๏ธ = 2, ๏น = 3, so ๏ฆ (2) = 3.
(e) As ๏ธ approaches 4, the values of ๏ฆ (๏ธ) approach 4, so lim ๏ฆ(๏ธ) = 4.
๏ธโ4
(f ) There is no value of ๏ฆ (๏ธ) when ๏ธ = 4, so ๏ฆ (4) does not exist.
5. (a) As ๏ธ approaches 1, the values of ๏ฆ (๏ธ) approach 2, so lim ๏ฆ(๏ธ) = 2.
๏ธโ1
(b) As ๏ธ approaches 3 from the left, the values of ๏ฆ (๏ธ) approach 1, so lim ๏ฆ (๏ธ) = 1.
๏ธโ3โ
(c) As ๏ธ approaches 3 from the right, the values of ๏ฆ (๏ธ) approach 4, so lim ๏ฆ(๏ธ) = 4.
๏ธโ3+
(d) lim ๏ฆ (๏ธ) does not exist since the left-hand limit does not equal the right-hand limit.
๏ธโ3
(e) When ๏ธ = 3, ๏น = 3, so ๏ฆ (3) = 3.
6. (a) ๏จ(๏ธ) approaches 4 as ๏ธ approaches โ3 from the left, so
lim ๏จ(๏ธ) = 4.
๏ธโโ3โ
(b) ๏จ(๏ธ) approaches 4 as ๏ธ approaches โ3 from the right, so lim ๏จ(๏ธ) = 4.
๏ธโโ3+
(c) lim ๏จ(๏ธ) = 4 because the limits in part (a) and part (b) are equal.
๏ธโโ3
(d) ๏จ(โ3) is not de๏ฌned, so it doesnโt exist.
(e) ๏จ(๏ธ) approaches 1 as ๏ธ approaches 0 from the left, so lim ๏จ(๏ธ) = 1.
๏ธโ0โ
(f ) ๏จ(๏ธ) approaches โ1 as ๏ธ approaches 0 from the right, so lim ๏จ(๏ธ) = โ1.
๏ธโ0+
(g) lim ๏จ(๏ธ) does not exist because the limits in part (e) and part (f ) are not equal.
๏ธโ0
(h) ๏จ(0) = 1 since the point (0๏ป 1) is on the graph of ๏จ.
(i) Since lim ๏จ(๏ธ) = 2 and lim ๏จ(๏ธ) = 2, we have lim ๏จ(๏ธ) = 2.
๏ธโ2โ
๏ธโ2+
๏ธโ2
(j) ๏จ(2) is not de๏ฌned, so it doesnโt exist.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.2
THE LIMIT OF A FUNCTION
ยค
(k) ๏จ(๏ธ) approaches 3 as ๏ธ approaches 5 from the right, so lim ๏จ(๏ธ) = 3.
๏ธโ5+
(l) ๏จ(๏ธ) does not approach any one number as ๏ธ approaches 5 from the left, so lim ๏จ(๏ธ) does not exist.
๏ธโ5โ
7. (a) lim ๏ง(๏ด) = โ1
(b) lim ๏ง(๏ด) = โ2
๏ดโ0โ
๏ดโ0+
(c) lim ๏ง(๏ด) does not exist because the limits in part (a) and part (b) are not equal.
๏ดโ0
(e) lim ๏ง(๏ด) = 0
(d) lim ๏ง(๏ด) = 2
๏ดโ2โ
๏ดโ2+
(f ) lim ๏ง(๏ด) does not exist because the limits in part (d) and part (e) are not equal.
๏ดโ2
(g) ๏ง(2) = 1
(h) lim ๏ง(๏ด) = 3
๏ดโ4
8. (a) lim ๏(๏ธ) = โ
(b) lim ๏(๏ธ) = โโ
(c) lim ๏(๏ธ) = โ
(d) lim ๏(๏ธ) = โโ
๏ธโโ3
๏ธโ2โ
๏ธโโ1
๏ธโ2+
(e) The equations of the vertical asymptotes are ๏ธ = โ3, ๏ธ = โ1 and ๏ธ = 2.
9. (a) lim ๏ฆ (๏ธ) = โโ
(b) lim ๏ฆ (๏ธ) = โ
(d) lim ๏ฆ (๏ธ) = โโ
(e) lim ๏ฆ (๏ธ) = โ
๏ธโโ7
๏ธโโ3
๏ธโ6โ
(c) lim ๏ฆ (๏ธ) = โ
๏ธโ0
๏ธโ6+
(f ) The equations of the vertical asymptotes are ๏ธ = โ7, ๏ธ = โ3, ๏ธ = 0, and ๏ธ = 6.
10.
lim ๏ฆ (๏ด) = 150 mg and lim ๏ฆ (๏ด) = 300 mg. These limits show that there is an abrupt change in the amount of drug in
๏ดโ12โ
+
๏ดโ12
the patientโs bloodstream at ๏ด = 12 h. The left-hand limit represents the amount of the drug just before the fourth injection.
The right-hand limit represents the amount of the drug just after the fourth injection.
11. From the graph of
๏ธ
1 + ๏ธ if ๏ธ ๏ผ โ1
๏พ
๏ผ
๏ฆ (๏ธ) = ๏ธ2
if โ1 โค ๏ธ ๏ผ 1 ,
๏พ
๏บ
2 โ ๏ธ if ๏ธ โฅ 1
we see that lim ๏ฆ(๏ธ) exists for all ๏ก except ๏ก = โ1. Notice that the
๏ธโ๏ก
right and left limits are different at ๏ก = โ1.
12. From the graph of
๏ธ
1 + sin ๏ธ if ๏ธ ๏ผ 0
๏พ
๏ผ
if 0 โค ๏ธ โค ๏ผ ,
๏ฆ (๏ธ) = cos ๏ธ
๏พ
๏บ
sin ๏ธ
if ๏ธ ๏พ ๏ผ
we see that lim ๏ฆ(๏ธ) exists for all ๏ก except ๏ก = ๏ผ. Notice that the
๏ธโ๏ก
right and left limits are different at ๏ก = ๏ผ.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
71
72
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
13. (a) lim ๏ฆ (๏ธ) = 1
๏ธโ0โ
(b) lim ๏ฆ(๏ธ) = 0
๏ธโ0+
(c) lim ๏ฆ (๏ธ) does not exist because the limits
๏ธโ0
in part (a) and part (b) are not equal.
14. (a) lim ๏ฆ (๏ธ) = โ1
๏ธโ0โ
(b) lim ๏ฆ(๏ธ) = 1
๏ธโ0+
(c) lim ๏ฆ (๏ธ) does not exist because the limits
๏ธโ0
in part (a) and part (b) are not equal.
15. lim ๏ฆ (๏ธ) = โ1,
lim ๏ฆ(๏ธ) = 2, ๏ฆ (0) = 1
๏ธโ0โ
๏ธโ0+
16. lim ๏ฆ (๏ธ) = 1, lim ๏ฆ (๏ธ) = โ2, lim ๏ฆ (๏ธ) = 2,
๏ธโ0
๏ธโ3โ
๏ธโ3+
๏ฆ (0) = โ1, ๏ฆ (3) = 1
17. lim ๏ฆ (๏ธ) = 4,
๏ธโ3+
lim ๏ฆ (๏ธ) = 2, lim ๏ฆ(๏ธ) = 2,
๏ธโโ2
๏ธโ3โ
๏ฆ (3) = 3, ๏ฆ(โ2) = 1
19. For ๏ฆ (๏ธ) =
๏ธ2 โ 3๏ธ
:
๏ธ2 โ 9
๏ธ
๏ฆ (๏ธ)
18. lim ๏ฆ (๏ธ) = 2, lim ๏ฆ (๏ธ) = 0, lim ๏ฆ (๏ธ) = 3,
๏ธโ0โ
๏ธโ0+
๏ธโ4โ
lim ๏ฆ (๏ธ) = 0, ๏ฆ (0) = 2, ๏ฆ (4) = 1
๏ธโ4+
๏ธ
๏ฆ (๏ธ)
3๏บ1
0๏บ508 197
2๏บ9
0๏บ491 525
3๏บ05
0๏บ504 132
2๏บ95
0๏บ495 798
3๏บ01
0๏บ500 832
2๏บ99
0๏บ499 165
3๏บ001
0๏บ500 083
2๏บ999
0๏บ499 917
3๏บ0001
0๏บ500 008
2๏บ9999
0๏บ499 992
1
๏ธ2 โ 3๏ธ
= .
๏ธโ3 ๏ธ2 โ 9
2
It appears that lim
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.2
20. For ๏ฆ (๏ธ) =
๏ธ
โ2๏บ5
๏ธ
๏ฆ (๏ธ)
โ5
โ3๏บ5
7
โ59
โ3๏บ05
โ2๏บ9
โ29
โ2๏บ99
โ299
โ2๏บ999
โ2๏บ9999
โ2999
โ29,999
21. For ๏ฆ (๏ด) =
๏ฅ5๏ด โ 1
:
๏ด
๏ด
๏ฆ (๏ด)
0๏บ5
22๏บ364 988
0๏บ1
6๏บ487 213
0๏บ01
5๏บ127 110
0๏บ001
5๏บ012 521
0๏บ0001
5๏บ001 250
It appears that lim
๏ดโ0
โ3๏บ1
31
โ3๏บ01
301
61
โ3๏บ001
3001
โ3๏บ0001
30,001
It appears that lim ๏ฆ (๏ธ) = โโ and that
๏ธโโ3+
lim ๏ฆ (๏ธ) = โ, so lim
ln ๏ธ โ ln 4
:
๏ธโ4
๏ธ
๏ฆ (๏ธ)
๏ธโโ3
๏ธโโ3โ
22. For ๏ฆ (๏จ) =
๏ด
๏ฆ (๏ด)
๏จ
๏ธ2 โ 3๏ธ
does not exist.
๏ธ2 โ 9
(2 + ๏จ)5 โ 32
:
๏จ
๏ฆ (๏จ)
โ0๏บ5
1๏บ835 830
0๏บ5
131๏บ312 500
โ0๏บ1
3๏บ934 693
0๏บ1
88๏บ410 100
โ0๏บ01
4๏บ877 058
0๏บ01
80๏บ804 010
โ0๏บ001
4๏บ987 521
0๏บ001
80๏บ080 040
โ0๏บ0001
4๏บ998 750
0๏บ0001
80๏บ008 000
๏ฅ5๏ด โ 1
= 5.
๏ด
23. For ๏ฆ (๏ธ) =
It appears that lim
๏จโ0
๏ธ
๏จ
๏ฆ (๏จ)
โ0๏บ5
48๏บ812 500
โ0๏บ01
79๏บ203 990
โ0๏บ0001
79๏บ992 000
โ0๏บ1
72๏บ390 100
โ0๏บ001
79๏บ920 040
(2 + ๏จ)5 โ 32
= 80.
๏จ
๏ฆ (๏ธ)
3๏บ9
0๏บ253 178
4๏บ1
0๏บ246 926
3๏บ99
0๏บ250 313
4๏บ01
0๏บ249 688
3๏บ999
0๏บ250 031
4๏บ001
0๏บ249 969
3๏บ9999
0๏บ250 003
4๏บ0001
0๏บ249 997
It appears that lim ๏ฆ (๏ธ) = 0๏บ25. The graph con๏ฌrms that result.
๏ธโ4
24. For ๏ฆ (๏ฐ) =
๏ฐ
ยค
๏ธ2 โ 3๏ธ
:
๏ธ2 โ 9
๏ฆ (๏ธ)
โ2๏บ95
THE LIMIT OF A FUNCTION
1 + ๏ฐ9
:
1 + ๏ฐ15
๏ฆ (๏ฐ)
โ1๏บ1
0๏บ427 397
โ1๏บ001
0๏บ598 200
โ1๏บ01
0๏บ582 008
โ1๏บ0001
0๏บ599 820
๏ฐ
๏ฆ (๏ฐ)
โ0๏บ9
0๏บ771 405
โ0๏บ999
0๏บ601 800
โ0๏บ99
0๏บ617 992
โ0๏บ9999
0๏บ600 180
It appears that lim ๏ฆ (๏ฐ) = 0๏บ6. The graph con๏ฌrms that result.
๏ฐโโ1
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
73
74
ยค
CHAPTER 2
25. For ๏ฆ (๏ต) =
LIMITS AND DERIVATIVES
sin 3๏ต
:
tan 2๏ต
๏ต
๏ฆ (๏ต)
sin 3๏ต
ยฑ0๏บ1
1๏บ457 847
It appears that lim
ยฑ0๏บ01
1๏บ499 575
The graph con๏ฌrms that result.
ยฑ0๏บ001
1๏บ499 996
ยฑ0๏บ0001
1๏บ500 000
26. For ๏ฆ (๏ด) =
5๏ด โ 1
:
๏ด
๏ด
๏ฆ(๏ด)
0๏บ1
1๏บ746 189
0๏บ01
1๏บ622 459
0๏บ001
1๏บ610 734
0๏บ0001
1๏บ609 567
๏ตโ0 tan 2๏ต
๏ด
= 1๏บ5.
๏ฆ(๏ด)
โ0๏บ1
1๏บ486 601
โ0๏บ001
1๏บ608 143
โ0๏บ01
1๏บ596 556
โ0๏บ0001
1๏บ609 308
It appears that lim ๏ฆ (๏ด) โ 1๏บ6094. The graph con๏ฌrms that result.
๏ดโ0
27. For ๏ฆ (๏ธ) = ๏ธ๏ธ :
๏ธ
๏ฆ (๏ธ)
0๏บ1
0๏บ794 328
0๏บ01
0๏บ954 993
0๏บ001
0๏บ993 116
0๏บ0001
0๏บ999 079
It appears that lim ๏ฆ(๏ธ) = 1.
๏ธโ0+
The graph con๏ฌrms that result.
28. For ๏ฆ (๏ธ) = ๏ธ2 ln ๏ธ:
๏ธ
0๏บ1
0๏บ01
0๏บ001
0๏บ0001
๏ฆ(๏ธ)
It appears that lim ๏ฆ (๏ธ) = 0.
โ0๏บ023 026
๏ธโ0+
โ0๏บ000 461
The graph con๏ฌrms that result.
โ0๏บ000 007
โ0๏บ000 000
29. (a) From the graphs, it seems that lim
๏ธโ0
cos 2๏ธ โ cos ๏ธ
= โ1๏บ5.
๏ธ2
(b)
๏ธ
๏ฆ (๏ธ)
ยฑ0๏บ1
โ1๏บ493 759
ยฑ0๏บ001
โ1๏บ499 999
ยฑ0๏บ01
ยฑ0๏บ0001
โ1๏บ499 938
โ1๏บ500 000
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.2
30. (a) From the graphs, it seems that lim
sin ๏ธ
๏ธโ0 sin ๏ผ๏ธ
THE LIMIT OF A FUNCTION
ยค
75
(b)
= 0๏บ32.
๏ธ
๏ฆ (๏ธ)
ยฑ0๏บ1
0๏บ323 068
ยฑ0๏บ001
ยฑ0๏บ0001
0๏บ318 310
0๏บ318 310
ยฑ0๏บ01
0๏บ318 357
Later we will be able to show that
the exact value is
31. lim
๏ธ+1
32. lim
๏ธ+1
33. lim
2โ๏ธ
๏ธโ5+ ๏ธ โ 5
๏ธโ5โ ๏ธ โ 5
1
.
๏ผ
= โ since the numerator is positive and the denominator approaches 0 from the positive side as ๏ธ โ 5+ .
= โโ since the numerator is positive and the denominator approaches 0 from the negative side as ๏ธ โ 5โ .
๏ธโ1 (๏ธ โ 1)2
= โ since the numerator is positive and the denominator approaches 0 through positive values as ๏ธ โ 1.
โ
๏ธ
= โโ since the numerator is positive and the denominator approaches 0 from the negative side as ๏ธ โ 3โ .
๏ธโ3โ (๏ธ โ 3)5
34. lim
35. Let ๏ด = ๏ธ2 โ 9. Then as ๏ธ โ 3+ , ๏ด โ 0+ , and lim ln(๏ธ2 โ 9) = lim ln ๏ด = โโ by (5).
๏ธโ3+
๏ดโ0+
36. lim ln(sin ๏ธ) = โโ since sin ๏ธ โ 0+ as ๏ธ โ 0+ .
๏ธโ0+
37.
lim
1
๏ธโ(๏ผ๏ฝ2)+ ๏ธ
sec ๏ธ = โโ since
38. lim cot ๏ธ = lim
cos ๏ธ
๏ธโ๏ผ โ sin ๏ธ
๏ธโ๏ผ โ
1
is positive and sec ๏ธ โ โโ as ๏ธ โ (๏ผ๏ฝ2)+ .
๏ธ
= โโ since the numerator is negative and the denominator approaches 0 through positive values
as ๏ธ โ ๏ผโ .
39.
lim ๏ธ csc ๏ธ = lim
๏ธโ2๏ผ โ
๏ธ
๏ธโ2๏ผ โ sin ๏ธ
= โโ since the numerator is positive and the denominator approaches 0 through negative
values as ๏ธ โ 2๏ผโ .
๏ธ2 โ 2๏ธ
๏ธ(๏ธ โ 2)
๏ธ
= lim
= โโ since the numerator is positive and the denominator
= lim
2
2
๏ธโ2โ ๏ธ โ 4๏ธ + 4
๏ธโ2โ (๏ธ โ 2)
๏ธโ2โ ๏ธ โ 2
40. lim
approaches 0 through negative values as ๏ธ โ 2โ .
41. lim
๏ธโ2+
๏ธ2 โ 2๏ธ โ 8
(๏ธ โ 4)(๏ธ + 2)
= lim
= โ since the numerator is negative and the denominator approaches 0 through
๏ธ2 โ 5๏ธ + 6 ๏ธโ2+ (๏ธ โ 3)(๏ธ โ 2)
negative values as ๏ธ โ 2+ .
42. lim
๏ธโ0+
๏ต
๏ถ
1
1
โ ln ๏ธ = โ since โ โ and ln ๏ธ โ โโ as ๏ธ โ 0+ .
๏ธ
๏ธ
43. lim (ln ๏ธ2 โ ๏ธโ2 ) = โโ since ln ๏ธ2 โ โโ and ๏ธโ2 โ โ as ๏ธ โ 0.
๏ธโ0
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
76
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
44. (a) The denominator of ๏น =
๏ธ2 + 1
๏ธ2 + 1
is equal to zero when
=
2
3๏ธ โ 2๏ธ
๏ธ(3 โ 2๏ธ)
(b)
๏ธ = 0 and ๏ธ = 32 (and the numerator is not), so ๏ธ = 0 and ๏ธ = 1๏บ5 are
vertical asymptotes of the function.
45. (a) ๏ฆ (๏ธ) =
1
.
๏ธ3 โ 1
From these calculations, it seems that
lim ๏ฆ (๏ธ) = โโ and lim ๏ฆ (๏ธ) = โ.
๏ธโ1โ
๏ธโ1+
๏ธ
0๏บ5
0๏บ9
0๏บ99
0๏บ999
0๏บ9999
0๏บ99999
๏ฆ (๏ธ)
โ1๏บ14
โ3๏บ69
โ33๏บ7
โ333๏บ7
โ3333๏บ7
โ33,333๏บ7
๏ธ
1๏บ5
1๏บ1
1๏บ01
1๏บ001
1๏บ0001
1๏บ00001
๏ฆ (๏ธ)
0๏บ42
3๏บ02
33๏บ0
333๏บ0
3333๏บ0
33,333๏บ3
(b) If ๏ธ is slightly smaller than 1, then ๏ธ3 โ 1 will be a negative number close to 0, and the reciprocal of ๏ธ3 โ 1, that is, ๏ฆ (๏ธ),
will be a negative number with large absolute value. So lim ๏ฆ(๏ธ) = โโ.
๏ธโ1โ
If ๏ธ is slightly larger than 1, then ๏ธ โ 1 will be a small positive number, and its reciprocal, ๏ฆ (๏ธ), will be a large positive
3
number. So lim ๏ฆ (๏ธ) = โ.
๏ธโ1+
(c) It appears from the graph of ๏ฆ that
lim ๏ฆ (๏ธ) = โโ and lim ๏ฆ (๏ธ) = โ.
๏ธโ1โ
๏ธโ1+
46. (a) From the graphs, it seems that lim
๏ธโ0
1๏ฝ๏ธ
47. (a) Let ๏จ(๏ธ) = (1 + ๏ธ)
๏ธ
โ0๏บ001
โ0๏บ0001
โ0๏บ00001
โ0๏บ000001
0๏บ000001
0๏บ00001
0๏บ0001
0๏บ001
.
๏จ(๏ธ)
2๏บ71964
2๏บ71842
2๏บ71830
2๏บ71828
2๏บ71828
2๏บ71827
2๏บ71815
2๏บ71692
tan 4๏ธ
= 4.
๏ธ
(b)
๏ธ
ยฑ0๏บ1
ยฑ0๏บ01
ยฑ0๏บ001
ยฑ0๏บ0001
๏ฆ (๏ธ)
4๏บ227 932
4๏บ002 135
4๏บ000 021
4๏บ000 000
(b)
It appears that lim (1 + ๏ธ)1๏ฝ๏ธ โ 2๏บ71828, which is approximately ๏ฅ.
๏ธโ0
In Section 3.6 we will see that the value of the limit is exactly ๏ฅ.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.2
THE LIMIT OF A FUNCTION
ยค
77
48. (a)
No, because the calculator-produced graph of ๏ฆ (๏ธ) = ๏ฅ๏ธ + ln |๏ธ โ 4| looks like an exponential function, but the graph of ๏ฆ
has an in๏ฌnite discontinuity at ๏ธ = 4. A second graph, obtained by increasing the numpoints option in Maple, begins to
reveal the discontinuity at ๏ธ = 4.
(b) There isnโt a single graph that shows all the features of ๏ฆ . Several graphs are needed since ๏ฆ looks like ln |๏ธ โ 4| for large
negative values of ๏ธ and like ๏ฅ๏ธ for ๏ธ ๏พ 5, but yet has the in๏ฌnite discontiuity at ๏ธ = 4.
A hand-drawn graph, though distorted, might be better at revealing the main
features of this function.
49. For ๏ฆ (๏ธ) = ๏ธ2 โ (2๏ธ๏ฝ1000):
(a)
๏ธ
1
0๏บ8
๏ฆ(๏ธ)
0๏บ998 000
0๏บ638 259
0๏บ6
0๏บ4
0๏บ2
0๏บ1
0๏บ05
0๏บ358 484
0๏บ158 680
0๏บ038 851
0๏บ008 928
0๏บ001 465
(b)
๏ธ
0๏บ04
0๏บ02
0๏บ01
0๏บ005
0๏บ003
0๏บ001
๏ฆ (๏ธ)
0๏บ000 572
โ0๏บ000 614
โ0๏บ000 907
โ0๏บ000 978
โ0๏บ000 993
โ0๏บ001 000
It appears that lim ๏ฆ(๏ธ) = โ0๏บ001.
๏ธโ0
It appears that lim ๏ฆ (๏ธ) = 0.
๏ธโ0
50. For ๏จ(๏ธ) =
tan ๏ธ โ ๏ธ
:
๏ธ3
(a)
๏ธ
1๏บ0
0๏บ5
0๏บ1
0๏บ05
0๏บ01
0๏บ005
๏จ(๏ธ)
0๏บ557 407 73
0๏บ370 419 92
0๏บ334 672 09
0๏บ333 667 00
0๏บ333 346 67
0๏บ333 336 67
(b) It seems that lim ๏จ(๏ธ) = 13 .
๏ธโ0
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
78
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
(c)
Here the values will vary from one
๏ธ
๏จ(๏ธ)
0๏บ001
0๏บ0005
0๏บ0001
0๏บ00005
0๏บ00001
0๏บ000001
0๏บ333 333 50
0๏บ333 333 44
0๏บ333 330 00
0๏บ333 336 00
0๏บ333 000 00
0๏บ000 000 00
calculator to another. Every calculator will
eventually give false values.
(d) As in part (c), when we take a small enough viewing rectangle we get incorrect output.
51. No matter how many times we zoom in toward the origin, the graphs of ๏ฆ (๏ธ) = sin(๏ผ๏ฝ๏ธ) appear to consist of almost-vertical
lines. This indicates more and more frequent oscillations as ๏ธ โ 0.
52. (a) For any positive integer ๏ฎ, if ๏ธ =
1
1
, then ๏ฆ (๏ธ) = tan = tan(๏ฎ๏ผ) = 0. (Remember that the tangent function has
๏ฎ๏ผ
๏ธ
period ๏ผ.)
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
(b) For any nonnegative number ๏ฎ, if ๏ธ =
๏ฆ (๏ธ) = tan
SECTION 2.3
CALCULATING LIMITS USING THE LIMIT LAWS
๏ต
๏ณ
๏ผ
๏ผ๏ด
= tan = 1
= tan ๏ฎ๏ผ +
4
4
ยค
79
4
, then
(4๏ฎ + 1)๏ผ
1
(4๏ฎ + 1)๏ผ
= tan
= tan
๏ธ
4
4๏ฎ๏ผ
๏ผ
+
4
4
๏ถ
(c) From part (a), ๏ฆ (๏ธ) = 0 in๏ฌnitely often as ๏ธ โ 0. From part (b), ๏ฆ (๏ธ) = 1 in๏ฌnitely often as ๏ธ โ 0. Thus, lim tan
๏ธโ0
1
๏ธ
does not exist since ๏ฆ (๏ธ) does not get close to a ๏ฌxed number as ๏ธ โ 0.
There appear to be vertical asymptotes of the curve ๏น = tan(2 sin ๏ธ) at ๏ธ โ ยฑ0๏บ90
53.
and ๏ธ โ ยฑ2๏บ24. To ๏ฌnd the exact equations of these asymptotes, we note that the
graph of the tangent function has vertical asymptotes at ๏ธ = ๏ผ2 + ๏ผ๏ฎ. Thus, we
must have 2 sin ๏ธ = ๏ผ2 + ๏ผ๏ฎ, or equivalently, sin ๏ธ = ๏ผ4 + ๏ผ2 ๏ฎ. Since
โ1 โค sin ๏ธ โค 1, we must have sin ๏ธ = ยฑ ๏ผ4 and so ๏ธ = ยฑ sinโ1 ๏ผ4 (corresponding
to ๏ธ โ ยฑ0๏บ90). Just as 150โฆ is the reference angle for 30โฆ , ๏ผ โ sinโ1 ๏ผ4 is the
๏ข
๏ก
reference angle for sinโ1 ๏ผ4 . So ๏ธ = ยฑ ๏ผ โ sinโ1 ๏ผ4 are also equations of
vertical asymptotes (corresponding to ๏ธ โ ยฑ2๏บ24).
๏ฐ
๏ญ0
. As ๏ถ โ ๏ฃโ , 1 โ ๏ถ 2๏ฝ๏ฃ2 โ 0+ , and ๏ญ โ โ.
1 โ ๏ถ2๏ฝ๏ฃ2
54. lim ๏ญ = lim ๏ฐ
๏ถโ๏ฃโ
๏ถโ๏ฃโ
๏ธ3 โ 1
.
๏ธโ1
55. (a) Let ๏น = โ
From the table and the graph, we guess
that the limit of ๏น as ๏ธ approaches 1 is 6.
๏ธ
๏น
0๏บ99
0๏บ999
0๏บ9999
1๏บ01
1๏บ001
1๏บ0001
5๏บ925 31
5๏บ992 50
5๏บ999 25
6๏บ075 31
6๏บ007 50
6๏บ000 75
๏ธ3 โ 1
๏ผ 6๏บ5. From the graph we obtain the approximate points of intersection ๏ (0๏บ9314๏ป 5๏บ5)
(b) We need to have 5๏บ5 ๏ผ โ
๏ธโ1
and ๏(1๏บ0649๏ป 6๏บ5). Now 1 โ 0๏บ9314 = 0๏บ0686 and 1๏บ0649 โ 1 = 0๏บ0649, so by requiring that ๏ธ be within 0๏บ0649 of 1,
we ensure that ๏น is within 0๏บ5 of 6.
2.3 Calculating Limits Using the Limit Laws
1. (a) lim [๏ฆ (๏ธ) + 5๏ง(๏ธ)] = lim ๏ฆ (๏ธ) + lim [5๏ง(๏ธ)]
[Limit Law 1]
= lim ๏ฆ (๏ธ) + 5 lim ๏ง(๏ธ)
[Limit Law 3]
๏ธโ2
๏ธโ2
๏ธโ2
๏ธโ2
๏ธโ2
(b) lim [๏ง(๏ธ)]3 =
๏ธโ2
๏จ
๏ฉ3
lim ๏ง(๏ธ)
๏ธโ2
[Limit Law 6]
= ( โ2)3 = โ8
= 4 + 5(โ2) = โ6
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
80
ยค
CHAPTER 2
(c) lim
๏ธโ2
LIMITS AND DERIVATIVES
๏ฑ
๏ฐ
๏ฆ (๏ธ) = lim ๏ฆ (๏ธ)
๏ธโ2
=
lim [3๏ฆ (๏ธ)]
3๏ฆ (๏ธ)
๏ธโ2
=
๏ธโ2 ๏ง(๏ธ)
lim ๏ง(๏ธ)
(d) lim
[Limit Law 11]
[Limit Law 5]
๏ธโ2
โ
4=2
3 lim ๏ฆ (๏ธ)
๏ธโ2
=
[Limit Law 3]
lim ๏ง(๏ธ)
๏ธโ2
=
3(4)
= โ6
โ2
(e) Because the limit of the denominator is 0, we canโt use Limit Law 5. The given limit, lim
๏ง(๏ธ)
๏ธโ2 ๏จ(๏ธ)
, does not exist because the
denominator approaches 0 while the numerator approaches a nonzero number.
lim [๏ง(๏ธ) ๏จ(๏ธ)]
๏ง(๏ธ) ๏จ(๏ธ)
๏ธโ2
=
๏ธโ2
๏ฆ (๏ธ)
lim ๏ฆ (๏ธ)
(f) lim
[Limit Law 5]
๏ธโ2
=
lim ๏ง(๏ธ) ยท lim ๏จ(๏ธ)
๏ธโ2
๏ธโ2
lim ๏ฆ (๏ธ)
[Limit Law 4]
๏ธโ2
=
โ2 ยท 0
=0
4
2. (a) lim [๏ฆ (๏ธ) + ๏ง(๏ธ)] = lim ๏ฆ (๏ธ) + lim ๏ง(๏ธ)
๏ธโ2
๏ธโ2
๏ธโ2
[Limit Law 1]
= โ1 + 2
=1
(b) lim ๏ฆ (๏ธ) exists, but lim ๏ง(๏ธ) does not exist, so we cannot apply Limit Law 2 to lim [๏ฆ (๏ธ) โ ๏ง(๏ธ)].
๏ธโ0
๏ธโ0
๏ธโ0
The limit does not exist.
(c) lim [๏ฆ(๏ธ) ๏ง(๏ธ)] = lim ๏ฆ (๏ธ) ยท lim ๏ง(๏ธ)
๏ธโโ1
๏ธโโ1
๏ธโโ1
[Limit Law 4]
=1ยท2
=2
(d) lim ๏ฆ (๏ธ) = 1, but lim ๏ง(๏ธ) = 0, so we cannot apply Limit Law 5 to lim
๏ธโ3
Note: lim
๏ฆ(๏ธ)
๏ธโ3โ ๏ง(๏ธ)
๏ฆ (๏ธ)
= โ since ๏ง(๏ธ) โ 0+ as ๏ธ โ 3โ and lim
๏ธโ3+ ๏ง(๏ธ)
Therefore, the limit does not exist, even as an in๏ฌnite limit.
๏ฃ
๏ค
(e) lim ๏ธ2 ๏ฆ (๏ธ) = lim ๏ธ2 ยท lim ๏ฆ (๏ธ) [Limit Law 4]
๏ธโ2
๏ธโ2
๏ฆ (๏ธ)
๏ธโ3 ๏ง(๏ธ)
๏ธโ3
. The limit does not exist.
= โโ since ๏ง(๏ธ) โ 0โ as ๏ธ โ 3+ .
(f) ๏ฆ (โ1) + lim ๏ง(๏ธ) is unde๏ฌned since ๏ฆ (โ1) is
๏ธโ2
๏ธโโ1
= 22 ยท (โ1)
not de๏ฌned.
= โ4
3. lim (5๏ธ3 โ 3๏ธ2 + ๏ธ โ 6) = lim (5๏ธ3 ) โ lim (3๏ธ2 ) + lim ๏ธ โ lim 6
๏ธโ3
๏ธโ3
๏ธโ3
๏ธโ3
๏ธโ3
[Limit Laws 2 and 1]
= 5 lim ๏ธ3 โ 3 lim ๏ธ2 + lim ๏ธ โ lim 6
[3]
= 5(33 ) โ 3(32 ) + 3 โ 6
[9, 8, and 7]
๏ธโ3
๏ธโ3
๏ธโ3
๏ธโ3
= 105
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.3
4.
CALCULATING LIMITS USING THE LIMIT LAWS
[Limit Law 4]
lim (๏ธ4 โ 3๏ธ)(๏ธ2 + 5๏ธ + 3) = lim (๏ธ4 โ 3๏ธ) lim (๏ธ2 + 5๏ธ + 3)
๏ธโโ1
๏ธโโ1
=
=
๏ธโโ1
๏ถ๏ต
๏ถ
lim ๏ธ2 + lim 5๏ธ + lim 3
lim ๏ธ4 โ lim 3๏ธ
๏ต
๏ธโโ1
๏ธโโ1
๏ธโโ1
๏ธโโ1
๏ธโโ1
๏ถ๏ต
๏ถ
lim ๏ธ2 + 5 lim ๏ธ + lim 3
lim ๏ธ4 โ 3 lim ๏ธ
๏ต
๏ธโโ1
๏ธโโ1
๏ธโโ1
๏ธโโ1
๏ธโโ1
[2, 1]
[3]
[9, 8, and 7]
= (1 + 3)(1 โ 5 + 3)
= 4(โ1) = โ4
lim (๏ด4 โ 2)
๏ด4 โ 2
๏ดโโ2
=
๏ดโโ2 2๏ด2 โ 3๏ด + 2
lim (2๏ด2 โ 3๏ด + 2)
[Limit Law 5]
5. lim
๏ดโโ2
=
=
lim ๏ด4 โ lim 2
๏ดโโ2
๏ดโโ2
2 lim ๏ด2 โ 3 lim ๏ด + lim 2
๏ดโโ2
๏ดโโ2
๏ดโโ2
[1, 2, and 3]
16 โ 2
2(4) โ 3(โ2) + 2
[9, 7, and 8]
7
14
=
16
8
๏ฑ
โ
6. lim
๏ต4 + 3๏ต + 6 =
lim (๏ต4 + 3๏ต + 6)
=
๏ตโโ2
[11]
๏ตโโ2
=
๏ฑ
[1, 2, and 3]
lim ๏ต4 + 3 lim ๏ต + lim 6
๏ตโโ2
๏ตโโ2
๏ตโโ2
๏ฑ
(โ2)4 + 3 (โ2) + 6
โ
โ
= 16 โ 6 + 6 = 16 = 4
[9, 8, and 7]
=
โ
โ
[Limit Law 4]
7. lim (1 + 3 ๏ธ ) (2 โ 6๏ธ2 + ๏ธ3 ) = lim (1 + 3 ๏ธ ) ยท lim (2 โ 6๏ธ2 + ๏ธ3 )
๏ธโ8
๏ธโ8
=
๏ณ
๏ธโ8
๏ด
โ ๏ด ๏ณ
lim 1 + lim 3 ๏ธ ยท lim 2 โ 6 lim ๏ธ2 + lim ๏ธ3
๏ธโ8
๏ธโ8
๏ธโ8
๏ธโ8
โ ๏ข ๏ก
๏ข
๏ก
= 1 + 3 8 ยท 2 โ 6 ยท 82 + 83
๏ธโ8
[1, 2, and 3]
[7, 10, 9]
= (3)(130) = 390
8. lim
๏ต
๏ดโ2
๏ด2 โ 2
3
๏ด โ 3๏ด + 5
๏ถ2
๏ถ2
๏ด2 โ 2
๏ดโ2 ๏ด3 โ 3๏ด + 5
๏ฐ
๏ฑ2
lim (๏ด2 โ 2)
๏ดโ2
๏
=๏
lim (๏ด3 โ 3๏ด + 5)
=
๏ต
[Limit Law 6]
lim
[5]
๏ดโ2
๏ฐ
lim ๏ด2 โ lim 2
๏ฑ2
๏ดโ2
๏ดโ2
๏
=๏
lim ๏ด3 โ 3 lim ๏ด + lim 5
๏ดโ2
๏ดโ2
๏ดโ2
๏ต
4โ2
=
8 โ 3(2) + 5
๏ต ๏ถ2
4
2
=
=
7
49
๏ถ2
[1, 2, and 3]
[9, 7, and 8]
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
ยค
81
82
ยค
9. lim
๏ธโ2
CHAPTER 2
LIMITS AND DERIVATIVES
๏ฒ
๏ฒ
2๏ธ2 + 1
=
3๏ธ โ 2
2๏ธ2 + 1
๏ธโ2 3๏ธ โ 2
๏ถ
๏ต lim (2๏ธ2 + 1)
๏ต ๏ธโ2
=๏ด
lim (3๏ธ โ 2)
[Limit Law 11]
lim
[5]
๏ธโ2
๏ถ
๏ต 2 lim ๏ธ2 + lim 1
๏ต ๏ธโ2
๏ธโ2
=๏ด
3 lim ๏ธ โ lim 2
[1, 2, and 3]
2(2)2 + 1
=
3(2) โ 2
[9, 8, and 7]
๏ธโ2
=
๏ณ
๏ธโ2
๏ฒ
3
9
=
4
2
10. (a) The left-hand side of the equation is not de๏ฌned for ๏ธ = 2, but the right-hand side is.
(b) Since the equation holds for all ๏ธ 6= 2, it follows that both sides of the equation approach the same limit as ๏ธ โ 2, just as
in Example 3. Remember that in ๏ฌnding lim ๏ฆ (๏ธ), we never consider ๏ธ = ๏ก.
๏ธโ๏ก
11. lim
๏ธโ5
๏ธ2 โ 6๏ธ + 5
(๏ธ โ 5)(๏ธ โ 1)
= lim
= lim (๏ธ โ 1) = 5 โ 1 = 4
๏ธโ5
๏ธโ5
๏ธโ5
๏ธโ5
โ3
3
๏ธ2 + 3๏ธ
๏ธ(๏ธ + 3)
๏ธ
= lim
= lim
=
=
๏ธโโ3 ๏ธ2 โ ๏ธ โ 12
๏ธโโ3 (๏ธ โ 4)(๏ธ + 3)
๏ธโโ3 ๏ธ โ 4
โ3 โ 4
7
12. lim
13. lim
๏ธโ5
๏ธ2 โ 5๏ธ + 6
does not exist since ๏ธ โ 5 โ 0, but ๏ธ2 โ 5๏ธ + 6 โ 6 as ๏ธ โ 5.
๏ธโ5
๏ธ2 + 3๏ธ
๏ธ(๏ธ + 3)
๏ธ
๏ธ
= lim
= lim
. The last limit does not exist since lim
= โโ and
๏ธโ4 ๏ธ2 โ ๏ธ โ 12
๏ธโ4 (๏ธ โ 4)(๏ธ + 3)
๏ธโ4 ๏ธ โ 4
๏ธโ4โ ๏ธ โ 4
14. lim
lim
๏ธ
๏ธโ4+ ๏ธ โ 4
= โ.
(๏ด + 3)(๏ด โ 3)
โ3 โ 3
โ6
6
๏ด2 โ 9
๏ดโ3
= lim
= lim
=
=
=
๏ดโโ3 2๏ด2 + 7๏ด + 3
๏ดโโ3 (2๏ด + 1)(๏ด + 3)
๏ดโโ3 2๏ด + 1
2(โ3) + 1
โ5
5
15. lim
16. lim
๏ธโโ1
2(โ1) + 1
โ1
1
2๏ธ2 + 3๏ธ + 1
(2๏ธ + 1)(๏ธ + 1)
2๏ธ + 1
= lim
= lim
=
=
=
๏ธโโ1 (๏ธ โ 3)(๏ธ + 1)
๏ธโโ1 ๏ธ โ 3
๏ธ2 โ 2๏ธ โ 3
โ1 โ 3
โ4
4
(โ5 + ๏จ)2 โ 25
(25 โ 10๏จ + ๏จ2 ) โ 25
โ10๏จ + ๏จ2
๏จ(โ10 + ๏จ)
= lim
= lim
= lim
= lim (โ10 + ๏จ) = โ10
๏จโ0
๏จโ0
๏จโ0
๏จโ0
๏จโ0
๏จ
๏จ
๏จ
๏จ
17. lim
๏ก
๏ข
8 + 12๏จ + 6๏จ2 + ๏จ3 โ 8
(2 + ๏จ)3 โ 8
12๏จ + 6๏จ2 + ๏จ3
= lim
= lim
๏จโ0
๏จโ0
๏จโ0
๏จ
๏จ
๏จ
๏ก
๏ข
2
= lim 12 + 6๏จ + ๏จ = 12 + 0 + 0 = 12
18. lim
๏จโ0
19. By the formula for the sum of cubes, we have
lim
๏ธ+2
๏ธโโ2 ๏ธ3 + 8
= lim
๏ธ+2
๏ธโโ2 (๏ธ + 2)(๏ธ2 โ 2๏ธ + 4)
= lim
1
๏ธโโ2 ๏ธ2 โ 2๏ธ + 4
=
1
1
=
.
4+4+4
12
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.3
CALCULATING LIMITS USING THE LIMIT LAWS
20. We use the difference of squares in the numerator and the difference of cubes in the denominator.
lim
๏ด4 โ 1
๏ดโ1 ๏ด3 โ 1
(๏ด2 โ 1)(๏ด2 + 1)
= lim
๏ดโ1 (๏ด โ 1)(๏ด2 + ๏ด + 1)
= lim
๏ดโ1
2(2)
4
(๏ด โ 1)(๏ด + 1)(๏ด2 + 1)
(๏ด + 1)(๏ด2 + 1)
= lim
=
=
2
๏ดโ1
(๏ด โ 1)(๏ด + ๏ด + 1)
๏ด2 + ๏ด + 1
3
3
๏กโ
๏ข2
โ
โ
โ
9 + ๏จ โ 32
9+๏จโ3
9+๏จโ3
9+๏จ+3
(9 + ๏จ) โ 9
๏ข = lim ๏กโ
๏ข
= lim ๏กโ
= lim
ยทโ
21. lim
๏จโ0
๏จโ0
๏จโ0 ๏จ
๏จ
๏จ
9 + ๏จ + 3 ๏จโ0 ๏จ 9 + ๏จ + 3
9+๏จ+3
= lim
๏จโ0 ๏จ
1
1
๏จ
1
๏กโ
๏ข = lim โ
=
=
๏จโ0
3+3
6
9+๏จ+3
9+๏จ+3
๏กโ
๏ข2
โ
โ
โ
4๏ต + 1 โ 32
4๏ต + 1 โ 3
4๏ต + 1 โ 3
4๏ต + 1 + 3
๏กโ
๏ข
= lim
= lim
ยทโ
22. lim
๏ตโ2
๏ตโ2
๏ตโ2
๏ตโ2
4๏ต + 1 + 3 ๏ตโ2 (๏ต โ 2) 4๏ต + 1 + 3
4๏ต + 1 โ 9
4(๏ต โ 2)
๏กโ
๏ข = lim
๏กโ
๏ข
๏ตโ2 (๏ต โ 2)
4๏ต + 1 + 3
4๏ต + 1 + 3
= lim
๏ตโ2 (๏ต โ 2)
4
4
2
= lim โ
= โ
=
๏ตโ2
3
4๏ต + 1 + 3
9+3
1
1
1
1
โ
โ
3๏ธ
1
3โ๏ธ
โ1
๏ธ
3
๏ธ
3
= lim
ยท
= lim
= lim
=โ
23. lim
๏ธโ3 ๏ธ โ 3
๏ธโ3 ๏ธ โ 3
3๏ธ ๏ธโ3 3๏ธ(๏ธ โ 3) ๏ธโ3 3๏ธ
9
1
1
โ
(3 + ๏จ)โ1 โ 3โ1
3 โ (3 + ๏จ)
โ๏จ
3
+
๏จ
3
= lim
= lim
= lim
24. lim
๏จโ0
๏จโ0
๏จโ0 ๏จ(3 + ๏จ)3
๏จโ0 ๏จ(3 + ๏จ)3
๏จ
๏จ
๏ท
๏ธ
1
1
1
1
=โ
=โ
=โ
= lim โ
๏จโ0
3(3 + ๏จ)
lim [3(3 + ๏จ)]
3(3 + 0)
9
๏จโ0
๏กโ
๏ข2 ๏กโ
๏ข2
โ
โ
โ
โ
โ
โ
1+๏ด โ
1โ๏ด
1+๏ดโ 1โ๏ด
1+๏ดโ 1โ๏ด
1+๏ด+ 1โ๏ด
๏ข
โ
โ
= lim ๏กโ
= lim
ยทโ
25. lim
๏ดโ0
๏ดโ0
๏ด
๏ด
1 + ๏ด + 1 โ ๏ด ๏ดโ0 ๏ด 1 + ๏ด + 1 โ ๏ด
(1 + ๏ด) โ (1 โ ๏ด)
2๏ด
2
๏ข = lim ๏กโ
๏ข = lim โ
โ
โ
โ
= lim ๏กโ
๏ดโ0 ๏ด
๏ดโ0 ๏ด
๏ดโ0
1+๏ด+ 1โ๏ด
1+๏ด+ 1โ๏ด
1+๏ด+ 1โ๏ด
2
2
โ = =1
= โ
2
1+ 1
26. lim
๏ดโ0
๏ต
1
1
โ 2
๏ด
๏ด +๏ด
๏ถ
= lim
๏ดโ0
๏ต
1
1
โ
๏ด
๏ด(๏ด + 1)
๏ถ
= lim
๏ดโ0
1
๏ด+1โ1
1
= lim
=
=1
๏ดโ0 ๏ด + 1
๏ด(๏ด + 1)
0+1
โ
โ
โ
4โ ๏ธ
(4 โ ๏ธ )(4 + ๏ธ )
16 โ ๏ธ
โ
โ
= lim
=
lim
๏ธโ16 16๏ธ โ ๏ธ2
๏ธโ16 (16๏ธ โ ๏ธ2 )(4 +
๏ธ ) ๏ธโ16 ๏ธ(16 โ ๏ธ)(4 + ๏ธ )
27. lim
= lim
1
๏ธโ16 ๏ธ(4 +
1
1
1
โ ๏ข =
โ
=
=
๏ก
16(8)
128
๏ธ)
16 4 + 16
๏ธ2 โ 4๏ธ + 4
(๏ธ โ 2)2
(๏ธ โ 2)2
=
lim
=
lim
๏ธโ2 ๏ธ4 โ 3๏ธ2 โ 4
๏ธโ2 (๏ธ2 โ 4)(๏ธ2 + 1)
๏ธโ2 (๏ธ + 2)(๏ธ โ 2)(๏ธ2 + 1)
28. lim
= lim
๏ธโ2
๏ธโ2 (๏ธ + 2)(๏ธ2 + 1)
=
0
=0
4ยท5
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
ยค
83
84
ยค
CHAPTER 2
29. lim
๏ดโ0
๏ต
LIMITS AND DERIVATIVES
1
1
โ
โ
๏ด
๏ด 1+๏ด
๏ถ
๏ก
๏ข๏ก
๏ข
โ
โ
โ
1โ 1+๏ด 1+ 1+๏ด
1โ 1+๏ด
โ๏ด
๏ก
๏ข = lim โ
๏ก
๏ข
โ
โ
โ
โ
= lim
๏ดโ0 ๏ด
๏ดโ0
๏ดโ0 ๏ด
1+๏ด
๏ด ๏ด+1 1+ 1+๏ด
1+๏ด 1+ 1+๏ด
= lim
โ1
โ1
1
๏ก
๏ข = โ
๏ก
๏ข =โ
โ
โ
= lim โ
๏ดโ0
2
1+๏ด 1+ 1+๏ด
1+0 1+ 1+0
30.
๏กโ
๏ข๏กโ
๏ข
โ
๏ธ2 + 9 โ 5
๏ธ2 + 9 + 5
๏ธ2 + 9 โ 5
(๏ธ2 + 9) โ 25
๏กโ
๏ข
๏กโ
๏ข
= lim
= lim
2
๏ธโโ4
๏ธโโ4
๏ธโโ4 (๏ธ + 4)
๏ธ+4
(๏ธ + 4) ๏ธ + 9 + 5
๏ธ2 + 9 + 5
lim
๏ธ2 โ 16
(๏ธ + 4)(๏ธ โ 4)
๏กโ
๏ข = lim
๏กโ
๏ข
๏ธโโ4 (๏ธ + 4)
๏ธโโ4 (๏ธ + 4)
๏ธ2 + 9 + 5
๏ธ2 + 9 + 5
= lim
โ8
4
โ4 โ 4
๏ธโ4
=
=โ
= โ
= lim โ
๏ธโโ4
5+5
5
16 + 9 + 5
๏ธ2 + 9 + 5
(๏ธ + ๏จ)3 โ ๏ธ3
(๏ธ3 + 3๏ธ2 ๏จ + 3๏ธ๏จ2 + ๏จ3 ) โ ๏ธ3
3๏ธ2 ๏จ + 3๏ธ๏จ2 + ๏จ3
= lim
= lim
๏จโ0
๏จโ0
๏จโ0
๏จ
๏จ
๏จ
31. lim
= lim
๏จโ0
๏จ(3๏ธ2 + 3๏ธ๏จ + ๏จ2 )
= lim (3๏ธ2 + 3๏ธ๏จ + ๏จ2 ) = 3๏ธ2
๏จโ0
๏จ
๏ธ2 โ (๏ธ + ๏จ)2
1
1
โ 2
2
(๏ธ + ๏จ)
๏ธ
(๏ธ + ๏จ)2 ๏ธ2
๏ธ2 โ (๏ธ2 + 2๏ธ๏จ + ๏จ2 )
โ๏จ(2๏ธ + ๏จ)
= lim
= lim
32. lim
= lim
๏จโ0
๏จโ0
๏จโ0
๏จโ0 ๏จ๏ธ2 (๏ธ + ๏จ)2
๏จ
๏จ
๏จ๏ธ2 (๏ธ + ๏จ)2
= lim
โ(2๏ธ + ๏จ)
๏จโ0 ๏ธ2 (๏ธ + ๏จ)2
=
33. (a)
โ2๏ธ
2
=โ 3
๏ธ2 ยท ๏ธ2
๏ธ
(b)
2
๏ธ
โ
lim โ
3
1 + 3๏ธ โ 1
๏ธโ0
(c) lim
๏ธโ0
๏ต
๏ธ
๏ฆ (๏ธ)
โ0๏บ001
โ0๏บ000 1
โ0๏บ000 01
โ0๏บ000 001
0๏บ000 001
0๏บ000 01
0๏บ000 1
0๏บ001
0๏บ666 166 3
0๏บ666 616 7
0๏บ666 661 7
0๏บ666 666 2
0๏บ666 667 2
0๏บ666 671 7
0๏บ666 716 7
0๏บ667 166 3
The limit appears to be
๏กโ
๏ข
๏กโ
๏ข
โ
๏ถ
๏ธ 1 + 3๏ธ + 1
๏ธ 1 + 3๏ธ + 1
๏ธ
1 + 3๏ธ + 1
โ
ยทโ
= lim
= lim
๏ธโ0
๏ธโ0
(1 + 3๏ธ) โ 1
3๏ธ
1 + 3๏ธ โ 1
1 + 3๏ธ + 1
๏กโ
๏ข
1
1 + 3๏ธ + 1
lim
3 ๏ธโ0
๏ธ
๏ท
1 ๏ฑ
lim (1 + 3๏ธ) + lim 1
=
๏ธโ0
๏ธโ0
3
๏ถ
๏ต
1 ๏ฑ
=
lim 1 + 3 lim ๏ธ + 1
๏ธโ0
๏ธโ0
3
=
=
=
๏ข
1 ๏กโ
1+3ยท0+1
3
[Limit Law 3]
[1 and 11]
[1, 3, and 7]
[7 and 8]
2
1
(1 + 1) =
3
3
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
2
.
3
SECTION 2.3
CALCULATING LIMITS USING THE LIMIT LAWS
ยค
85
(b)
34. (a)
โ
โ
3+๏ธโ 3
โ 0๏บ29
๏ธโ0
๏ธ
lim
๏ธ
๏ฆ (๏ธ)
โ0๏บ001
โ0๏บ000 1
โ0๏บ000 01
โ0๏บ000 001
0๏บ000 001
0๏บ000 01
0๏บ000 1
0๏บ001
0๏บ288 699 2
0๏บ288 677 5
0๏บ288 675 4
0๏บ288 675 2
0๏บ288 675 1
0๏บ288 674 9
0๏บ288 672 7
0๏บ288 651 1
The limit appears to be approximately 0๏บ2887.
โ โ
โ ๏ถ
๏ตโ
(3 + ๏ธ) โ 3
3+๏ธโ 3
3+๏ธ+ 3
1
โ
โ ๏ข = lim โ
โ
= lim ๏กโ
(c) lim
ยทโ
๏ธโ0
๏ธโ0 ๏ธ
๏ธโ0
๏ธ
3+๏ธ+ 3
3+๏ธ+ 3
3+๏ธ+ 3
=
lim 1
๏ธโ0
โ
โ
lim 3 + ๏ธ + lim 3
๏ธโ0
= ๏ฑ
[Limit Laws 5 and 1]
๏ธโ0
1
lim (3 + ๏ธ) +
๏ธโ0
โ
3
1
โ
= โ
3+0+ 3
1
= โ
2 3
[7 and 11]
[1, 7, and 8]
35. Let ๏ฆ(๏ธ) = โ๏ธ2 , ๏ง(๏ธ) = ๏ธ2 cos 20๏ผ๏ธ and ๏จ(๏ธ) = ๏ธ2 . Then
โ1 โค cos 20๏ผ๏ธ โค 1 โ โ๏ธ2 โค ๏ธ2 cos 20๏ผ๏ธ โค ๏ธ2
โ ๏ฆ (๏ธ) โค ๏ง(๏ธ) โค ๏จ(๏ธ).
So since lim ๏ฆ (๏ธ) = lim ๏จ(๏ธ) = 0, by the Squeeze Theorem we have
๏ธโ0
๏ธโ0
lim ๏ง(๏ธ) = 0.
๏ธโ0
โ
โ
โ
๏ธ3 + ๏ธ2 sin(๏ผ๏ฝ๏ธ), and ๏จ(๏ธ) = ๏ธ3 + ๏ธ2 . Then
โ
โ
โ
โ1 โค sin(๏ผ๏ฝ๏ธ) โค 1 โ โ ๏ธ3 + ๏ธ2 โค ๏ธ3 + ๏ธ2 sin(๏ผ๏ฝ๏ธ) โค ๏ธ3 + ๏ธ2 โ
36. Let ๏ฆ(๏ธ) = โ ๏ธ3 + ๏ธ2 , ๏ง(๏ธ) =
๏ฆ (๏ธ) โค ๏ง(๏ธ) โค ๏จ(๏ธ). So since lim ๏ฆ (๏ธ) = lim ๏จ(๏ธ) = 0, by the Squeeze Theorem
๏ธโ0
๏ธโ0
we have lim ๏ง(๏ธ) = 0.
๏ธโ0
๏ก
๏ข
37. We have lim (4๏ธ โ 9) = 4(4) โ 9 = 7 and lim ๏ธ2 โ 4๏ธ + 7 = 42 โ 4(4) + 7 = 7. Since 4๏ธ โ 9 โค ๏ฆ (๏ธ) โค ๏ธ2 โ 4๏ธ + 7
๏ธโ4
๏ธโ4
for ๏ธ โฅ 0, lim ๏ฆ (๏ธ) = 7 by the Squeeze Theorem.
๏ธโ4
38. We have lim (2๏ธ) = 2(1) = 2 and lim (๏ธ4 โ ๏ธ2 + 2) = 14 โ 12 + 2 = 2. Since 2๏ธ โค ๏ง(๏ธ) โค ๏ธ4 โ ๏ธ2 + 2 for all ๏ธ,
๏ธโ1
๏ธโ1
lim ๏ง(๏ธ) = 2 by the Squeeze Theorem.
๏ธโ1
39. โ1 โค cos(2๏ฝ๏ธ) โค 1
๏ก
๏ข
โ โ๏ธ4 โค ๏ธ4 cos(2๏ฝ๏ธ) โค ๏ธ4 . Since lim โ๏ธ4 = 0 and lim ๏ธ4 = 0, we have
๏ธโ0
๏ธโ0
๏ฃ
๏ค
lim ๏ธ4 cos(2๏ฝ๏ธ) = 0 by the Squeeze Theorem.
๏ธโ0
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
86
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
40. โ1 โค sin(๏ผ๏ฝ๏ธ) โค 1
โ ๏ฅโ1 โค ๏ฅsin(๏ผ๏ฝ๏ธ) โค ๏ฅ1
โ
โ
โ
โ
๏ธ/๏ฅ โค ๏ธ ๏ฅsin(๏ผ๏ฝ๏ธ) โค ๏ธ ๏ฅ. Since lim ( ๏ธ/๏ฅ) = 0 and
โ
๏ธโ0+
๏จโ
๏ฉ
โ
๏ธ ๏ฅsin(๏ผ๏ฝ๏ธ) = 0 by the Squeeze Theorem.
lim ( ๏ธ ๏ฅ) = 0, we have lim
๏ธโ0+
๏ธโ0+
41. |๏ธ โ 3| =
๏จ
if ๏ธ โ 3 โฅ 0
๏ธโ3
if ๏ธ โ 3 ๏ผ 0
โ(๏ธ โ 3)
๏จ
=
if ๏ธ โฅ 3
๏ธโ3
if ๏ธ ๏ผ 3
3โ๏ธ
Thus, lim (2๏ธ + |๏ธ โ 3|) = lim (2๏ธ + ๏ธ โ 3) = lim (3๏ธ โ 3) = 3(3) โ 3 = 6 and
๏ธโ3+
๏ธโ3+
๏ธโ3+
lim (2๏ธ + |๏ธ โ 3|) = lim (2๏ธ + 3 โ ๏ธ) = lim (๏ธ + 3) = 3 + 3 = 6. Since the left and right limits are equal,
๏ธโ3โ
๏ธโ3โ
๏ธโ3โ
lim (2๏ธ + |๏ธ โ 3|) = 6.
๏ธโ3
42. |๏ธ + 6| =
๏จ
๏ธ+6
โ(๏ธ + 6)
if ๏ธ + 6 โฅ 0
if ๏ธ + 6 ๏ผ 0
๏จ
=
if ๏ธ โฅ โ6
๏ธ+6
if ๏ธ ๏ผ โ6
โ(๏ธ + 6)
Weโll look at the one-sided limits.
lim
๏ธโโ6+
2๏ธ + 12
2(๏ธ + 6)
= lim
= 2 and
|๏ธ + 6|
๏ธ+6
๏ธโโ6+
The left and right limits are different, so lim
๏ธโโ6
๏ฏ
๏ฏ
๏ฏ
๏ฏ
๏ฏ
๏ฏ
lim
๏ธโโ6โ
2๏ธ + 12
2(๏ธ + 6)
= lim
= โ2
|๏ธ + 6|
๏ธโโ6โ โ(๏ธ + 6)
2๏ธ + 12
does not exist.
|๏ธ + 6|
43. ๏ฏ2๏ธ3 โ ๏ธ2 ๏ฏ = ๏ฏ๏ธ2 (2๏ธ โ 1)๏ฏ = ๏ฏ๏ธ2 ๏ฏ ยท |2๏ธ โ 1| = ๏ธ2 |2๏ธ โ 1|
|2๏ธ โ 1| =
๏จ
2๏ธ โ 1
โ(2๏ธ โ 1)
if 2๏ธ โ 1 โฅ 0
if 2๏ธ โ 1 ๏ผ 0
=
๏จ
๏ฏ
๏ฏ
So ๏ฏ2๏ธ3 โ ๏ธ2 ๏ฏ = ๏ธ2 [โ(2๏ธ โ 1)] for ๏ธ ๏ผ 0๏บ5.
Thus,
lim
2๏ธ โ 1
3
2
๏ธโ0๏บ5โ |2๏ธ โ ๏ธ |
=
2๏ธ โ 1
lim
if ๏ธ โฅ 0๏บ5
2๏ธ โ 1
if ๏ธ ๏ผ 0๏บ5
โ(2๏ธ โ 1)
2
๏ธโ0๏บ5โ ๏ธ [โ(2๏ธ โ 1)]
=
lim
๏ธโ0๏บ5โ
โ1
โ1
โ1
= โ4.
=
=
๏ธ2
(0๏บ5)2
0๏บ25
44. Since |๏ธ| = โ๏ธ for ๏ธ ๏ผ 0, we have lim
2 โ |๏ธ|
2 โ (โ๏ธ)
2+๏ธ
= lim
= lim
= lim 1 = 1.
๏ธโโ2
๏ธโโ2 2 + ๏ธ
๏ธโโ2
2+๏ธ
2+๏ธ
45. Since |๏ธ| = โ๏ธ for ๏ธ ๏ผ 0, we have lim
๏ต
๏ธโโ2
๏ธโ0โ
1
1
โ
๏ธ
|๏ธ|
๏ถ
= lim
๏ธโ0โ
๏ต
1
1
โ
๏ธ
โ๏ธ
๏ถ
= lim
2
๏ธโ0โ ๏ธ
, which does not exist since the
denominator approaches 0 and the numerator does not.
46. Since |๏ธ| = ๏ธ for ๏ธ ๏พ 0, we have lim
๏ธโ0+
47. (a)
๏ต
1
1
โ
๏ธ
|๏ธ|
๏ถ
= lim
๏ธโ0+
๏ต
1
1
โ
๏ธ
๏ธ
๏ถ
= lim 0 = 0.
๏ธโ0+
(b) (i) Since sgn ๏ธ = 1 for ๏ธ ๏พ 0, lim sgn ๏ธ = lim 1 = 1.
๏ธโ0+
๏ธโ0+
(ii) Since sgn ๏ธ = โ1 for ๏ธ ๏ผ 0, lim sgn ๏ธ = lim โ1 = โ1.
๏ธโ0โ
๏ธโ0โ
(iii) Since lim sgn ๏ธ 6= lim sgn ๏ธ, lim sgn ๏ธ does not exist.
๏ธโ0โ
๏ธโ0
๏ธโ0+
(iv) Since |sgn ๏ธ| = 1 for ๏ธ 6= 0, lim |sgn ๏ธ| = lim 1 = 1.
๏ธโ0
๏ธโ0
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.3
CALCULATING LIMITS USING THE LIMIT LAWS
๏ธ
โ1 if sin ๏ธ ๏ผ 0
๏พ
๏ผ
48. (a) ๏ง(๏ธ) = sgn(sin ๏ธ) = 0 if sin ๏ธ = 0
๏พ
๏บ
1 if sin ๏ธ ๏พ 0
(i) lim ๏ง(๏ธ) = lim sgn(sin ๏ธ) = 1 since sin ๏ธ is positive for small positive values of ๏ธ.
๏ธโ0+
๏ธโ0+
(ii) lim ๏ง(๏ธ) = lim sgn(sin ๏ธ) = โ1 since sin ๏ธ is negative for small negative values of ๏ธ.
๏ธโ0โ
๏ธโ0โ
(iii) lim ๏ง(๏ธ) does not exist since lim ๏ง(๏ธ) 6= lim ๏ง(๏ธ).
๏ธโ0
๏ธโ0โ
๏ธโ0+
(iv) lim ๏ง(๏ธ) = lim sgn(sin ๏ธ) = โ1 since sin ๏ธ is negative for values of ๏ธ slightly greater than ๏ผ.
๏ธโ๏ผ +
๏ธโ๏ผ +
(v) lim ๏ง(๏ธ) = lim sgn(sin ๏ธ) = 1 since sin ๏ธ is positive for values of ๏ธ slightly less than ๏ผ.
๏ธโ๏ผ โ
๏ธโ๏ผ โ
(vi) lim ๏ง(๏ธ) does not exist since lim ๏ง(๏ธ) 6= lim ๏ง(๏ธ).
๏ธโ๏ผ
๏ธโ๏ผ โ
๏ธโ๏ผ +
(b) The sine function changes sign at every integer multiple of ๏ผ, so the
(c)
signum function equals 1 on one side and โ1 on the other side of ๏ฎ๏ผ,
๏ฎ an integer. Thus, lim ๏ง(๏ธ) does not exist for ๏ก = ๏ฎ๏ผ, ๏ฎ an integer.
๏ธโ๏ก
๏ธ2 + ๏ธ โ 6
(๏ธ + 3)(๏ธ โ 2)
= lim
|๏ธ โ 2|
|๏ธ โ 2|
๏ธโ2+
๏ธโ2+
49. (a) (i) lim ๏ง(๏ธ) = lim
๏ธโ2+
= lim
๏ธโ2+
(๏ธ + 3)(๏ธ โ 2)
๏ธโ2
[since ๏ธ โ 2 ๏พ 0 if ๏ธ โ 2+ ]
= lim (๏ธ + 3) = 5
๏ธโ2+
(ii) The solution is similar to the solution in part (i), but now |๏ธ โ 2| = 2 โ ๏ธ since ๏ธ โ 2 ๏ผ 0 if ๏ธ โ 2โ .
Thus, lim ๏ง(๏ธ) = lim โ(๏ธ + 3) = โ5.
๏ธโ2โ
๏ธโ2โ
(b) Since the right-hand and left-hand limits of ๏ง at ๏ธ = 2
(c)
are not equal, lim ๏ง(๏ธ) does not exist.
๏ธโ2
๏จ 2
๏ธ +1
50. (a) ๏ฆ (๏ธ) =
(๏ธ โ 2)2
if ๏ธ ๏ผ 1
if ๏ธ โฅ 1
lim ๏ฆ (๏ธ) = lim (๏ธ2 + 1) = 12 + 1 = 2,
๏ธโ1โ
๏ธโ1โ
lim ๏ฆ (๏ธ) = lim (๏ธ โ 2)2 = (โ1)2 = 1
๏ธโ1+
(b) Since the right-hand and left-hand limits of ๏ฆ at ๏ธ = 1
๏ธโ1+
(c)
are not equal, lim ๏ฆ(๏ธ) does not exist.
๏ธโ1
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
ยค
87
88
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
51. For the lim ๏(๏ด) to exist, the one-sided limits at ๏ด = 2 must be equal. lim ๏(๏ด) = lim
๏ดโ2
๏ดโ2โ
lim ๏(๏ด) = lim
๏ดโ2+
๏ดโ2+
๏ดโ2โ
๏ก
๏ข
4 โ 12 ๏ด = 4 โ 1 = 3 and
โ
โ
โ
๏ด + ๏ฃ = 2 + ๏ฃ. Now 3 = 2 + ๏ฃ โ 9 = 2 + ๏ฃ โ ๏ฃ = 7.
52. (a) (i) lim ๏ง(๏ธ) = lim ๏ธ = 1
๏ธโ1โ
๏ธโ1โ
(ii) lim ๏ง(๏ธ) = lim (2 โ ๏ธ2 ) = 2 โ 12 = 1. Since lim ๏ง(๏ธ) = 1 and lim ๏ง(๏ธ) = 1, we have lim ๏ง(๏ธ) = 1.
๏ธโ1+
๏ธโ1โ
๏ธโ1+
๏ธโ1+
๏ธโ1
Note that the fact ๏ง(1) = 3 does not affect the value of the limit.
(iii) When ๏ธ = 1, ๏ง(๏ธ) = 3, so ๏ง(1) = 3.
(iv) lim ๏ง(๏ธ) = lim (2 โ ๏ธ2 ) = 2 โ 22 = 2 โ 4 = โ2
๏ธโ2โ
๏ธโ2โ
(v) lim ๏ง(๏ธ) = lim (๏ธ โ 3) = 2 โ 3 = โ1
๏ธโ2+
๏ธโ2+
(vi) lim ๏ง(๏ธ) does not exist since lim ๏ง(๏ธ) 6= lim ๏ง(๏ธ).
๏ธโ2
(b)
๏ธ
๏ธ
๏พ
๏พ
๏พ
๏พ
๏ผ3
๏ง(๏ธ) =
2
๏พ
๏พ
๏พ2 โ ๏ธ
๏พ
๏บ
๏ธโ3
๏ธโ2โ
๏ธโ2+
if ๏ธ ๏ผ 1
if ๏ธ = 1
if 1 ๏ผ ๏ธ โค 2
if ๏ธ ๏พ 2
53. (a) (i) [[๏ธ]] = โ2 for โ2 โค ๏ธ ๏ผ โ1, so
๏ธโโ2+
(ii) [[๏ธ]] = โ3 for โ3 โค ๏ธ ๏ผ โ2, so
๏ธโโ2โ
lim [[๏ธ]] =
lim [[๏ธ]] =
lim (โ2) = โ2
๏ธโโ2+
lim (โ3) = โ3.
๏ธโโ2โ
The right and left limits are different, so lim [[๏ธ]] does not exist.
๏ธโโ2
(iii) [[๏ธ]] = โ3 for โ3 โค ๏ธ ๏ผ โ2, so
lim [[๏ธ]] =
๏ธโโ2๏บ4
lim (โ3) = โ3.
๏ธโโ2๏บ4
(b) (i) [[๏ธ]] = ๏ฎ โ 1 for ๏ฎ โ 1 โค ๏ธ ๏ผ ๏ฎ, so lim [[๏ธ]] = lim (๏ฎ โ 1) = ๏ฎ โ 1.
๏ธโ๏ฎโ
๏ธโ๏ฎโ
(ii) [[๏ธ]] = ๏ฎ for ๏ฎ โค ๏ธ ๏ผ ๏ฎ + 1, so lim [[๏ธ]] = lim ๏ฎ = ๏ฎ.
๏ธโ๏ฎ+
๏ธโ๏ฎ+
(c) lim [[๏ธ]] exists โ ๏ก is not an integer.
๏ธโ๏ก
54. (a) See the graph of ๏น = cos ๏ธ.
Since โ1 โค cos ๏ธ ๏ผ 0 on [โ๏ผ๏ป โ๏ผ๏ฝ2), we have ๏น = ๏ฆ(๏ธ) = [[cos ๏ธ]] = โ1
on [โ๏ผ๏ป โ๏ผ๏ฝ2).
Since 0 โค cos ๏ธ ๏ผ 1 on [โ๏ผ๏ฝ2๏ป 0) โช (0๏ป ๏ผ๏ฝ2], we have ๏ฆ(๏ธ) = 0
on [โ๏ผ๏ฝ2๏ป 0) โช (0๏ป ๏ผ๏ฝ2].
Since โ1 โค cos ๏ธ ๏ผ 0 on (๏ผ๏ฝ2๏ป ๏ผ], we have ๏ฆ (๏ธ) = โ1 on (๏ผ๏ฝ2๏ป ๏ผ].
Note that ๏ฆ(0) = 1.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.3
CALCULATING LIMITS USING THE LIMIT LAWS
ยค
(b) (i) lim ๏ฆ (๏ธ) = 0 and lim ๏ฆ (๏ธ) = 0, so lim ๏ฆ (๏ธ) = 0.
๏ธโ0โ
๏ธโ0
๏ธโ0+
(ii) As ๏ธ โ (๏ผ๏ฝ2)โ , ๏ฆ (๏ธ) โ 0, so
lim
๏ธโ(๏ผ๏ฝ2)โ
(iii) As ๏ธ โ (๏ผ๏ฝ2)+ , ๏ฆ (๏ธ) โ โ1, so
lim
๏ฆ (๏ธ) = 0.
๏ธโ(๏ผ๏ฝ2)+
๏ฆ (๏ธ) = โ1.
(iv) Since the answers in parts (ii) and (iii) are not equal, lim ๏ฆ (๏ธ) does not exist.
๏ธโ๏ผ๏ฝ2
(c) lim ๏ฆ (๏ธ) exists for all ๏ก in the open interval (โ๏ผ๏ป ๏ผ) except ๏ก = โ๏ผ๏ฝ2 and ๏ก = ๏ผ๏ฝ2.
๏ธโ๏ก
55. The graph of ๏ฆ (๏ธ) = [[๏ธ]] + [[โ๏ธ]] is the same as the graph of ๏ง(๏ธ) = โ1 with holes at each integer, since ๏ฆ (๏ก) = 0 for any
integer ๏ก. Thus, lim ๏ฆ (๏ธ) = โ1 and lim ๏ฆ (๏ธ) = โ1, so lim ๏ฆ (๏ธ) = โ1. However,
๏ธโ2โ
๏ธโ2
๏ธโ2+
๏ฆ (2) = [[2]] + [[โ2]] = 2 + (โ2) = 0, so lim ๏ฆ (๏ธ) 6= ๏ฆ (2).
๏ธโ2
56. lim
๏ถโ๏ฃโ
๏
๏0
๏ฒ
1โ
๏ก
๏ถ2
๏ฃ2
โ
= ๏0 1 โ 1 = 0. As the velocity approaches the speed of light, the length approaches 0.
A left-hand limit is necessary since ๏ is not de๏ฌned for ๏ถ ๏พ ๏ฃ.
57. Since ๏ฐ(๏ธ) is a polynomial, ๏ฐ(๏ธ) = ๏ก0 + ๏ก1 ๏ธ + ๏ก2 ๏ธ2 + ยท ยท ยท + ๏ก๏ฎ ๏ธ๏ฎ . Thus, by the Limit Laws,
๏ก
๏ข
lim ๏ฐ(๏ธ) = lim ๏ก0 + ๏ก1 ๏ธ + ๏ก2 ๏ธ2 + ยท ยท ยท + ๏ก๏ฎ ๏ธ๏ฎ = ๏ก0 + ๏ก1 lim ๏ธ + ๏ก2 lim ๏ธ2 + ยท ยท ยท + ๏ก๏ฎ lim ๏ธ๏ฎ
๏ธโ๏ก
๏ธโ๏ก
๏ธโ๏ก
2
๏ธโ๏ก
๏ธโ๏ก
๏ฎ
= ๏ก0 + ๏ก1 ๏ก + ๏ก2 ๏ก + ยท ยท ยท + ๏ก๏ฎ ๏ก = ๏ฐ(๏ก)
Thus, for any polynomial ๏ฐ, lim ๏ฐ(๏ธ) = ๏ฐ(๏ก).
๏ธโ๏ก
58. Let ๏ฒ(๏ธ) =
๏ฐ(๏ธ)
where ๏ฐ(๏ธ) and ๏ฑ(๏ธ) are any polynomials, and suppose that ๏ฑ(๏ก) 6= 0. Then
๏ฑ(๏ธ)
lim ๏ฐ(๏ธ)
๏ฐ(๏ธ)
๏ธโ๏ก
=
๏ธโ๏ก ๏ฑ(๏ธ)
lim ๏ฑ (๏ธ)
lim ๏ฒ(๏ธ) = lim
๏ธโ๏ก
[Limit Law 5] =
๏ธโ๏ก
๏ท
59. lim [๏ฆ(๏ธ) โ 8] = lim
๏ธโ1
๏ธโ1
๏ฐ(๏ก)
๏ฑ(๏ก)
[Exercise 57] = ๏ฒ(๏ก).
๏ธ
๏ฆ(๏ธ) โ 8
๏ฆ (๏ธ) โ 8
ยท (๏ธ โ 1) = lim
ยท lim (๏ธ โ 1) = 10 ยท 0 = 0.
๏ธโ1
๏ธโ1
๏ธโ1
๏ธโ1
Thus, lim ๏ฆ (๏ธ) = lim {[๏ฆ (๏ธ) โ 8] + 8} = lim [๏ฆ (๏ธ) โ 8] + lim 8 = 0 + 8 = 8.
๏ธโ1
๏ธโ1
Note: The value of lim
๏ธโ1
lim
๏ธโ1
๏ฆ (๏ธ) โ 8
exists.
๏ธโ1
60. (a) lim ๏ฆ (๏ธ) = lim
๏ธโ0
๏ธโ0
๏ท
๏ธโ1
๏ธโ1
๏ฆ (๏ธ) โ 8
does not affect the answer since itโs multiplied by 0. Whatโs important is that
๏ธโ1
๏ธ
๏ฆ (๏ธ) 2
๏ฆ (๏ธ)
= lim 2 ยท lim ๏ธ2 = 5 ยท 0 = 0
ยท
๏ธ
๏ธโ0 ๏ธ
๏ธโ0
๏ธ2
๏ธ
๏ท
๏ฆ (๏ธ)
๏ฆ (๏ธ)
๏ฆ (๏ธ)
= lim
ยท
๏ธ
= lim 2 ยท lim ๏ธ = 5 ยท 0 = 0
๏ธโ0 ๏ธ
๏ธโ0
๏ธโ0 ๏ธ
๏ธโ0
๏ธ2
(b) lim
61. Observe that 0 โค ๏ฆ (๏ธ) โค ๏ธ2 for all ๏ธ, and lim 0 = 0 = lim ๏ธ2 . So, by the Squeeze Theorem, lim ๏ฆ (๏ธ) = 0.
๏ธโ0
๏ธโ0
๏ธโ0
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
89
90
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
62. Let ๏ฆ(๏ธ) = [[๏ธ]] and ๏ง(๏ธ) = โ[[๏ธ]]. Then lim ๏ฆ(๏ธ) and lim ๏ง(๏ธ) do not exist
๏ธโ3
๏ธโ3
[Example 10]
but lim [๏ฆ (๏ธ) + ๏ง(๏ธ)] = lim ([[๏ธ]] โ [[๏ธ]]) = lim 0 = 0.
๏ธโ3
๏ธโ3
๏ธโ3
63. Let ๏ฆ(๏ธ) = ๏(๏ธ) and ๏ง(๏ธ) = 1 โ ๏(๏ธ), where ๏ is the Heaviside function de๏ฌned in Exercise 1.3.59.
Thus, either ๏ฆ or ๏ง is 0 for any value of ๏ธ. Then lim ๏ฆ (๏ธ) and lim ๏ง(๏ธ) do not exist, but lim [๏ฆ (๏ธ)๏ง(๏ธ)] = lim 0 = 0.
๏ธโ0
๏ธโ0
๏ธโ0
๏ธโ0
โ
โ
โ
๏ถ
๏ตโ
6โ๏ธโ2
6โ๏ธโ2
6โ๏ธ+2
3โ๏ธ+1
โ
โ
โ
โ
= lim
ยท
ยท
64. lim
๏ธโ2
๏ธโ2
3โ๏ธโ1
3โ๏ธโ1
6โ๏ธ+2
3โ๏ธ+1
๏ฃ
๏ข ๏กโ
๏ข2
โ
โ
๏ถ
๏ต
6 โ ๏ธ โ 22
6โ๏ธโ4
3โ๏ธ+1
3โ๏ธ+1
โ
โ
=
lim
ยท
= lim ๏กโ
ยท
๏ข
2
๏ธโ2
๏ธโ2
3โ๏ธโ1
6โ๏ธ+2
6โ๏ธ+2
3 โ ๏ธ โ 12
๏กโ
๏ข
โ
(2 โ ๏ธ) 3 โ ๏ธ + 1
1
3โ๏ธ+1
๏กโ
๏ข = lim โ
=
๏ธโ2 (2 โ ๏ธ)
๏ธโ2
2
6โ๏ธ+2
6โ๏ธ+2
= lim
65. Since the denominator approaches 0 as ๏ธ โ โ2, the limit will exist only if the numerator also approaches
0 as ๏ธ โ โ2. In order for this to happen, we need lim
๏ธโโ2
๏ก 2
๏ข
3๏ธ + ๏ก๏ธ + ๏ก + 3 = 0 โ
3(โ2)2 + ๏ก(โ2) + ๏ก + 3 = 0 โ 12 โ 2๏ก + ๏ก + 3 = 0 โ ๏ก = 15. With ๏ก = 15, the limit becomes
3(โ2 + 3)
3(๏ธ + 2)(๏ธ + 3)
3(๏ธ + 3)
3
3๏ธ2 + 15๏ธ + 18
= lim
= lim
=
=
= โ1.
๏ธโโ2
๏ธโโ2 (๏ธ โ 1)(๏ธ + 2)
๏ธโโ2 ๏ธ โ 1
๏ธ2 + ๏ธ โ 2
โ2 โ 1
โ3
lim
66. Solution 1: First, we ๏ฌnd the coordinates of ๏ and ๏ as functions of ๏ฒ. Then we can ๏ฌnd the equation of the line determined
by these two points, and thus ๏ฌnd the ๏ธ-intercept (the point ๏), and take the limit as ๏ฒ โ 0. The coordinates of ๏ are (0๏ป ๏ฒ).
The point ๏ is the point of intersection of the two circles ๏ธ2 + ๏น 2 = ๏ฒ2 and (๏ธ โ 1)2 + ๏น 2 = 1. Eliminating ๏น from these
equations, we get ๏ฒ2 โ ๏ธ2 = 1 โ (๏ธ โ 1)2
๏ฒ2 = 1 + 2๏ธ โ 1 โ ๏ธ = 12 ๏ฒ2 . Substituting back into the equation of the
โ
shrinking circle to ๏ฌnd the ๏น-coordinate, we get
๏ก 1 2 ๏ข2
๏ฒ
+ ๏น 2 = ๏ฒ2
2
(the positive ๏น-value). So the coordinates of ๏ are
๏ฒ
๏นโ๏ฒ =
๏ฑ
1 โ 14 ๏ฒ2 โ ๏ฒ
1 2
๏ฒ โ0
2
๏ณ
1 2
๏ฒ ๏ป๏ฒ
2
๏ฑ
๏ก
๏ข
โ ๏น = ๏ฒ 1 โ 14 ๏ฒ2
โ ๏น 2 = ๏ฒ2 1 โ 14 ๏ฒ2
๏ฑ
๏ด
1 โ 14 ๏ฒ2 . The equation of the line joining ๏ and ๏ is thus
(๏ธ โ 0). We set ๏น = 0 in order to ๏ฌnd the ๏ธ-intercept, and get
1 2
๏ฒ
2
๏ธ = โ๏ฒ ๏ณ๏ฑ
๏ด =
๏ฒ
1 โ 14 ๏ฒ2 โ 1
โ 12 ๏ฒ2
๏ณ๏ฑ
๏ด
1 โ 14 ๏ฒ2 + 1
1 โ 14 ๏ฒ2 โ 1
=2
๏ณ๏ฑ
๏ด
1 โ 14 ๏ฒ2 + 1
๏ณ๏ฑ
๏ด
๏กโ
๏ข
1 โ 14 ๏ฒ2 + 1 = lim 2 1 + 1 = 4.
Now we take the limit as ๏ฒ โ 0+ : lim ๏ธ = lim 2
๏ฒโ0+
๏ฒโ0+
๏ฒโ0+
So the limiting position of ๏ is the point (4๏ป 0).
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.4
THE PRECISE DEFINITION OF A LIMIT
ยค
91
Solution 2: We add a few lines to the diagram, as shown. Note that
โ ๏ ๏๏ = 90โฆ (subtended by diameter ๏ ๏). So โ ๏๏๏ = 90โฆ = โ ๏๏๏
(subtended by diameter ๏๏ ). It follows that โ ๏๏๏ = โ ๏ ๏๏. Also
โ ๏ ๏๏ = 90โฆ โ โ ๏๏ ๏ = โ ๏๏๏ . Since 4๏๏๏ is isosceles, so is
4๏๏ ๏, implying that ๏๏ = ๏ ๏. As the circle ๏2 shrinks, the point ๏
plainly approaches the origin, so the point ๏ must approach a point twice
as far from the origin as ๏ , that is, the point (4๏ป 0), as above.
2.4 The Precise Definition of a Limit
1. If |๏ฆ(๏ธ) โ 1| ๏ผ 0๏บ2, then โ0๏บ2 ๏ผ ๏ฆ (๏ธ) โ 1 ๏ผ 0๏บ2
โ 0๏บ8 ๏ผ ๏ฆ (๏ธ) ๏ผ 1๏บ2. From the graph, we see that the last inequality is
true if 0๏บ7 ๏ผ ๏ธ ๏ผ 1๏บ1, so we can choose ๏ฑ = min {1 โ 0๏บ7๏ป 1๏บ1 โ 1} = min {0๏บ3๏ป 0๏บ1} = 0๏บ1 (or any smaller positive
number).
2. If |๏ฆ(๏ธ) โ 2| ๏ผ 0๏บ5, then โ0๏บ5 ๏ผ ๏ฆ (๏ธ) โ 2 ๏ผ 0๏บ5
โ 1๏บ5 ๏ผ ๏ฆ (๏ธ) ๏ผ 2๏บ5. From the graph, we see that the last inequality is
true if 2๏บ6 ๏ผ ๏ธ ๏ผ 3๏บ8, so we can take ๏ฑ = min {3 โ 2๏บ6๏ป 3๏บ8 โ 3} = min {0๏บ4๏ป 0๏บ8} = 0๏บ4 (or any smaller positive number).
Note that ๏ธ 6= 3.
3. The leftmost question mark is the solution of
โ
โ
๏ธ = 1๏บ6 and the rightmost, ๏ธ = 2๏บ4. So the values are 1๏บ62 = 2๏บ56 and
2๏บ42 = 5๏บ76. On the left side, we need |๏ธ โ 4| ๏ผ |2๏บ56 โ 4| = 1๏บ44. On the right side, we need |๏ธ โ 4| ๏ผ |5๏บ76 โ 4| = 1๏บ76.
To satisfy both conditions, we need the more restrictive condition to hold โ namely, |๏ธ โ 4| ๏ผ 1๏บ44. Thus, we can choose
๏ฑ = 1๏บ44, or any smaller positive number.
4. The leftmost question mark is the positive solution of ๏ธ2 = 12 , that is, ๏ธ = โ12 , and the rightmost question mark is the positive
solution of ๏ธ2 = 32 , that is, ๏ธ =
๏ฑ
๏ฏ
๏ฏ
๏ฏ
๏ฏ
3
. On the left side, we need |๏ธ โ 1| ๏ผ ๏ฏ โ12 โ 1๏ฏ โ 0๏บ292 (rounding down to be safe). On
2
๏ฏ๏ฑ
๏ฏ
๏ฏ
๏ฏ
the right side, we need |๏ธ โ 1| ๏ผ ๏ฏ 32 โ 1๏ฏ โ 0๏บ224. The more restrictive of these two conditions must apply, so we choose
๏ฑ = 0๏บ224 (or any smaller positive number).
5.
From the graph, we ๏ฌnd that ๏น = tan ๏ธ = 0๏บ8 when ๏ธ โ 0๏บ675, so
๏ผ
โ ๏ฑ 1 โ 0๏บ675
4
โ ๏ฑ 1 โ ๏ผ4 โ 0๏บ675 โ 0๏บ1106. Also, ๏น = tan ๏ธ = 1๏บ2
when ๏ธ โ 0๏บ876, so ๏ผ4 + ๏ฑ2 โ 0๏บ876 โ ๏ฑ2 = 0๏บ876 โ ๏ผ4 โ 0๏บ0906.
Thus, we choose ๏ฑ = 0๏บ0906 (or any smaller positive number) since this is
the smaller of ๏ฑ1 and ๏ฑ 2 .
6.
From the graph, we ๏ฌnd that ๏น = 2๏ธ๏ฝ(๏ธ2 + 4) = 0๏บ3 when ๏ธ = 23 , so
1 โ ๏ฑ 1 = 23
โ ๏ฑ 1 = 13 . Also, ๏น = 2๏ธ๏ฝ(๏ธ2 + 4) = 0๏บ5 when ๏ธ = 2, so
1 + ๏ฑ 2 = 2 โ ๏ฑ 2 = 1. Thus, we choose ๏ฑ = 13 (or any smaller positive
number) since this is the smaller of ๏ฑ 1 and ๏ฑ 2 .
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
92
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
From the graph with ๏ข = 0๏บ2, we ๏ฌnd that ๏น = ๏ธ3 โ 3๏ธ + 4 = 5๏บ8 when
7.
๏ธ โ 1๏บ9774, so 2 โ ๏ฑ1 โ 1๏บ9774 โ ๏ฑ1 โ 0๏บ0226. Also,
๏น = ๏ธ3 โ 3๏ธ + 4 = 6๏บ2 when ๏ธ โ 2๏บ022, so 2 + ๏ฑ 2 โ 2๏บ0219 โ
๏ฑ 2 โ 0๏บ0219. Thus, we choose ๏ฑ = 0๏บ0219 (or any smaller positive
number) since this is the smaller of ๏ฑ 1 and ๏ฑ 2 .
For ๏ข = 0๏บ1, we get ๏ฑ 1 โ 0๏บ0112 and ๏ฑ 2 โ 0๏บ0110, so we choose
๏ฑ = 0๏บ011 (or any smaller positive number).
From the graph with ๏ข = 0๏บ5, we ๏ฌnd that ๏น = (๏ฅ2๏ธ โ 1)๏ฝ๏ธ = 1๏บ5 when
8.
๏ธ โ โ0๏บ303, so ๏ฑ 1 โ 0๏บ303. Also, ๏น = (๏ฅ2๏ธ โ 1)๏ฝ๏ธ = 2๏บ5 when
๏ธ โ 0๏บ215, so ๏ฑ 2 โ 0๏บ215. Thus, we choose ๏ฑ = 0๏บ215 (or any smaller
positive number) since this is the smaller of ๏ฑ 1 and ๏ฑ 2 .
For ๏ข = 0๏บ1, we get ๏ฑ 1 โ 0๏บ052 and ๏ฑ 2 โ 0๏บ048, so we choose
๏ฑ = 0๏บ048 (or any smaller positive number).
9. (a)
The ๏ฌrst graph of ๏น =
1
shows a vertical asymptote at ๏ธ = 2. The second graph shows that ๏น = 100 when
ln(๏ธ โ 1)
๏ธ โ 2๏บ01 (more accurately, 2๏บ01005). Thus, we choose ๏ฑ = 0๏บ01 (or any smaller positive number).
(b) From part (a), we see that as ๏ธ gets closer to 2 from the right, ๏น increases without bound. In symbols,
lim
1
๏ธโ2+ ln(๏ธ โ 1)
= โ.
10. We graph ๏น = csc2 ๏ธ and ๏น = 500. The graphs intersect at ๏ธ โ 3๏บ186, so
we choose ๏ฑ = 3๏บ186 โ ๏ผ โ 0๏บ044. Thus, if 0 ๏ผ |๏ธ โ ๏ผ| ๏ผ 0๏บ044, then
csc2 ๏ธ ๏พ 500. Similarly, for ๏ = 1000, we get ๏ฑ = 3๏บ173 โ ๏ผ โ 0๏บ031.
11. (a) ๏ = ๏ผ๏ฒ2 and ๏ = 1000 cm2
โ ๏ผ๏ฒ2 = 1000 โ ๏ฒ2 = 1000
๏ผ
โ ๏ฒ=
๏ฑ
1000
๏ผ
(๏ฒ ๏พ 0)
โ 17๏บ8412 cm.
(b) |๏ โ 1000| โค 5 โ โ5 โค ๏ผ๏ฒ2 โ 1000 โค 5 โ 1000 โ 5 โค ๏ผ๏ฒ2 โค 1000 + 5 โ
๏ฑ
๏ฑ
๏ฑ
๏ฑ
๏ฑ
๏ฑ
995
1005
1000
995
1005
1000
โค
๏ฒ
โค
โ
17๏บ7966
โค
๏ฒ
โค
17๏บ8858.
โ
โ
0๏บ04466
and
โ
โ 0๏บ04455. So
๏ผ
๏ผ
๏ผ
๏ผ
๏ผ
๏ผ
if the machinist gets the radius within 0๏บ0445 cm of 17๏บ8412, the area will be within 5 cm2 of 1000.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.4
ยค
THE PRECISE DEFINITION OF A LIMIT
93
(c) ๏ธ is the radius, ๏ฆ (๏ธ) is the area, ๏ก is the target radius given in part (a), ๏ is the target area (1000 cm2 ), ๏ข is the magnitude
of the error tolerance in the area (5 cm2 ), and ๏ฑ is the tolerance in the radius given in part (b).
12. (a) ๏ = 0๏บ1๏ท2 + 2๏บ155๏ท + 20 and ๏ = 200
โ
0๏บ1๏ท2 + 2๏บ155๏ท + 20 = 200 โ [by the quadratic formula or
from the graph] ๏ท โ 33๏บ0 watts (๏ท ๏พ 0)
(b) From the graph, 199 โค ๏ โค 201 โ 32๏บ89 ๏ผ ๏ท ๏ผ 33๏บ11.
(c) ๏ธ is the input power, ๏ฆ (๏ธ) is the temperature, ๏ก is the target input power given in part (a), ๏ is the target temperature (200),
๏ข is the tolerance in the temperature (1), and ๏ฑ is the tolerance in the power input in watts indicated in part (b) (0๏บ11 watts).
13. (a) |4๏ธ โ 8| = 4 |๏ธ โ 2| ๏ผ 0๏บ1
โ |๏ธ โ 2| ๏ผ
0๏บ1
0๏บ1
, so ๏ฑ =
= 0๏บ025.
4
4
(b) |4๏ธ โ 8| = 4 |๏ธ โ 2| ๏ผ 0๏บ01 โ |๏ธ โ 2| ๏ผ
0๏บ01
0๏บ01
, so ๏ฑ =
= 0๏บ0025.
4
4
14. |(5๏ธ โ 7) โ 3| = |5๏ธ โ 10| = |5(๏ธ โ 2)| = 5 |๏ธ โ 2|. We must have |๏ฆ(๏ธ) โ ๏| ๏ผ ๏ข, so 5 |๏ธ โ 2| ๏ผ ๏ข
โ
|๏ธ โ 2| ๏ผ ๏ข๏ฝ5. Thus, choose ๏ฑ = ๏ข๏ฝ5. For ๏ข = 0๏บ1, ๏ฑ = 0๏บ02; for ๏ข = 0๏บ05, ๏ฑ = 0๏บ01; for ๏ข = 0๏บ01, ๏ฑ = 0๏บ002.
15. Given ๏ข ๏พ 0, we need ๏ฑ ๏พ 0 such that if 0 ๏ผ |๏ธ โ 3| ๏ผ ๏ฑ, then
๏ฏ
๏ฏ
๏ฏ
๏ฏ
๏ฏ
๏ฏ
๏ฏ(1 + 1 ๏ธ) โ 2๏ฏ ๏ผ ๏ข. But ๏ฏ(1 + 1 ๏ธ) โ 2๏ฏ ๏ผ ๏ข โ ๏ฏ 1 ๏ธ โ 1๏ฏ ๏ผ ๏ข โ
3
3
3
๏ฏ1๏ฏ
๏ฏ ๏ฏ |๏ธ โ 3| ๏ผ ๏ข โ |๏ธ โ 3| ๏ผ 3๏ข. So if we choose ๏ฑ = 3๏ข, then
3
๏ฏ
๏ฏ
0 ๏ผ |๏ธ โ 3| ๏ผ ๏ฑ โ ๏ฏ(1 + 13 ๏ธ) โ 2๏ฏ ๏ผ ๏ข. Thus, lim (1 + 13 ๏ธ) = 2 by
๏ธโ3
the de๏ฌnition of a limit.
16. Given ๏ข ๏พ 0, we need ๏ฑ ๏พ 0 such that if 0 ๏ผ |๏ธ โ 4| ๏ผ ๏ฑ, then
|(2๏ธ โ 5) โ 3| ๏ผ ๏ข. But |(2๏ธ โ 5) โ 3| ๏ผ ๏ข โ |2๏ธ โ 8| ๏ผ ๏ข โ
|2| |๏ธ โ 4| ๏ผ ๏ข โ |๏ธ โ 4| ๏ผ ๏ข๏ฝ2. So if we choose ๏ฑ = ๏ข๏ฝ2, then
0 ๏ผ |๏ธ โ 4| ๏ผ ๏ฑ
โ |(2๏ธ โ 5) โ 3| ๏ผ ๏ข. Thus, lim (2๏ธ โ 5) = 3 by the
๏ธโ4
de๏ฌnition of a limit.
17. Given ๏ข ๏พ 0, we need ๏ฑ ๏พ 0 such that if 0 ๏ผ |๏ธ โ (โ3)| ๏ผ ๏ฑ, then
|(1 โ 4๏ธ) โ 13| ๏ผ ๏ข. But |(1 โ 4๏ธ) โ 13| ๏ผ ๏ข โ
|โ4๏ธ โ 12| ๏ผ ๏ข โ |โ4| |๏ธ + 3| ๏ผ ๏ข โ |๏ธ โ (โ3)| ๏ผ ๏ข๏ฝ4. So if
we choose ๏ฑ = ๏ข๏ฝ4, then 0 ๏ผ |๏ธ โ (โ3)| ๏ผ ๏ฑ
โ |(1 โ 4๏ธ) โ 13| ๏ผ ๏ข.
Thus, lim (1 โ 4๏ธ) = 13 by the de๏ฌnition of a limit.
๏ธโโ3
x
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
94
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
18. Given ๏ข ๏พ 0, we need ๏ฑ ๏พ 0 such that if 0 ๏ผ |๏ธ โ (โ2)| ๏ผ ๏ฑ, then
|(3๏ธ + 5) โ (โ1)| ๏ผ ๏ข. But |(3๏ธ + 5) โ (โ1)| ๏ผ ๏ข โ
|3๏ธ + 6| ๏ผ ๏ข โ |3| |๏ธ + 2| ๏ผ ๏ข โ |๏ธ + 2| ๏ผ ๏ข๏ฝ3. So if we choose
๏ฑ = ๏ข๏ฝ3, then 0 ๏ผ |๏ธ + 2| ๏ผ ๏ฑ
โ |(3๏ธ + 5) โ (โ1)| ๏ผ ๏ข. Thus,
lim (3๏ธ + 5) = โ1 by the de๏ฌnition of a limit.
๏ธโโ2
๏ฏ
๏ฏ 2 + 4๏ธ
19. Given ๏ข ๏พ 0, we need ๏ฑ ๏พ 0 such that if 0 ๏ผ |๏ธ โ 1| ๏ผ ๏ฑ, then ๏ฏ๏ฏ
๏ฏ
๏ฏ
๏ฏ
๏ฏ 2 + 4๏ธ
๏ฏ
๏ฏ
โ 2๏ฏ๏ฏ ๏ผ ๏ข. But ๏ฏ๏ฏ
โ 2๏ฏ๏ฏ ๏ผ ๏ข โ
3
3
๏ฏ
๏ฏ
๏ฏ4๏ฏ
๏ฏ 4๏ธ โ 4 ๏ฏ
3
3
๏ฏ ๏ฏ
๏ฏ
๏ฏ
๏ฏ 3 ๏ฏ ๏ผ ๏ข โ 3 |๏ธ โ 1| ๏ผ ๏ข โ |๏ธ โ 1| ๏ผ 4 ๏ข. So if we choose ๏ฑ = 4 ๏ข, then 0 ๏ผ |๏ธ โ 1| ๏ผ ๏ฑ
๏ฏ
๏ฏ
๏ฏ
๏ฏ 2 + 4๏ธ
๏ฏ ๏ผ ๏ข. Thus, lim 2 + 4๏ธ = 2 by the de๏ฌnition of a limit.
๏ฏ
โ
2
๏ฏ
๏ฏ 3
๏ธโ1
3
๏ฏ
๏ฏ
๏ฏ
โ
๏ฏ
20. Given ๏ข ๏พ 0, we need ๏ฑ ๏พ 0 such that if 0 ๏ผ |๏ธ โ 10| ๏ผ ๏ฑ, then ๏ฏ3 โ 45 ๏ธ โ (โ5)๏ฏ ๏ผ ๏ข. But ๏ฏ3 โ 45 ๏ธ โ (โ5)๏ฏ ๏ผ ๏ข
๏ฏ
๏ฏ
๏ฏ ๏ฏ
๏ฏ8 โ 4 ๏ธ๏ฏ ๏ผ ๏ข โ ๏ฏโ 4 ๏ฏ |๏ธ โ 10| ๏ผ ๏ข โ |๏ธ โ 10| ๏ผ 5 ๏ข. So if we choose ๏ฑ = 5 ๏ข, then 0 ๏ผ |๏ธ โ 10| ๏ผ ๏ฑ
5
5
4
4
๏ฏ
๏ฏ
๏ฏ3 โ 4 ๏ธ โ (โ5)๏ฏ ๏ผ ๏ข. Thus, lim (3 โ 4 ๏ธ) = โ5 by the de๏ฌnition of a limit.
5
5
โ
โ
๏ธโ10
๏ฏ 2
๏ฏ ๏ธ โ 2๏ธ โ 8
21. Given ๏ข ๏พ 0, we need ๏ฑ ๏พ 0 such that if 0 ๏ผ |๏ธ โ 4| ๏ผ ๏ฑ, then ๏ฏ๏ฏ
๏ฏ
๏ฏ
โ 6๏ฏ๏ฏ ๏ผ ๏ข โ
๏ธโ4
๏ฏ
๏ฏ
๏ฏ (๏ธ โ 4)(๏ธ + 2)
๏ฏ
๏ฏ
โ 6๏ฏ๏ฏ ๏ผ ๏ข โ |๏ธ + 2 โ 6| ๏ผ ๏ข [๏ธ 6= 4] โ |๏ธ โ 4| ๏ผ ๏ข. So choose ๏ฑ = ๏ข. Then
๏ฏ
๏ธโ4
๏ฏ
๏ฏ
๏ฏ (๏ธ โ 4)(๏ธ + 2)
๏ฏ
0 ๏ผ |๏ธ โ 4| ๏ผ ๏ฑ โ |๏ธ โ 4| ๏ผ ๏ข โ |๏ธ + 2 โ 6| ๏ผ ๏ข โ ๏ฏ๏ฏ
โ 6๏ฏ๏ฏ ๏ผ ๏ข [๏ธ 6= 4] โ
๏ธโ4
๏ฏ 2
๏ฏ
๏ฏ ๏ธ โ 2๏ธ โ 8
๏ฏ
๏ธ2 โ 2๏ธ โ 8
๏ฏ
โ 6๏ฏ๏ฏ ๏ผ ๏ข. By the de๏ฌnition of a limit, lim
= 6.
๏ฏ
๏ธโ4
๏ธโ4
๏ธโ4
๏ฏ
๏ฏ 9 โ 4๏ธ2
22. Given ๏ข ๏พ 0, we need ๏ฑ ๏พ 0 such that if 0 ๏ผ |๏ธ + 1๏บ5| ๏ผ ๏ฑ, then ๏ฏ๏ฏ
๏ฏ
๏ฏ
โ 6๏ฏ๏ฏ ๏ผ ๏ข โ
3 + 2๏ธ
๏ฏ
๏ฏ
๏ฏ (3 + 2๏ธ)(3 โ 2๏ธ)
๏ฏ
๏ฏ
โ 6๏ฏ๏ฏ ๏ผ ๏ข โ |3 โ 2๏ธ โ 6| ๏ผ ๏ข [๏ธ 6= โ1๏บ5] โ |โ2๏ธ โ 3| ๏ผ ๏ข โ |โ2| |๏ธ + 1๏บ5| ๏ผ ๏ข โ
๏ฏ
3 + 2๏ธ
|๏ธ + 1๏บ5| ๏ผ ๏ข๏ฝ2. So choose ๏ฑ = ๏ข๏ฝ2. Then 0 ๏ผ |๏ธ + 1๏บ5| ๏ผ ๏ฑ โ |๏ธ + 1๏บ5| ๏ผ ๏ข๏ฝ2 โ |โ2| |๏ธ + 1๏บ5| ๏ผ ๏ข โ
๏ฏ
๏ฏ
๏ฏ
๏ฏ
๏ฏ 9 โ 4๏ธ2
๏ฏ
๏ฏ
๏ฏ (3 + 2๏ธ)(3 โ 2๏ธ)
|โ2๏ธ โ 3| ๏ผ ๏ข โ |3 โ 2๏ธ โ 6| ๏ผ ๏ข โ ๏ฏ๏ฏ
โ 6๏ฏ๏ฏ ๏ผ ๏ข [๏ธ 6= โ1๏บ5] โ ๏ฏ๏ฏ
โ 6๏ฏ๏ฏ ๏ผ ๏ข.
3 + 2๏ธ
3 + 2๏ธ
By the de๏ฌnition of a limit,
9 โ 4๏ธ2
= 6.
๏ธโโ1๏บ5 3 + 2๏ธ
lim
23. Given ๏ข ๏พ 0, we need ๏ฑ ๏พ 0 such that if 0 ๏ผ |๏ธ โ ๏ก| ๏ผ ๏ฑ, then |๏ธ โ ๏ก| ๏ผ ๏ข. So ๏ฑ = ๏ข will work.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.4
THE PRECISE DEFINITION OF A LIMIT
ยค
95
24. Given ๏ข ๏พ 0, we need ๏ฑ ๏พ 0 such that if 0 ๏ผ |๏ธ โ ๏ก| ๏ผ ๏ฑ, then |๏ฃ โ ๏ฃ| ๏ผ ๏ข. But |๏ฃ โ ๏ฃ| = 0, so this will be true no matter
what ๏ฑ we pick.
๏ฏ
๏ฏ
โ ๏ธ2 ๏ผ ๏ข
๏ฏ
๏ฏ
โ
โ
โ |๏ธ|3 ๏ผ ๏ข โ |๏ธ| ๏ผ 3 ๏ข. Take ๏ฑ = 3 ๏ข.
๏ฏ
๏ฏ
25. Given ๏ข ๏พ 0, we need ๏ฑ ๏พ 0 such that if 0 ๏ผ |๏ธ โ 0| ๏ผ ๏ฑ, then ๏ฏ๏ธ2 โ 0๏ฏ ๏ผ ๏ข
Then 0 ๏ผ |๏ธ โ 0| ๏ผ ๏ฑ
๏ฏ
๏ฏ
โ ๏ฏ๏ธ2 โ 0๏ฏ ๏ผ ๏ข. Thus, lim ๏ธ2 = 0 by the de๏ฌnition of a limit.
โ
โ
๏ข. Take ๏ฑ = ๏ข.
๏ธโ0
26. Given ๏ข ๏พ 0, we need ๏ฑ ๏พ 0 such that if 0 ๏ผ |๏ธ โ 0| ๏ผ ๏ฑ, then ๏ฏ๏ธ3 โ 0๏ฏ ๏ผ ๏ข
Then 0 ๏ผ |๏ธ โ 0| ๏ผ ๏ฑ
โ |๏ธ| ๏ผ
๏ฏ
๏ฏ
โ ๏ฏ๏ธ3 โ 0๏ฏ ๏ผ ๏ฑ 3 = ๏ข. Thus, lim ๏ธ3 = 0 by the de๏ฌnition of a limit.
๏ธโ0
๏ฏ
๏ฏ
27. Given ๏ข ๏พ 0, we need ๏ฑ ๏พ 0 such that if 0 ๏ผ |๏ธ โ 0| ๏ผ ๏ฑ, then ๏ฏ|๏ธ| โ 0๏ฏ ๏ผ ๏ข. But ๏ฏ|๏ธ|๏ฏ = |๏ธ|. So this is true if we pick ๏ฑ = ๏ข.
Thus, lim |๏ธ| = 0 by the de๏ฌnition of a limit.
๏ธโ0
๏ฏโ
๏ฏโ
๏ฏ
๏ฏ
28. Given ๏ข ๏พ 0, we need ๏ฑ ๏พ 0 such that if 0 ๏ผ ๏ธ โ (โ6) ๏ผ ๏ฑ, then ๏ฏ 8 6 + ๏ธ โ 0๏ฏ ๏ผ ๏ข. But ๏ฏ 8 6 + ๏ธ โ 0๏ฏ ๏ผ ๏ข
โ
8
6 + ๏ธ ๏ผ ๏ข โ 6 + ๏ธ ๏ผ ๏ข8 โ ๏ธ โ (โ6) ๏ผ ๏ข8 . So if we choose ๏ฑ = ๏ข8 , then 0 ๏ผ ๏ธ โ (โ6) ๏ผ ๏ฑ
๏ฏ
๏ฏโ
โ
๏ฏ 8 6 + ๏ธ โ 0๏ฏ ๏ผ ๏ข. Thus, lim 8 6 + ๏ธ = 0 by the de๏ฌnition of a right-hand limit.
โ
โ
๏ธโโ6+
๏ฏ๏ก
๏ฏ
๏ฏ
๏ฏ
โ ๏ฏ๏ธ2 โ 4๏ธ + 4๏ฏ ๏ผ ๏ข โ
๏ฏ
๏ฏ
โ
โ |๏ธ โ 2| ๏ผ ๏ข โ ๏ฏ(๏ธ โ 2)2 ๏ฏ ๏ผ ๏ข. Thus,
๏ข
29. Given ๏ข ๏พ 0, we need ๏ฑ ๏พ 0 such that if 0 ๏ผ |๏ธ โ 2| ๏ผ ๏ฑ, then ๏ฏ ๏ธ2 โ 4๏ธ + 5 โ 1๏ฏ ๏ผ ๏ข
๏ฏ
๏ฏ
๏ฏ(๏ธ โ 2)2 ๏ฏ ๏ผ ๏ข. So take ๏ฑ = โ๏ข. Then 0 ๏ผ |๏ธ โ 2| ๏ผ ๏ฑ
๏ก
๏ข
lim ๏ธ2 โ 4๏ธ + 5 = 1 by the de๏ฌnition of a limit.
๏ธโ2
๏ฏ
๏ฏ
๏ฏ
๏ฏ
30. Given ๏ข ๏พ 0, we need ๏ฑ ๏พ 0 such that if 0 ๏ผ |๏ธ โ 2| ๏ผ ๏ฑ, then ๏ฏ(๏ธ2 + 2๏ธ โ 7) โ 1๏ฏ ๏ผ ๏ข. But ๏ฏ(๏ธ2 + 2๏ธ โ 7) โ 1๏ฏ ๏ผ ๏ข
โ
๏ฏ
๏ฏ 2
๏ฏ๏ธ + 2๏ธ โ 8๏ฏ ๏ผ ๏ข โ |๏ธ + 4| |๏ธ โ 2| ๏ผ ๏ข. Thus our goal is to make |๏ธ โ 2| small enough so that its product with |๏ธ + 4|
is less than ๏ข. Suppose we ๏ฌrst require that |๏ธ โ 2| ๏ผ 1. Then โ1 ๏ผ ๏ธ โ 2 ๏ผ 1 โ 1 ๏ผ ๏ธ ๏ผ 3 โ 5 ๏ผ ๏ธ + 4 ๏ผ 7 โ
|๏ธ + 4| ๏ผ 7, and this gives us 7 |๏ธ โ 2| ๏ผ ๏ข โ |๏ธ โ 2| ๏ผ ๏ข๏ฝ7. Choose ๏ฑ = min {1๏ป ๏ข๏ฝ7}. Then if 0 ๏ผ |๏ธ โ 2| ๏ผ ๏ฑ, we
๏ฏ
๏ฏ
have |๏ธ โ 2| ๏ผ ๏ข๏ฝ7 and |๏ธ + 4| ๏ผ 7, so ๏ฏ(๏ธ2 + 2๏ธ โ 7) โ 1๏ฏ = |(๏ธ + 4)(๏ธ โ 2)| = |๏ธ + 4| |๏ธ โ 2| ๏ผ 7(๏ข๏ฝ7) = ๏ข, as
desired. Thus, lim (๏ธ2 + 2๏ธ โ 7) = 1 by the de๏ฌnition of a limit.
๏ธโ2
๏ฏ๏ก
๏ข
๏ฏ
31. Given ๏ข ๏พ 0, we need ๏ฑ ๏พ 0 such that if 0 ๏ผ |๏ธ โ (โ2)| ๏ผ ๏ฑ, then ๏ฏ ๏ธ2 โ 1 โ 3๏ฏ ๏ผ ๏ข or upon simplifying we need
๏ฏ 2
๏ฏ
๏ฏ๏ธ โ 4๏ฏ ๏ผ ๏ข whenever 0 ๏ผ |๏ธ + 2| ๏ผ ๏ฑ. Notice that if |๏ธ + 2| ๏ผ 1, then โ1 ๏ผ ๏ธ + 2 ๏ผ 1 โ โ5 ๏ผ ๏ธ โ 2 ๏ผ โ3 โ
|๏ธ โ 2| ๏ผ 5. So take ๏ฑ = min {๏ข๏ฝ5๏ป 1}. Then 0 ๏ผ |๏ธ + 2| ๏ผ ๏ฑ โ |๏ธ โ 2| ๏ผ 5 and |๏ธ + 2| ๏ผ ๏ข๏ฝ5, so
๏ฏ
๏ฏ๏ก 2
๏ข
๏ฏ ๏ธ โ 1 โ 3๏ฏ = |(๏ธ + 2)(๏ธ โ 2)| = |๏ธ + 2| |๏ธ โ 2| ๏ผ (๏ข๏ฝ5)(5) = ๏ข. Thus, by the de๏ฌnition of a limit, lim (๏ธ2 โ 1) = 3.
๏ธโโ2
๏ฏ
๏ฏ
๏ฏ
๏ฏ
๏ฏ
๏ก
๏ข๏ฏ
32. Given ๏ข ๏พ 0, we need ๏ฑ ๏พ 0 such that if 0 ๏ผ |๏ธ โ 2| ๏ผ ๏ฑ, then ๏ฏ๏ธ3 โ 8๏ฏ ๏ผ ๏ข. Now ๏ฏ๏ธ3 โ 8๏ฏ = ๏ฏ(๏ธ โ 2) ๏ธ2 + 2๏ธ + 4 ๏ฏ.
If |๏ธ โ 2| ๏ผ 1, that is, 1 ๏ผ ๏ธ ๏ผ 3, then ๏ธ2 + 2๏ธ + 4 ๏ผ 32 + 2(3) + 4 = 19 and so
๏ฏ
๏ฏ 3
๏ช
๏ก
๏ข
๏ฉ
๏ฏ๏ธ โ 8๏ฏ = |๏ธ โ 2| ๏ธ2 + 2๏ธ + 4 ๏ผ 19 |๏ธ โ 2|. So if we take ๏ฑ = min 1๏ป ๏ข , then 0 ๏ผ |๏ธ โ 2| ๏ผ ๏ฑ
19
๏ฏ 3
๏ฏ
๏ก
๏ข
๏ฏ๏ธ โ 8๏ฏ = |๏ธ โ 2| ๏ธ2 + 2๏ธ + 4 ๏ผ ๏ข ยท 19 = ๏ข. Thus, by the de๏ฌnition of a limit, lim ๏ธ3 = 8.
19
โ
๏ธโ2
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
96
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
๏ฉ
๏ช
33. Given ๏ข ๏พ 0, we let ๏ฑ = min 2๏ป 8๏ข . If 0 ๏ผ |๏ธ โ 3| ๏ผ ๏ฑ, then |๏ธ โ 3| ๏ผ 2
โ โ2 ๏ผ ๏ธ โ 3 ๏ผ 2 โ
๏ฏ
๏ฏ
4 ๏ผ ๏ธ + 3 ๏ผ 8 โ |๏ธ + 3| ๏ผ 8. Also |๏ธ โ 3| ๏ผ 8๏ข , so ๏ฏ๏ธ2 โ 9๏ฏ = |๏ธ + 3| |๏ธ โ 3| ๏ผ 8 ยท 8๏ข = ๏ข. Thus, lim ๏ธ2 = 9.
๏ธโ3
34. From the ๏ฌgure, our choices for ๏ฑ are ๏ฑ 1 = 3 โ
๏ฑ2 =
โ
9 โ ๏ข and
โ
9 + ๏ข โ 3. The largest possible choice for ๏ฑ is the minimum
value of {๏ฑ 1 ๏ป ๏ฑ 2 }; that is, ๏ฑ = min{๏ฑ 1 ๏ป ๏ฑ 2 } = ๏ฑ 2 =
โ
9 + ๏ข โ 3.
35. (a) The points of intersection in the graph are (๏ธ1 ๏ป 2๏บ6) and (๏ธ2 ๏ป 3๏บ4)
with ๏ธ1 โ 0๏บ891 and ๏ธ2 โ 1๏บ093. Thus, we can take ๏ฑ to be the
smaller of 1 โ ๏ธ1 and ๏ธ2 โ 1. So ๏ฑ = ๏ธ2 โ 1 โ 0๏บ093.
(b) Solving ๏ธ3 + ๏ธ + 1 = 3 + ๏ข gives us two nonreal complex roots and one real root, which is
โ
๏ข2๏ฝ3
๏ก
216 + 108๏ข + 12 336 + 324๏ข + 81๏ข2
โ 12
๏ธ(๏ข) =
โ
๏ข1๏ฝ3 . Thus, ๏ฑ = ๏ธ(๏ข) โ 1.
๏ก
2
6 216 + 108๏ข + 12 336 + 324๏ข + 81๏ข
(c) If ๏ข = 0๏บ4, then ๏ธ(๏ข) โ 1๏บ093 272 342 and ๏ฑ = ๏ธ(๏ข) โ 1 โ 0๏บ093, which agrees with our answer in part (a).
๏ฏ
๏ฏ
๏ฏ1
1 ๏ฏ๏ฏ
๏ฏ
36. 1. Guessing a value for ๏ฑ Let ๏ข ๏พ 0 be given. We have to ๏ฌnd a number ๏ฑ ๏พ 0 such that ๏ฏ โ ๏ฏ ๏ผ ๏ข whenever
๏ธ
2
๏ฏ
๏ฏ ๏ฏ
๏ฏ
๏ฏ1
|๏ธ โ 2|
1 ๏ฏ ๏ฏ 2 โ ๏ธ ๏ฏ๏ฏ
1
0 ๏ผ |๏ธ โ 2| ๏ผ ๏ฑ. But ๏ฏ๏ฏ โ ๏ฏ๏ฏ = ๏ฏ๏ฏ
=
๏ผ ๏ข. We ๏ฌnd a positive constant ๏ such that
๏ผ๏ โ
๏ธ 2
2๏ธ ๏ฏ
|2๏ธ|
|2๏ธ|
|๏ธ โ 2|
๏ข
๏ผ ๏ |๏ธ โ 2| and we can make ๏ |๏ธ โ 2| ๏ผ ๏ข by taking |๏ธ โ 2| ๏ผ
= ๏ฑ. We restrict ๏ธ to lie in the interval
|2๏ธ|
๏
|๏ธ โ 2| ๏ผ 1 โ 1 ๏ผ ๏ธ ๏ผ 3 so 1 ๏พ
1
1
๏พ
๏ธ
3
โ
1
1
1
๏ผ
๏ผ
6
2๏ธ
2
โ
1
1
1
๏ผ . So ๏ = is suitable. Thus, we should
|2๏ธ|
2
2
choose ๏ฑ = min {1๏ป 2๏ข}.
2. Showing that ๏ฑ works
Given ๏ข ๏พ 0 we let ๏ฑ = min {1๏ป 2๏ข}. If 0 ๏ผ |๏ธ โ 2| ๏ผ ๏ฑ, then |๏ธ โ 2| ๏ผ 1 โ 1 ๏ผ ๏ธ ๏ผ 3 โ
๏ฏ
๏ฏ
๏ฏ1
1
1 ๏ฏ |๏ธ โ 2|
1
1
๏ผ (as in part 1). Also |๏ธ โ 2| ๏ผ 2๏ข, so ๏ฏ๏ฏ โ ๏ฏ๏ฏ =
๏ผ ยท 2๏ข = ๏ข. This shows that lim (1๏ฝ๏ธ) = 12 .
๏ธโ2
|2๏ธ|
2
๏ธ 2
|2๏ธ|
2
37. 1. Guessing a value for ๏ฑ
โ
โ
Given ๏ข ๏พ 0, we must ๏ฌnd ๏ฑ ๏พ 0 such that | ๏ธ โ ๏ก| ๏ผ ๏ข whenever 0 ๏ผ |๏ธ โ ๏ก| ๏ผ ๏ฑ. But
โ
โ
โ
โ
|๏ธ โ ๏ก|
โ ๏ผ ๏ข (from the hint). Now if we can ๏ฌnd a positive constant ๏ such that ๏ธ + ๏ก ๏พ ๏ then
| ๏ธ โ ๏ก| = โ
๏ธ+ ๏ก
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.4
THE PRECISE DEFINITION OF A LIMIT
ยค
97
|๏ธ โ ๏ก|
|๏ธ โ ๏ก|
โ
โ ๏ผ
๏ผ ๏ข, and we take |๏ธ โ ๏ก| ๏ผ ๏๏ข. We can ๏ฌnd this number by restricting ๏ธ to lie in some interval
๏
๏ธ+ ๏ก
๏ฑ
โ
โ
โ
centered at ๏ก. If |๏ธ โ ๏ก| ๏ผ 12 ๏ก, then โ 12 ๏ก ๏ผ ๏ธ โ ๏ก ๏ผ 12 ๏ก โ 12 ๏ก ๏ผ ๏ธ ๏ผ 32 ๏ก โ
๏ธ + ๏ก ๏พ 12 ๏ก + ๏ก, and so
๏=
๏ฑ
โ
1
๏ก is a suitable choice for the constant. So |๏ธ โ ๏ก| ๏ผ
2๏ก +
๏ฑ = min
๏ฎ
1
๏ก๏ป
2
๏ณ๏ฑ
๏ด ๏ฏ
๏ข .
โ
1
๏ก+ ๏ก
2
2. Showing that ๏ฑ works
|๏ธ โ ๏ก| ๏ผ 12 ๏ก โ
Given ๏ข ๏พ 0, we let ๏ฑ = min
๏ฎ
1
๏ก๏ป
2
๏ณ๏ฑ
๏ณ๏ฑ
๏ด
๏ข. This suggests that we let
โ
1
๏ก
2๏ก +
๏ด ๏ฏ
๏ข . If 0 ๏ผ |๏ธ โ ๏ก| ๏ผ ๏ฑ, then
โ
1
๏ก+ ๏ก
2
๏ฑ
๏ณ๏ฑ
โ
โ
โ
โ ๏ด
1
๏ธ + ๏ก ๏พ 12 ๏ก + ๏ก (as in part 1). Also |๏ธ โ ๏ก| ๏ผ
๏ก + ๏ก ๏ข, so
2
๏ณ๏ฐ
โ ๏ด
๏ก๏ฝ2 + ๏ก ๏ข
โ
โ
โ
โ
|๏ธ โ ๏ก|
โ ๏ผ ๏ณ๏ฐ
| ๏ธ โ ๏ก| = โ
lim ๏ธ = ๏ก by the de๏ฌnition of a limit.
โ ๏ด = ๏ข. Therefore, ๏ธโ๏ก
๏ธ+ ๏ก
๏ก๏ฝ2 + ๏ก
38. Suppose that lim ๏(๏ด) = ๏. Given ๏ข = 12 , there exists ๏ฑ ๏พ 0 such that 0 ๏ผ |๏ด| ๏ผ ๏ฑ
๏ดโ0
๏ โ 12 ๏ผ ๏(๏ด) ๏ผ ๏ + 12 . For 0 ๏ผ ๏ด ๏ผ ๏ฑ, ๏(๏ด) = 1, so 1 ๏ผ ๏ + 12
โ |๏(๏ด) โ ๏| ๏ผ 12
โ
โ ๏ ๏พ 12 . For โ๏ฑ ๏ผ ๏ด ๏ผ 0, ๏(๏ด) = 0,
so ๏ โ 12 ๏ผ 0 โ ๏ ๏ผ 12 . This contradicts ๏ ๏พ 12 . Therefore, lim ๏(๏ด) does not exist.
๏ดโ0
39. Suppose that lim ๏ฆ (๏ธ) = ๏. Given ๏ข = 12 , there exists ๏ฑ ๏พ 0 such that 0 ๏ผ |๏ธ| ๏ผ ๏ฑ
๏ธโ0
โ |๏ฆ(๏ธ) โ ๏| ๏ผ 12 . Take any rational
number ๏ฒ with 0 ๏ผ |๏ฒ| ๏ผ ๏ฑ. Then ๏ฆ (๏ฒ) = 0, so |0 โ ๏| ๏ผ 12 , so ๏ โค |๏| ๏ผ 12 . Now take any irrational number ๏ณ with
0 ๏ผ |๏ณ| ๏ผ ๏ฑ. Then ๏ฆ (๏ณ) = 1, so |1 โ ๏| ๏ผ 12 . Hence, 1 โ ๏ ๏ผ 12 , so ๏ ๏พ 12 . This contradicts ๏ ๏ผ 12 , so lim ๏ฆ(๏ธ) does not
๏ธโ0
exist.
40. First suppose that lim ๏ฆ (๏ธ) = ๏. Then, given ๏ข ๏พ 0 there exists ๏ฑ ๏พ 0 so that 0 ๏ผ |๏ธ โ ๏ก| ๏ผ ๏ฑ
๏ธโ๏ก
โ |๏ฆ(๏ธ) โ ๏| ๏ผ ๏ข.
Then ๏ก โ ๏ฑ ๏ผ ๏ธ ๏ผ ๏ก โ 0 ๏ผ |๏ธ โ ๏ก| ๏ผ ๏ฑ so |๏ฆ (๏ธ) โ ๏| ๏ผ ๏ข. Thus, lim ๏ฆ (๏ธ) = ๏. Also ๏ก ๏ผ ๏ธ ๏ผ ๏ก + ๏ฑ
๏ธโ๏กโ
โ
0 ๏ผ |๏ธ โ ๏ก| ๏ผ ๏ฑ so |๏ฆ (๏ธ) โ ๏| ๏ผ ๏ข. Hence, lim ๏ฆ (๏ธ) = ๏.
๏ธโ๏ก+
Now suppose lim ๏ฆ (๏ธ) = ๏ = lim ๏ฆ(๏ธ). Let ๏ข ๏พ 0 be given. Since lim ๏ฆ (๏ธ) = ๏, there exists ๏ฑ1 ๏พ 0 so that
๏ธโ๏กโ
๏ธโ๏กโ
๏ธโ๏ก+
๏ก โ ๏ฑ 1 ๏ผ ๏ธ ๏ผ ๏ก โ |๏ฆ (๏ธ) โ ๏| ๏ผ ๏ข. Since lim ๏ฆ (๏ธ) = ๏, there exists ๏ฑ 2 ๏พ 0 so that ๏ก ๏ผ ๏ธ ๏ผ ๏ก + ๏ฑ 2
๏ธโ๏ก+
|๏ฆ (๏ธ) โ ๏| ๏ผ ๏ข. Let ๏ฑ be the smaller of ๏ฑ 1 and ๏ฑ2 . Then 0 ๏ผ |๏ธ โ ๏ก| ๏ผ ๏ฑ
โ ๏ก โ ๏ฑ 1 ๏ผ ๏ธ ๏ผ ๏ก or ๏ก ๏ผ ๏ธ ๏ผ ๏ก + ๏ฑ2 so
|๏ฆ (๏ธ) โ ๏| ๏ผ ๏ข. Hence, lim ๏ฆ (๏ธ) = ๏. So we have proved that lim ๏ฆ (๏ธ) = ๏ โ
๏ธโ๏ก
41.
1
1
๏พ 10,000 โ (๏ธ + 3)4 ๏ผ
(๏ธ + 3)4
10,000
๏ธโ๏ก
1
โ |๏ธ + 3| ๏ผ โ
4
10,000
42. Given ๏ ๏พ 0, we need ๏ฑ ๏พ 0 such that 0 ๏ผ |๏ธ + 3| ๏ผ ๏ฑ
(๏ธ + 3)4 ๏ผ
lim
1
๏
1
๏ธโโ3 (๏ธ + 3)4
โ
โ
lim ๏ฆ(๏ธ) = ๏ = lim ๏ฆ (๏ธ).
๏ธโ๏กโ
๏ธโ๏ก+
|๏ธ โ (โ3)| ๏ผ
โ 1๏ฝ(๏ธ + 3)4 ๏พ ๏. Now
1
10
1
๏พ๏
(๏ธ + 3)4
1
1
1
. So take ๏ฑ = โ
. Then 0 ๏ผ |๏ธ + 3| ๏ผ ๏ฑ = โ
โ |๏ธ + 3| ๏ผ โ
4
4
4
๏
๏
๏
โ
โ
1
๏พ ๏, so
(๏ธ + 3)4
= โ.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
98
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
43. Given ๏ ๏ผ 0 we need ๏ฑ ๏พ 0 so that ln ๏ธ ๏ผ ๏ whenever 0 ๏ผ ๏ธ ๏ผ ๏ฑ; that is, ๏ธ = ๏ฅln ๏ธ ๏ผ ๏ฅ๏ whenever 0 ๏ผ ๏ธ ๏ผ ๏ฑ. This
suggests that we take ๏ฑ = ๏ฅ๏ . If 0 ๏ผ ๏ธ ๏ผ ๏ฅ๏ , then ln ๏ธ ๏ผ ln ๏ฅ๏ = ๏. By the de๏ฌnition of a limit, lim ln ๏ธ = โโ.
๏ธโ0+
44. (a) Let ๏ be given. Since lim ๏ฆ (๏ธ) = โ, there exists ๏ฑ 1 ๏พ 0 such that 0 ๏ผ |๏ธ โ ๏ก| ๏ผ ๏ฑ 1
๏ธโ๏ก
lim ๏ง(๏ธ) = ๏ฃ, there exists ๏ฑ 2 ๏พ 0 such that 0 ๏ผ |๏ธ โ ๏ก| ๏ผ ๏ฑ 2
๏ธโ๏ก
smaller of ๏ฑ1 and ๏ฑ2 . Then 0 ๏ผ |๏ธ โ ๏ก| ๏ผ ๏ฑ
โ ๏ฆ (๏ธ) ๏พ ๏ + 1 โ ๏ฃ. Since
โ |๏ง(๏ธ) โ ๏ฃ| ๏ผ 1 โ ๏ง(๏ธ) ๏พ ๏ฃ โ 1. Let ๏ฑ be the
โ ๏ฆ (๏ธ) + ๏ง(๏ธ) ๏พ (๏ + 1 โ ๏ฃ) + (๏ฃ โ 1) = ๏. Thus,
lim [๏ฆ (๏ธ) + ๏ง(๏ธ)] = โ.
๏ธโ๏ก
(b) Let ๏ ๏พ 0 be given. Since lim ๏ง(๏ธ) = ๏ฃ ๏พ 0, there exists ๏ฑ 1 ๏พ 0 such that 0 ๏ผ |๏ธ โ ๏ก| ๏ผ ๏ฑ 1
๏ธโ๏ก
โ
|๏ง(๏ธ) โ ๏ฃ| ๏ผ ๏ฃ๏ฝ2 โ ๏ง(๏ธ) ๏พ ๏ฃ๏ฝ2. Since lim ๏ฆ (๏ธ) = โ, there exists ๏ฑ 2 ๏พ 0 such that 0 ๏ผ |๏ธ โ ๏ก| ๏ผ ๏ฑ 2
๏ธโ๏ก
๏ฆ (๏ธ) ๏พ 2๏๏ฝ๏ฃ. Let ๏ฑ = min {๏ฑ1 ๏ป ๏ฑ 2 }. Then 0 ๏ผ |๏ธ โ ๏ก| ๏ผ ๏ฑ
โ ๏ฆ (๏ธ) ๏ง(๏ธ) ๏พ
2๏ ๏ฃ
= ๏, so lim ๏ฆ (๏ธ) ๏ง(๏ธ) = โ.
๏ธโ๏ก
๏ฃ 2
(c) Let ๏ ๏ผ 0 be given. Since lim ๏ง(๏ธ) = ๏ฃ ๏ผ 0, there exists ๏ฑ1 ๏พ 0 such that 0 ๏ผ |๏ธ โ ๏ก| ๏ผ ๏ฑ 1
๏ธโ๏ก
โ
โ
|๏ง(๏ธ) โ ๏ฃ| ๏ผ โ๏ฃ๏ฝ2 โ ๏ง(๏ธ) ๏ผ ๏ฃ๏ฝ2. Since lim ๏ฆ (๏ธ) = โ, there exists ๏ฑ 2 ๏พ 0 such that 0 ๏ผ |๏ธ โ ๏ก| ๏ผ ๏ฑ 2
โ
๏ฆ (๏ธ) ๏พ 2๏๏ฝ๏ฃ. (Note that ๏ฃ ๏ผ 0 and ๏ ๏ผ 0 โ 2๏๏ฝ๏ฃ ๏พ 0.) Let ๏ฑ = min {๏ฑ1 ๏ป ๏ฑ 2 }. Then 0 ๏ผ |๏ธ โ ๏ก| ๏ผ ๏ฑ
โ
๏ธโ๏ก
2๏ ๏ฃ
๏ฆ (๏ธ) ๏พ 2๏๏ฝ๏ฃ โ ๏ฆ (๏ธ) ๏ง(๏ธ) ๏ผ
ยท = ๏, so lim ๏ฆ (๏ธ) ๏ง(๏ธ) = โโ.
๏ธโ๏ก
๏ฃ 2
2.5 Continuity
1. From De๏ฌnition 1, lim ๏ฆ (๏ธ) = ๏ฆ (4).
๏ธโ4
2. The graph of ๏ฆ has no hole, jump, or vertical asymptote.
3. (a) ๏ฆ is discontinuous at โ4 since ๏ฆ (โ4) is not de๏ฌned and at โ2, 2, and 4 since the limit does not exist (the left and right
limits are not the same).
(b) ๏ฆ is continuous from the left at โ2 since
lim ๏ฆ (๏ธ) = ๏ฆ (โ2). ๏ฆ is continuous from the right at 2 and 4 since
๏ธโโ2โ
lim ๏ฆ(๏ธ) = ๏ฆ (2) and lim ๏ฆ (๏ธ) = ๏ฆ (4). It is continuous from neither side at โ4 since ๏ฆ (โ4) is unde๏ฌned.
๏ธโ2+
๏ธโ4+
4. From the graph of ๏ง, we see that ๏ง is continuous on the intervals [โ3๏ป โ2), (โ2๏ป โ1), (โ1๏ป 0], (0๏ป 1), and (1๏ป 3].
5. The graph of ๏น = ๏ฆ (๏ธ) must have a discontinuity at
๏ธ = 2 and must show that lim ๏ฆ (๏ธ) = ๏ฆ (2).
๏ธโ2+
6. The graph of ๏น = ๏ฆ (๏ธ) must have discontinuities
at ๏ธ = โ1 and ๏ธ = 4. It must show that
lim ๏ฆ (๏ธ) = ๏ฆ (โ1) and lim ๏ฆ(๏ธ) = ๏ฆ(4).
๏ธโโ1โ
๏ธโ4+
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.5
7. The graph of ๏น = ๏ฆ (๏ธ) must have a removable
CONTINUITY
ยค
99
8. The graph of ๏น = ๏ฆ (๏ธ) must have a discontinuity
discontinuity (a hole) at ๏ธ = 3 and a jump discontinuity
at ๏ธ = โ2 with
at ๏ธ = 5.
lim ๏ฆ (๏ธ) 6= ๏ฆ (โ2) and
๏ธโโ2โ
lim ๏ฆ (๏ธ) 6= ๏ฆ(โ2). It must also show that
๏ธโโ2+
lim ๏ฆ (๏ธ) = ๏ฆ (2) and lim ๏ฆ (๏ธ) 6= ๏ฆ (2).
๏ธโ2โ
๏ธโ2+
9. (a) The toll is $7 between 7:00 AM and 10:00 AM and between 4:00 PM and 7:00 PM .
(b) The function ๏ has jump discontinuities at ๏ด = 7, 10, 16, and 19. Their
signi๏ฌcance to someone who uses the road is that, because of the sudden jumps in
the toll, they may want to avoid the higher rates between ๏ด = 7 and ๏ด = 10 and
between ๏ด = 16 and ๏ด = 19 if feasible.
10. (a) Continuous; at the location in question, the temperature changes smoothly as time passes, without any instantaneous jumps
from one temperature to another.
(b) Continuous; the temperature at a speci๏ฌc time changes smoothly as the distance due west from New York City increases,
without any instantaneous jumps.
(c) Discontinuous; as the distance due west from New York City increases, the altitude above sea level may jump from one
height to another without going through all of the intermediate values โ at a cliff, for example.
(d) Discontinuous; as the distance traveled increases, the cost of the ride jumps in small increments.
(e) Discontinuous; when the lights are switched on (or off ), the current suddenly changes between 0 and some nonzero value,
without passing through all of the intermediate values. This is debatable, though, depending on your de๏ฌnition of current.
11. lim ๏ฆ (๏ธ) = lim
๏ธโโ1
๏ธโโ1
๏ก
๏ข4
๏ธ + 2๏ธ3 =
๏ต
lim ๏ธ + 2 lim ๏ธ3
๏ธโโ1
๏ธโโ1
๏ถ4
By the de๏ฌnition of continuity, ๏ฆ is continuous at ๏ก = โ1.
๏ค4
๏ฃ
= โ1 + 2(โ1)3 = (โ3)4 = 81 = ๏ฆ(โ1).
lim (๏ด2 + 5๏ด)
lim ๏ด2 + 5 lim ๏ด
22 + 5(2)
14
๏ด2 + 5๏ด
๏ดโ2
๏ดโ2
๏ดโ2
=
=
=
=
= ๏ง(2).
12. lim ๏ง(๏ด) = lim
๏ดโ2
๏ดโ2 2๏ด + 1
lim (2๏ด + 1)
2 lim ๏ด + lim 1
2(2) + 1
5
๏ดโ2
๏ดโ2
๏ดโ2
By the de๏ฌnition of continuity, ๏ง is continuous at ๏ก = 2.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
100
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
โ
13. lim ๏ฐ(๏ถ) = lim 2 3๏ถ 2 + 1 = 2 lim
๏ถโ1
๏ถโ1
๏ถโ1
๏ฑ
๏ฑ
โ
3๏ถ 2 + 1 = 2 lim (3๏ถ 2 + 1) = 2 3 lim ๏ถ 2 + lim 1
๏ถโ1
๏ถโ1
๏ถโ1
๏ฐ
โ
= 2 3(1)2 + 1 = 2 4 = 4 = ๏ฐ(1)
By the de๏ฌnition of continuity, ๏ฐ is continuous at ๏ก = 1.
๏ก
๏ข
โ
๏ฑ
14. lim ๏ฆ (๏ธ) = lim 3๏ธ4 โ 5๏ธ + 3 ๏ธ2 + 4 = 3 lim ๏ธ4 โ 5 lim ๏ธ + 3 lim (๏ธ2 + 4)
๏ธโ2
๏ธโ2
๏ธโ2
๏ธโ2
โ
= 3(2) โ 5(2) + 3 22 + 4 = 48 โ 10 + 2 = 40 = ๏ฆ(2)
4
๏ธโ2
By the de๏ฌnition of continuity, ๏ฆ is continuous at ๏ก = 2.
15. For ๏ก ๏พ 4, we have
โ
โ
lim ๏ฆ (๏ธ) = lim (๏ธ + ๏ธ โ 4 ) = lim ๏ธ + lim ๏ธ โ 4
๏ธโ๏ก
๏ธโ๏ก
๏ธโ๏ก
๏ฑ
= ๏ก + lim ๏ธ โ lim 4
๏ธโ๏ก
๏ธโ๏ก
โ
=๏ก+ ๏กโ4
๏ธโ๏ก
[Limit Law 1]
[8, 11, and 2]
[8 and 7]
= ๏ฆ (๏ก)
So ๏ฆ is continuous at ๏ธ = ๏ก for every ๏ก in (4๏ป โ). Also, lim ๏ฆ (๏ธ) = 4 = ๏ฆ(4), so ๏ฆ is continuous from the right at 4.
๏ธโ4+
Thus, ๏ฆ is continuous on [4๏ป โ).
16. For ๏ก ๏ผ โ2, we have
lim (๏ธ โ 1)
๏ธโ1
๏ธโ๏ก
=
๏ธโ๏ก 3๏ธ + 6
lim (3๏ธ + 6)
lim ๏ง(๏ธ) = lim
๏ธโ๏ก
[Limit Law 5]
๏ธโ๏ก
=
lim ๏ธ โ lim 1
๏ธโ๏ก
๏ธโ๏ก
=
๏ธโ๏ก
3 lim ๏ธ + lim 6
[2๏ป 1๏ป and 3]
๏ธโ๏ก
๏กโ1
3๏ก + 6
[8 and 7]
Thus, ๏ง is continuous at ๏ธ = ๏ก for every ๏ก in (โโ๏ป โ2); that is, ๏ง is continuous on (โโ๏ป โ2).
17. ๏ฆ (๏ธ) =
1
is discontinuous at ๏ก = โ2 because ๏ฆ (โ2) is unde๏ฌned.
๏ธ+2
18. ๏ฆ (๏ธ) =
๏ธ
๏ผ
1
๏ธ+2
๏บ
1
if ๏ธ 6= โ2
if ๏ธ = โ2
Here ๏ฆ (โ2) = 1, but
lim ๏ฆ (๏ธ) = โโ and lim ๏ฆ (๏ธ) = โ,
๏ธโโ2โ
๏ธโโ2+
so lim ๏ฆ (๏ธ) does not exist and ๏ฆ is discontinuous at โ2.
๏ธโโ2
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.5
19. ๏ฆ (๏ธ) =
๏จ
2
lim ๏ฆ (๏ธ) =
๏ธโโ1+
101
if ๏ธ ๏พ โ1
๏ธ
lim ๏ฆ (๏ธ) =
ยค
if ๏ธ โค โ1
๏ธ+3
๏ธโโ1โ
CONTINUITY
lim (๏ธ + 3) = โ1 + 3 = 2 and
๏ธโโ1โ
lim 2๏ธ = 2โ1 = 12 . Since the left-hand and the
๏ธโโ1+
right-hand limits of ๏ฆ at โ1 are not equal, lim ๏ฆ (๏ธ) does not exist, and
๏ธโโ1
๏ฆ is discontinuous at โ1.
๏ธ 2
๏ผ๏ธ โ๏ธ
๏ธ2 โ 1
20. ๏ฆ (๏ธ) =
๏บ
1
lim ๏ฆ (๏ธ) = lim
๏ธโ1
if ๏ธ 6= 1
if ๏ธ = 1
๏ธ2 โ ๏ธ
๏ธโ1 ๏ธ2 โ 1
= lim
๏ธ(๏ธ โ 1)
๏ธโ1 (๏ธ + 1)(๏ธ โ 1)
= lim
๏ธ
๏ธโ1 ๏ธ + 1
=
1
,
2
but ๏ฆ (1) = 1, so ๏ฆ is discontinous at 1๏บ
๏ธ
cos ๏ธ
๏พ
๏ผ
21. ๏ฆ (๏ธ) = 0
๏พ
๏บ
1 โ ๏ธ2
if ๏ธ ๏ผ 0
if ๏ธ = 0
if ๏ธ ๏พ 0
lim ๏ฆ (๏ธ) = 1, but ๏ฆ (0) = 0 6= 1, so ๏ฆ is discontinuous at 0.
๏ธโ0
๏ธ 2
๏ผ 2๏ธ โ 5๏ธ โ 3
๏ธโ3
22. ๏ฆ (๏ธ) =
๏บ
6
if ๏ธ 6= 3
if ๏ธ = 3
2๏ธ2 โ 5๏ธ โ 3
(2๏ธ + 1)(๏ธ โ 3)
= lim
= lim (2๏ธ + 1) = 7,
๏ธโ3
๏ธโ3
๏ธโ3
๏ธโ3
๏ธโ3
lim ๏ฆ (๏ธ) = lim
๏ธโ3
but ๏ฆ (3) = 6, so ๏ฆ is discontinuous at 3.
23. ๏ฆ (๏ธ) =
(๏ธ โ 2)(๏ธ + 1)
๏ธ2 โ ๏ธ โ 2
=
= ๏ธ + 1 for ๏ธ 6= 2. Since lim ๏ฆ (๏ธ) = 2 + 1 = 3, de๏ฌne ๏ฆ (2) = 3. Then ๏ฆ is
๏ธโ2
๏ธโ2
๏ธโ2
continuous at 2.
24. ๏ฆ (๏ธ) =
(๏ธ โ 2)(๏ธ2 + 2๏ธ + 4)
๏ธ2 + 2๏ธ + 4
๏ธ3 โ 8
4+4+4
=
=
for ๏ธ 6= 2. Since lim ๏ฆ (๏ธ) =
= 3, de๏ฌne ๏ฆ (2) = 3.
2
๏ธโ2
๏ธ โ4
(๏ธ โ 2)(๏ธ + 2)
๏ธ+2
2+2
Then ๏ฆ is continuous at 2.
25. ๏ (๏ธ) =
26. ๏(๏ธ) =
2๏ธ2 โ ๏ธ โ 1
is a rational function, so it is continuous on its domain, (โโ๏ป โ), by Theorem 5(b).
๏ธ2 + 1
๏ธ2 + 1
2๏ธ2 โ ๏ธ โ 1
=
๏ธ2 + 1
is a rational function, so it is continuous on its domain,
(2๏ธ + 1)(๏ธ โ 1)
๏ก
๏ข
๏ข ๏ก
โโ๏ป โ 12 โช โ 12 ๏ป 1 โช (1๏ป โ), by Theorem 5(b).
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
102
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
โ
3
โ
โ ๏ข ๏กโ
๏ก
๏ข
๏ธโ2
has domain โโ๏ป 3 2 โช 3 2๏ป โ . Now ๏ธ3 โ 2 is
โ ๏ธ3 = 2 โ ๏ธ = 3 2, so ๏(๏ธ) = 3
๏ธ โ2
โ
3
continuous everywhere by Theorem 5(a) and ๏ธ โ 2 is continuous everywhere by Theorems 5(a), 7, and 9. Thus, ๏ is
27. ๏ธ3 โ 2 = 0
continuous on its domain by part 5 of Theorem 4.
28. The domain of ๏(๏ด) =
๏ฅsin ๏ด
is (โโ๏ป โ) since the denominator is never 0 [cos ๏ผ๏ด โฅ โ1 โ 2 + cos ๏ผ๏ด โฅ 1]. By
2 + cos ๏ผ๏ด
Theorems 7 and 9, ๏ฅsin ๏ด and cos ๏ผ๏ด are continuous on R. By part 1 of Theorem 4, 2 + cos ๏ผ๏ด is continuous on R and by part 5
of Theorem 4, ๏ is continuous on R.
29. By Theorem 5(a), the polynomial 1 + 2๏ด is continuous on R. By Theorem 7, the inverse trigonometric function arcsin ๏ธ is
continuous on its domain, [โ1๏ป 1]. By Theorem 9, ๏(๏ด) = arcsin(1 + 2๏ด) is continuous on its domain, which is
{๏ด | โ1 โค 1 + 2๏ด โค 1} = {๏ด | โ2 โค 2๏ด โค 0} = {๏ด | โ1 โค ๏ด โค 0} = [โ1๏ป 0].
๏ฉ
๏ช
30. By Theorem 7, the trigonometric function tan ๏ธ is continuous on its domain, ๏ธ | ๏ธ 6= ๏ผ2 + ๏ผ๏ฎ . By Theorems 5(a), 7, and 9,
the composite function
โ
tan ๏ธ
4 โ ๏ธ2 is continuous on its domain [โ2๏ป 2]. By part 5 of Theorem 4, ๏(๏ธ) = โ
is
4 โ ๏ธ2
continuous on its domain, (โ2๏ป โ๏ผ๏ฝ2) โช (โ๏ผ๏ฝ2๏ป ๏ผ๏ฝ2) โช (๏ผ๏ฝ2๏ป 2).
๏ฒ
๏ฒ
๏ธ+1
1
๏ธ+1
is de๏ฌned when
โฅ 0 โ ๏ธ + 1 โฅ 0 and ๏ธ ๏พ 0 or ๏ธ + 1 โค 0 and ๏ธ ๏ผ 0 โ ๏ธ ๏พ 0
31. ๏(๏ธ) = 1 + =
๏ธ
๏ธ
๏ธ
or ๏ธ โค โ1, so ๏ has domain (โโ๏ป โ1] โช (0๏ป โ). ๏ is the composite of a root function and a rational function, so it is
continuous at every number in its domain by Theorems 7 and 9.
2
2
32. By Theorems 7 and 9, the composite function ๏ฅโ๏ฒ is continuous on R. By part 1 of Theorem 4, 1 + ๏ฅโ๏ฒ is continuous on R.
By Theorem 7, the inverse trigonometric function tanโ1 is continuous on its domain, R. By Theorem 9, the composite
๏ณ
๏ด
2
function ๏(๏ฒ) = tanโ1 1 + ๏ฅโ๏ฒ is continuous on its domain, R.
33. The function ๏น =
1
is discontinuous at ๏ธ = 0 because the
1 + ๏ฅ1๏ฝ๏ธ
left- and right-hand limits at ๏ธ = 0 are different.
34. The function ๏น = tan2 ๏ธ is discontinuous at ๏ธ = ๏ผ2 + ๏ผ๏ซ, where ๏ซ is
๏ก
๏ข
any integer. The function ๏น = ln tan2 ๏ธ is also discontinuous
๏ก
๏ข
where tan2 ๏ธ is 0, that is, at ๏ธ = ๏ผ๏ซ. So ๏น = ln tan2 ๏ธ is
discontinuous at ๏ธ = ๏ผ2 ๏ฎ, ๏ฎ any integer.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.5
CONTINUITY
ยค
103
โ
โ
โ
20 โ ๏ธ2 is continuous on its domain, โ 20 โค ๏ธ โค 20, the product
โ
โ
โ
๏ฆ (๏ธ) = ๏ธ 20 โ ๏ธ2 is continuous on โ 20 โค ๏ธ โค 20. The number 2 is in that domain, so ๏ฆ is continuous at 2, and
โ
lim ๏ฆ (๏ธ) = ๏ฆ (2) = 2 16 = 8.
35. Because ๏ธ is continuous on R and
๏ธโ2
36. Because ๏ธ is continuous on R, sin ๏ธ is continuous on R, and ๏ธ + sin ๏ธ is continuous on R, the composite function
๏ฆ (๏ธ) = sin(๏ธ + sin ๏ธ) is continuous on R, so lim ๏ฆ (๏ธ) = ๏ฆ (๏ผ) = sin(๏ผ + sin ๏ผ) = sin ๏ผ = 0.
๏ธโ๏ผ
๏ต
37. The function ๏ฆ (๏ธ) = ln
5 โ ๏ธ2
1+๏ธ
๏ถ
is continuous throughout its domain because it is the composite of a logarithm function
and a rational function. For the domain of ๏ฆ , we must have
5 โ ๏ธ2
๏พ 0, so the numerator and denominator must have the
1+๏ธ
โ
โ
same sign, that is, the domain is (โโ๏ป โ 5 ] โช (โ1๏ป 5 ]. The number 1 is in that domain, so ๏ฆ is continuous at 1, and
lim ๏ฆ (๏ธ) = ๏ฆ (1) = ln
๏ธโ1
5โ1
= ln 2.
1+1
โ
38. The function ๏ฆ (๏ธ) = 3
๏ธ2 โ2๏ธโ4
is continuous throughout its domain because it is the composite of an exponential function,
a root function, and a polynomial. Its domain is
๏ฉ
๏ช ๏ฉ
๏ช ๏ฉ
๏ช
๏ธ | ๏ธ2 โ 2๏ธ โ 4 โฅ 0 = ๏ธ | ๏ธ2 โ 2๏ธ + 1 โฅ 5 = ๏ธ | (๏ธ โ 1)2 โฅ 5
๏ฎ ๏ฏ
โ ๏ฏ
โ
โ
= ๏ธ ๏ฏ |๏ธ โ 1| โฅ 5 = (โโ๏ป 1 โ 5 ] โช [1 + 5๏ป โ)
โ
The number 4 is in that domain, so ๏ฆ is continuous at 4, and lim ๏ฆ (๏ธ) = ๏ฆ(4) = 3 16โ8โ4 = 32 = 9.
๏ธโ4
39. ๏ฆ (๏ธ) =
๏จ
if ๏ธ โค 1
1 โ ๏ธ2
if ๏ธ ๏พ 1
ln ๏ธ
By Theorem 5, since ๏ฆ (๏ธ) equals the polynomial 1 โ ๏ธ2 on (โโ๏ป 1], ๏ฆ is continuous on (โโ๏ป 1].
By Theorem 7, since ๏ฆ (๏ธ) equals the logarithm function ln ๏ธ on (1๏ป โ), ๏ฆ is continuous on (1๏ป โ).
At ๏ธ = 1, lim ๏ฆ (๏ธ) = lim (1 โ ๏ธ2 ) = 1 โ 12 = 0 and lim ๏ฆ (๏ธ) = lim ln ๏ธ = ln 1 = 0. Thus, lim ๏ฆ (๏ธ) exists and
๏ธโ1โ
๏ธโ1โ
๏ธโ1+
๏ธโ1+
๏ธโ1
equals 0. Also, ๏ฆ (1) = 1 โ 12 = 0. Thus, ๏ฆ is continuous at ๏ธ = 1. We conclude that ๏ฆ is continuous on (โโ๏ป โ).
40. ๏ฆ (๏ธ) =
๏จ
sin ๏ธ
if ๏ธ ๏ผ ๏ผ๏ฝ4
cos ๏ธ
if ๏ธ โฅ ๏ผ๏ฝ4
By Theorem 7, the trigonometric functions are continuous. Since ๏ฆ(๏ธ) = sin ๏ธ on (โโ๏ป ๏ผ๏ฝ4) and ๏ฆ (๏ธ) = cos ๏ธ on
โ
lim sin ๏ธ = sin ๏ผ4 = 1๏ฝ 2 since the sine
(๏ผ๏ฝ4๏ป โ), ๏ฆ is continuous on (โโ๏ป ๏ผ๏ฝ4) โช (๏ผ๏ฝ4๏ป โ)๏บ lim ๏ฆ (๏ธ) =
๏ธโ(๏ผ๏ฝ4)โ
function is continuous at ๏ผ๏ฝ4๏บ Similarly,
at ๏ผ๏ฝ4. Thus,
lim
๏ธโ(๏ผ๏ฝ4)
lim
๏ธโ(๏ผ๏ฝ4)+
๏ฆ (๏ธ) =
lim
๏ธโ(๏ผ๏ฝ4)+
๏ธโ(๏ผ๏ฝ4)โ
โ
cos ๏ธ = 1๏ฝ 2 by continuity of the cosine function
โ
๏ฆ (๏ธ) exists and equals 1๏ฝ 2, which agrees with the value ๏ฆ (๏ผ๏ฝ4). Therefore, ๏ฆ is continuous at ๏ผ๏ฝ4,
so ๏ฆ is continuous on (โโ๏ป โ).
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
104
ยค
CHAPTER 2
๏ธ 2
๏ธ
๏พ
๏ผ
41. ๏ฆ (๏ธ) = ๏ธ
๏พ
๏บ
1๏ฝ๏ธ
LIMITS AND DERIVATIVES
if ๏ธ ๏ผ โ1
if โ 1 โค ๏ธ ๏ผ 1
if ๏ธ โฅ 1
๏ฆ is continuous on (โโ๏ป โ1), (โ1๏ป 1), and (1๏ป โ), where it is a polynomial,
a polynomial, and a rational function, respectively.
Now
lim ๏ธ2 = 1 and
lim ๏ฆ (๏ธ) =
๏ธโโ1โ
๏ธโโ1โ
lim ๏ฆ (๏ธ) =
๏ธโโ1+
lim ๏ธ = โ1,
๏ธโโ1+
so ๏ฆ is discontinuous at โ1. Since ๏ฆ (โ1) = โ1, ๏ฆ is continuous from the right at โ1. Also, lim ๏ฆ (๏ธ) = lim ๏ธ = 1 and
๏ธโ1โ
1
lim ๏ฆ (๏ธ) = lim
๏ธโ1+ ๏ธ
๏ธโ1+
๏ธ ๏ธ
2
๏พ
๏ผ
42. ๏ฆ (๏ธ) = 3 โ ๏ธ
๏พ
๏บโ
๏ธ
๏ธโ1โ
= 1 = ๏ฆ (1), so ๏ฆ is continuous at 1.
if ๏ธ โค 1
if 1 ๏ผ ๏ธ โค 4
if ๏ธ ๏พ 4
๏ฆ is continuous on (โโ๏ป 1), (1๏ป 4), and (4๏ป โ), where it is an exponential,
a polynomial, and a root function, respectively.
Now lim ๏ฆ (๏ธ) = lim 2๏ธ = 2 and lim ๏ฆ (๏ธ) = lim (3 โ ๏ธ) = 2. Since ๏ฆ (1) = 2 we have continuity at 1. Also,
๏ธโ1โ
๏ธโ1โ
๏ธโ1+
๏ธโ1+
lim ๏ฆ (๏ธ) = lim (3 โ ๏ธ) = โ1 = ๏ฆ (4) and lim ๏ฆ(๏ธ) = lim
๏ธโ4โ
๏ธโ4โ
๏ธโ4+
๏ธโ4+
โ
๏ธ = 2, so ๏ฆ is discontinuous at 4, but it is continuous
from the left at 4.
๏ธ
๏ธ+2
๏พ
๏พ
๏ผ
43. ๏ฆ (๏ธ) = ๏ฅ๏ธ
๏พ
๏พ
๏บ
2โ๏ธ
if ๏ธ ๏ผ 0
if 0 โค ๏ธ โค 1
if ๏ธ ๏พ 1
๏ฆ is continuous on (โโ๏ป 0) and (1๏ป โ) since on each of these intervals
it is a polynomial; it is continuous on (0๏ป 1) since it is an exponential.
Now lim ๏ฆ (๏ธ) = lim (๏ธ + 2) = 2 and lim ๏ฆ (๏ธ) = lim ๏ฅ๏ธ = 1, so ๏ฆ is discontinuous at 0. Since ๏ฆ (0) = 1, ๏ฆ is
๏ธโ0โ
๏ธโ0โ
๏ธโ0+
๏ธโ0+
continuous from the right at 0. Also lim ๏ฆ (๏ธ) = lim ๏ฅ๏ธ = ๏ฅ and lim ๏ฆ (๏ธ) = lim (2 โ ๏ธ) = 1, so ๏ฆ is discontinuous
๏ธโ1โ
๏ธโ1โ
๏ธโ1+
๏ธโ1+
at 1. Since ๏ฆ (1) = ๏ฅ, ๏ฆ is continuous from the left at 1.
44. By Theorem 5, each piece of ๏ is continuous on its domain. We need to check for continuity at ๏ฒ = ๏.
lim ๏ (๏ฒ) = lim
๏ฒโ๏โ
๏ฒโ๏โ
๏๏
๏๏
๏๏
๏๏
๏๏๏ฒ
๏๏
=
and lim ๏ (๏ฒ) = lim
=
, so lim ๏ (๏ฒ) =
. Since ๏ (๏) =
,
๏ฒโ๏
๏3
๏2
๏2
๏2
๏2
๏ฒโ๏+
๏ฒโ๏+ ๏ฒ 2
๏ is continuous at ๏. Therefore, ๏ is a continuous function of ๏ฒ.
45. ๏ฆ (๏ธ) =
๏จ
๏ฃ๏ธ2 + 2๏ธ
if ๏ธ ๏ผ 2
๏ธ3 โ ๏ฃ๏ธ
if ๏ธ โฅ 2
๏ฆ is continuous on (โโ๏ป 2) and (2๏ป โ). Now lim ๏ฆ(๏ธ) = lim
๏ธโ2โ
๏ธโ2โ
๏ก 2
๏ข
๏ฃ๏ธ + 2๏ธ = 4๏ฃ + 4 and
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.5
lim ๏ฆ (๏ธ) = lim
๏ธโ2+
๏ธโ2+
CONTINUITY
ยค
105
๏ก 3
๏ข
๏ธ โ ๏ฃ๏ธ = 8 โ 2๏ฃ. So ๏ฆ is continuous โ 4๏ฃ + 4 = 8 โ 2๏ฃ โ 6๏ฃ = 4 โ ๏ฃ = 23 . Thus, for ๏ฆ
to be continuous on (โโ๏ป โ), ๏ฃ = 23 .
46. ๏ฆ (๏ธ) =
๏ธ 2
๏ธ โ4
๏พ
๏พ
๏พ ๏ธโ2
๏ผ
if ๏ธ ๏ผ 2
2
๏ก๏ธ โ ๏ข๏ธ + 3
๏พ
๏พ
๏พ
๏บ
2๏ธ โ ๏ก + ๏ข
At ๏ธ = 2:
if 2 โค ๏ธ ๏ผ 3
if ๏ธ โฅ 3
lim ๏ฆ (๏ธ) = lim
๏ธโ2โ
๏ธโ2โ
๏ธ2 โ 4
(๏ธ + 2)(๏ธ โ 2)
= lim
= lim (๏ธ + 2) = 2 + 2 = 4
๏ธโ2
๏ธโ2
๏ธโ2โ
๏ธโ2โ
lim ๏ฆ (๏ธ) = lim (๏ก๏ธ2 โ ๏ข๏ธ + 3) = 4๏ก โ 2๏ข + 3
๏ธโ2+
๏ธโ2+
We must have 4๏ก โ 2๏ข + 3 = 4, or 4๏ก โ 2๏ข = 1 (1).
At ๏ธ = 3:
lim ๏ฆ (๏ธ) = lim (๏ก๏ธ2 โ ๏ข๏ธ + 3) = 9๏ก โ 3๏ข + 3
๏ธโ3โ
๏ธโ3โ
lim ๏ฆ (๏ธ) = lim (2๏ธ โ ๏ก + ๏ข) = 6 โ ๏ก + ๏ข
๏ธโ3+
๏ธโ3+
We must have 9๏ก โ 3๏ข + 3 = 6 โ ๏ก + ๏ข, or 10๏ก โ 4๏ข = 3 (2).
Now solve the system of equations by adding โ2 times equation (1) to equation (2).
โ8๏ก + 4๏ข = โ2
10๏ก โ 4๏ข =
2๏ก
=
3
1
So ๏ก = 12 . Substituting 12 for ๏ก in (1) gives us โ2๏ข = โ1, so ๏ข = 12 as well. Thus, for ๏ฆ to be continuous on (โโ๏ป โ),
๏ก = ๏ข = 12 .
47. If ๏ฆ and ๏ง are continuous and ๏ง(2) = 6, then lim [3๏ฆ (๏ธ) + ๏ฆ (๏ธ) ๏ง(๏ธ)] = 36
๏ธโ2
โ
3 lim ๏ฆ (๏ธ) + lim ๏ฆ (๏ธ) ยท lim ๏ง(๏ธ) = 36 โ 3๏ฆ (2) + ๏ฆ(2) ยท 6 = 36 โ 9๏ฆ (2) = 36 โ ๏ฆ (2) = 4.
๏ธโ2
๏ธโ2
48. (a) ๏ฆ (๏ธ) =
๏ธโ2
1
1
and ๏ง(๏ธ) = 2 , so (๏ฆ โฆ ๏ง)(๏ธ) = ๏ฆ (๏ง(๏ธ)) = ๏ฆ (1๏ฝ๏ธ2 ) = 1 ๏ฝ(1๏ฝ๏ธ2 ) = ๏ธ2 .
๏ธ
๏ธ
(b) The domain of ๏ฆ โฆ ๏ง is the set of numbers ๏ธ in the domain of ๏ง (all nonzero reals) such that ๏ง(๏ธ) is in the domain of ๏ฆ (also
๏ฝ ๏ฏ
๏พ
๏ฏ
1
all nonzero reals). Thus, the domain is ๏ธ ๏ฏ๏ฏ ๏ธ 6= 0 and 2 6= 0 = {๏ธ | ๏ธ 6= 0} or (โโ๏ป 0) โช (0๏ป โ). Since ๏ฆ โฆ ๏ง is
๏ธ
the composite of two rational functions, it is continuous throughout its domain; that is, everywhere except ๏ธ = 0.
49. (a) ๏ฆ (๏ธ) =
(๏ธ2 + 1)(๏ธ2 โ 1)
(๏ธ2 + 1)(๏ธ + 1)(๏ธ โ 1)
๏ธ4 โ 1
=
=
= (๏ธ2 + 1)(๏ธ + 1) [or ๏ธ3 + ๏ธ2 + ๏ธ + 1]
๏ธโ1
๏ธโ1
๏ธโ1
for ๏ธ 6= 1. The discontinuity is removable and ๏ง(๏ธ) = ๏ธ3 + ๏ธ2 + ๏ธ + 1 agrees with ๏ฆ for ๏ธ 6= 1 and is continuous on R.
(b) ๏ฆ (๏ธ) =
๏ธ(๏ธ2 โ ๏ธ โ 2)
๏ธ(๏ธ โ 2)(๏ธ + 1)
๏ธ3 โ ๏ธ2 โ 2๏ธ
=
=
= ๏ธ(๏ธ + 1) [or ๏ธ2 + ๏ธ] for ๏ธ 6= 2. The discontinuity
๏ธโ2
๏ธโ2
๏ธโ2
is removable and ๏ง(๏ธ) = ๏ธ2 + ๏ธ agrees with ๏ฆ for ๏ธ 6= 2 and is continuous on R.
(c) lim ๏ฆ (๏ธ) = lim [[sin ๏ธ]] = lim 0 = 0 and lim ๏ฆ (๏ธ) = lim [[sin ๏ธ]] = lim (โ1) = โ1, so lim ๏ฆ (๏ธ) does not
๏ธโ๏ผโ
๏ธโ๏ผ โ
๏ธโ๏ผ โ
๏ธโ๏ผ +
๏ธโ๏ผ +
๏ธโ๏ผ +
๏ธโ๏ผ
exist. The discontinuity at ๏ธ = ๏ผ is a jump discontinuity.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
106
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
50.
๏ฆ does not satisfy the conclusion of the
๏ฆ does satisfy the conclusion of the
Intermediate Value Theorem.
Intermediate Value Theorem.
51. ๏ฆ (๏ธ) = ๏ธ2 + 10 sin ๏ธ is continuous on the interval [31๏ป 32], ๏ฆ (31) โ 957, and ๏ฆ(32) โ 1030. Since 957 ๏ผ 1000 ๏ผ 1030,
there is a number c in (31๏ป 32) such that ๏ฆ (๏ฃ) = 1000 by the Intermediate Value Theorem. Note: There is also a number c in
(โ32๏ป โ31) such that ๏ฆ (๏ฃ) = 1000๏บ
52. Suppose that ๏ฆ(3) ๏ผ 6. By the Intermediate Value Theorem applied to the continuous function ๏ฆ on the closed interval [2๏ป 3],
the fact that ๏ฆ (2) = 8 ๏พ 6 and ๏ฆ(3) ๏ผ 6 implies that there is a number ๏ฃ in (2๏ป 3) such that ๏ฆ (๏ฃ) = 6. This contradicts the fact
that the only solutions of the equation ๏ฆ (๏ธ) = 6 are ๏ธ = 1 and ๏ธ = 4. Hence, our supposition that ๏ฆ (3) ๏ผ 6 was incorrect. It
follows that ๏ฆ(3) โฅ 6. But ๏ฆ (3) 6= 6 because the only solutions of ๏ฆ (๏ธ) = 6 are ๏ธ = 1 and ๏ธ = 4. Therefore, ๏ฆ (3) ๏พ 6.
53. ๏ฆ (๏ธ) = ๏ธ4 + ๏ธ โ 3 is continuous on the interval [1๏ป 2]๏ป ๏ฆ (1) = โ1, and ๏ฆ(2) = 15. Since โ1 ๏ผ 0 ๏ผ 15, there is a number ๏ฃ
in (1๏ป 2) such that ๏ฆ (๏ฃ) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation ๏ธ4 + ๏ธ โ 3 = 0 in the
interval (1๏ป 2)๏บ
โ
โ
โ
๏ธ is equivalent to the equation ln ๏ธ โ ๏ธ + ๏ธ = 0. ๏ฆ (๏ธ) = ln ๏ธ โ ๏ธ + ๏ธ is continuous on the
โ
โ
interval [2๏ป 3], ๏ฆ (2) = ln 2 โ 2 + 2 โ 0๏บ107, and ๏ฆ (3) = ln 3 โ 3 + 3 โ โ0๏บ169. Since ๏ฆ (2) ๏พ 0 ๏พ ๏ฆ (3), there is a
54. The equation ln ๏ธ = ๏ธ โ
number ๏ฃ in (2๏ป 3) such that ๏ฆ (๏ฃ) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation
โ
โ
ln ๏ธ โ ๏ธ + ๏ธ = 0, or ln ๏ธ = ๏ธ โ ๏ธ, in the interval (2๏ป 3).
55. The equation ๏ฅ๏ธ = 3 โ 2๏ธ is equivalent to the equation ๏ฅ๏ธ + 2๏ธ โ 3 = 0. ๏ฆ (๏ธ) = ๏ฅ๏ธ + 2๏ธ โ 3 is continuous on the interval
[0๏ป 1], ๏ฆ (0) = โ2, and ๏ฆ (1) = ๏ฅ โ 1 โ 1๏บ72. Since โ2 ๏ผ 0 ๏ผ ๏ฅ โ 1, there is a number ๏ฃ in (0๏ป 1) such that ๏ฆ (๏ฃ) = 0 by the
Intermediate Value Theorem. Thus, there is a root of the equation ๏ฅ๏ธ + 2๏ธ โ 3 = 0, or ๏ฅ๏ธ = 3 โ 2๏ธ, in the interval (0๏ป 1).
56. The equation sin ๏ธ = ๏ธ2 โ ๏ธ is equivalent to the equation sin ๏ธ โ ๏ธ2 + ๏ธ = 0. ๏ฆ (๏ธ) = sin ๏ธ โ ๏ธ2 + ๏ธ is continuous on the
interval [1๏ป 2]๏ป ๏ฆ (1) = sin 1 โ 0๏บ84, and ๏ฆ (2) = sin 2 โ 2 โ โ1๏บ09. Since sin 1 ๏พ 0 ๏พ sin 2 โ 2, there is a number ๏ฃ in
(1๏ป 2) such that ๏ฆ (๏ฃ) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation sin ๏ธ โ ๏ธ2 + ๏ธ = 0, or
sin ๏ธ = ๏ธ2 โ ๏ธ, in the interval (1๏ป 2).
57. (a) ๏ฆ (๏ธ) = cos ๏ธ โ ๏ธ3 is continuous on the interval [0๏ป 1], ๏ฆ (0) = 1 ๏พ 0, and ๏ฆ (1) = cos 1 โ 1 โ โ0๏บ46 ๏ผ 0. Since
1 ๏พ 0 ๏พ โ0๏บ46, there is a number ๏ฃ in (0๏ป 1) such that ๏ฆ (๏ฃ) = 0 by the Intermediate Value Theorem. Thus, there is a root
of the equation cos ๏ธ โ ๏ธ3 = 0, or cos ๏ธ = ๏ธ3 , in the interval (0๏ป 1).
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.5
CONTINUITY
ยค
107
(b) ๏ฆ (0๏บ86) โ 0๏บ016 ๏พ 0 and ๏ฆ (0๏บ87) โ โ0๏บ014 ๏ผ 0, so there is a root between 0๏บ86 and 0๏บ87, that is, in the interval
(0๏บ86๏ป 0๏บ87).
58. (a) ๏ฆ (๏ธ) = ln ๏ธ โ 3 + 2๏ธ is continuous on the interval [1๏ป 2], ๏ฆ (1) = โ1 ๏ผ 0, and ๏ฆ (2) = ln 2 + 1 โ 1๏บ7 ๏พ 0. Since
โ1 ๏ผ 0 ๏ผ 1๏บ7, there is a number ๏ฃ in (1๏ป 2) such that ๏ฆ (๏ฃ) = 0 by the Intermediate Value Theorem. Thus, there is a root of
the equation ln ๏ธ โ 3 + 2๏ธ = 0, or ln ๏ธ = 3 โ 2๏ธ, in the interval (1๏ป 2).
(b) ๏ฆ (1๏บ34) โ โ0๏บ03 ๏ผ 0 and ๏ฆ (1๏บ35) โ 0๏บ0001 ๏พ 0, so there is a root between 1๏บ34 and 1๏บ35๏ป that is, in the
interval (1๏บ34๏ป 1๏บ35).
59. (a) Let ๏ฆ (๏ธ) = 100๏ฅโ๏ธ๏ฝ100 โ 0๏บ01๏ธ2 ๏บ Then ๏ฆ (0) = 100 ๏พ 0 and
๏ฆ (100) = 100๏ฅโ1 โ 100 โ โ63๏บ2 ๏ผ 0. So by the Intermediate
Value Theorem, there is a number ๏ฃ in (0๏ป 100) such that ๏ฆ (๏ฃ) = 0.
This implies that 100๏ฅโ๏ฃ๏ฝ100 = 0๏บ01๏ฃ2 .
(b) Using the intersect feature of the graphing device, we ๏ฌnd that the
root of the equation is ๏ธ = 70๏บ347, correct to three decimal places.
60. (a) Let ๏ฆ (๏ธ) = arctan ๏ธ + ๏ธ โ 1. Then ๏ฆ (0) = โ1 ๏ผ 0 and
๏ฆ (1) = ๏ผ4 ๏พ 0. So by the Intermediate Value Theorem, there is a
number ๏ฃ in (0๏ป 1) such that ๏ฆ (๏ฃ) = 0. This implies that
arctan ๏ฃ = 1 โ ๏ฃ.
(b) Using the intersect feature of the graphing device, we ๏ฌnd that the
root of the equation is ๏ธ = 0๏บ520, correct to three decimal places.
61. Let ๏ฆ (๏ธ) = sin ๏ธ3 . Then ๏ฆ is continuous on [1๏ป 2] since ๏ฆ is the composite of the sine function and the cubing function, both
of which are continuous on R. The zeros of the sine are at ๏ฎ๏ผ, so we note that 0 ๏ผ 1 ๏ผ ๏ผ ๏ผ 32 ๏ผ ๏ผ 2๏ผ ๏ผ 8 ๏ผ 3๏ผ, and that the
๏ฑ
โ
pertinent cube roots are related by 1 ๏ผ 3 32 ๏ผ [call this value ๏] ๏ผ 2. [By observation, we might notice that ๏ธ = 3 ๏ผ and
โ
๏ธ = 3 2๏ผ are zeros of ๏ฆ .]
Now ๏ฆ(1) = sin 1 ๏พ 0, ๏ฆ (๏) = sin 32 ๏ผ = โ1 ๏ผ 0, and ๏ฆ (2) = sin 8 ๏พ 0. Applying the Intermediate Value Theorem on
[1๏ป ๏] and then on [๏๏ป 2], we see there are numbers ๏ฃ and ๏ค in (1๏ป ๏) and (๏๏ป 2) such that ๏ฆ (๏ฃ) = ๏ฆ (๏ค) = 0. Thus, ๏ฆ has at
least two ๏ธ-intercepts in (1๏ป 2).
62. Let ๏ฆ(๏ธ) = ๏ธ2 โ 3 + 1๏ฝ๏ธ. Then ๏ฆ is continuous on (0๏ป 2] since ๏ฆ is a rational function whose domain is (0๏ป โ). By
๏ก ๏ข
inspection, we see that ๏ฆ 14 = 17
๏พ 0, ๏ฆ (1) = โ1 ๏ผ 0, and ๏ฆ (2) = 32 ๏พ 0. Appling the Intermediate Value Theorem on
16
๏ก
๏ข
๏ฃ1 ๏ค
๏ป 1 and then on [1๏ป 2], we see there are numbers ๏ฃ and ๏ค in 14 ๏ป 1 and (1๏ป 2) such that ๏ฆ (๏ฃ) = ๏ฆ (๏ค) = 0. Thus, ๏ฆ has at
4
least two ๏ธ-intercepts in (0๏ป 2).
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
108
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
63. (โ) If ๏ฆ is continuous at ๏ก, then by Theorem 8 with ๏ง(๏จ) = ๏ก + ๏จ, we have
๏ณ
๏ด
lim ๏ฆ (๏ก + ๏จ) = ๏ฆ lim (๏ก + ๏จ) = ๏ฆ (๏ก).
๏จโ0
๏จโ0
(โ) Let ๏ข ๏พ 0. Since lim ๏ฆ(๏ก + ๏จ) = ๏ฆ (๏ก), there exists ๏ฑ ๏พ 0 such that 0 ๏ผ |๏จ| ๏ผ ๏ฑ
๏จโ0
โ
|๏ฆ (๏ก + ๏จ) โ ๏ฆ (๏ก)| ๏ผ ๏ข. So if 0 ๏ผ |๏ธ โ ๏ก| ๏ผ ๏ฑ, then |๏ฆ (๏ธ) โ ๏ฆ (๏ก)| = |๏ฆ (๏ก + (๏ธ โ ๏ก)) โ ๏ฆ (๏ก)| ๏ผ ๏ข.
Thus, lim ๏ฆ (๏ธ) = ๏ฆ (๏ก) and so ๏ฆ is continuous at ๏ก.
๏ธโ๏ก
64. lim sin(๏ก + ๏จ) = lim (sin ๏ก cos ๏จ + cos ๏ก sin ๏จ) = lim (sin ๏ก cos ๏จ) + lim (cos ๏ก sin ๏จ)
๏จโ0
๏จโ0
=
๏ณ
๏จโ0
๏จโ0
๏ด๏ณ
๏ด ๏ณ
๏ด๏ณ
๏ด
lim sin ๏ก lim cos ๏จ + lim cos ๏ก lim sin ๏จ = (sin ๏ก)(1) + (cos ๏ก)(0) = sin ๏ก
๏จโ0
๏จโ0
๏จโ0
๏จโ0
65. As in the previous exercise, we must show that lim cos(๏ก + ๏จ) = cos ๏ก to prove that the cosine function is continuous.
๏จโ0
lim cos(๏ก + ๏จ) = lim (cos ๏ก cos ๏จ โ sin ๏ก sin ๏จ) = lim (cos ๏ก cos ๏จ) โ lim (sin ๏ก sin ๏จ)
๏จโ0
๏จโ0
=
๏ณ
๏จโ0
๏จโ0
๏ด๏ณ
๏ด ๏ณ
๏ด๏ณ
๏ด
lim cos ๏ก lim cos ๏จ โ lim sin ๏ก lim sin ๏จ = (cos ๏ก)(1) โ (sin ๏ก)(0) = cos ๏ก
๏จโ0
๏จโ0
๏จโ0
๏จโ0
66. (a) Since ๏ฆ is continuous at ๏ก, lim ๏ฆ(๏ธ) = ๏ฆ (๏ก). Thus, using the Constant Multiple Law of Limits, we have
๏ธโ๏ก
lim (๏ฃ๏ฆ )(๏ธ) = lim ๏ฃ๏ฆ (๏ธ) = ๏ฃ lim ๏ฆ (๏ธ) = ๏ฃ๏ฆ (๏ก) = (๏ฃ๏ฆ )(๏ก). Therefore, ๏ฃ๏ฆ is continuous at ๏ก.
๏ธโ๏ก
๏ธโ๏ก
๏ธโ๏ก
(b) Since ๏ฆ and ๏ง are continuous at ๏ก, lim ๏ฆ (๏ธ) = ๏ฆ (๏ก) and lim ๏ง(๏ธ) = ๏ง(๏ก). Since ๏ง(๏ก) 6= 0, we can use the Quotient Law
๏ธโ๏ก
๏ธโ๏ก
๏ต ๏ถ
๏ต ๏ถ
lim ๏ฆ(๏ธ)
๏ฆ(๏ก)
๏ฆ
๏ฆ(๏ธ)
๏ฆ
๏ฆ
๏ธโ๏ก
=
=
=
of Limits: lim
(๏ธ) = lim
(๏ก). Thus, is continuous at ๏ก.
๏ธโ๏ก
๏ธโ๏ก ๏ง(๏ธ)
๏ง
lim ๏ง(๏ธ)
๏ง(๏ก)
๏ง
๏ง
๏ธโ๏ก
67. ๏ฆ (๏ธ) =
๏จ
0 if ๏ธ is rational
1 if ๏ธ is irrational
is continuous nowhere. For, given any number ๏ก and any ๏ฑ ๏พ 0, the interval (๏ก โ ๏ฑ๏ป ๏ก + ๏ฑ)
contains both in๏ฌnitely many rational and in๏ฌnitely many irrational numbers. Since ๏ฆ (๏ก) = 0 or 1, there are in๏ฌnitely many
numbers ๏ธ with 0 ๏ผ |๏ธ โ ๏ก| ๏ผ ๏ฑ and |๏ฆ (๏ธ) โ ๏ฆ (๏ก)| = 1. Thus, lim ๏ฆ(๏ธ) 6= ๏ฆ (๏ก). [In fact, lim ๏ฆ (๏ธ) does not even exist.]
๏ธโ๏ก
68. ๏ง(๏ธ) =
๏จ
0 if ๏ธ is rational
๏ธ if ๏ธ is irrational
๏ธโ๏ก
is continuous at 0. To see why, note that โ |๏ธ| โค ๏ง(๏ธ) โค |๏ธ|, so by the Squeeze Theorem
lim ๏ง(๏ธ) = 0 = ๏ง(0). But ๏ง is continuous nowhere else. For if ๏ก 6= 0 and ๏ฑ ๏พ 0, the interval (๏ก โ ๏ฑ๏ป ๏ก + ๏ฑ) contains both
๏ธโ0
in๏ฌnitely many rational and in๏ฌnitely many irrational numbers. Since ๏ง(๏ก) = 0 or ๏ก, there are in๏ฌnitely many numbers ๏ธ with
0 ๏ผ |๏ธ โ ๏ก| ๏ผ ๏ฑ and |๏ง(๏ธ) โ ๏ง(๏ก)| ๏พ |๏ก| ๏ฝ2. Thus, lim ๏ง(๏ธ) 6= ๏ง(๏ก).
๏ธโ๏ก
69. If there is such a number, it satis๏ฌes the equation ๏ธ3 + 1 = ๏ธ
โ ๏ธ3 โ ๏ธ + 1 = 0. Let the left-hand side of this equation be
called ๏ฆ (๏ธ). Now ๏ฆ (โ2) = โ5 ๏ผ 0, and ๏ฆ (โ1) = 1 ๏พ 0. Note also that ๏ฆ (๏ธ) is a polynomial, and thus continuous. So by the
Intermediate Value Theorem, there is a number ๏ฃ between โ2 and โ1 such that ๏ฆ(๏ฃ) = 0, so that ๏ฃ = ๏ฃ3 + 1.
70.
๏ข
๏ก
+ 3
= 0 โ ๏ก(๏ธ3 + ๏ธ โ 2) + ๏ข(๏ธ3 + 2๏ธ2 โ 1) = 0. Let ๏ฐ(๏ธ) denote the left side of the last
๏ธ3 + 2๏ธ2 โ 1
๏ธ +๏ธโ2
equation. Since ๏ฐ is continuous on [โ1๏ป 1], ๏ฐ(โ1) = โ4๏ก ๏ผ 0, and ๏ฐ(1) = 2๏ข ๏พ 0, there exists a ๏ฃ in (โ1๏ป 1) such that
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.6
LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES
ยค
109
๏ฐ(๏ฃ) = 0 by the Intermediate Value Theorem. Note that the only root of either denominator that is in (โ1๏ป 1) is
โ
โ
(โ1 + 5 )๏ฝ2 = ๏ฒ, but ๏ฐ(๏ฒ) = (3 5 โ 9)๏ก๏ฝ2 6= 0. Thus, ๏ฃ is not a root of either denominator, so ๏ฐ(๏ฃ) = 0 โ
๏ธ = ๏ฃ is a root of the given equation.
71. ๏ฆ (๏ธ) = ๏ธ4 sin(1๏ฝ๏ธ) is continuous on (โโ๏ป 0) โช (0๏ป โ) since it is the product of a polynomial and a composite of a
trigonometric function and a rational function. Now since โ1 โค sin(1๏ฝ๏ธ) โค 1, we have โ๏ธ4 โค ๏ธ4 sin(1๏ฝ๏ธ) โค ๏ธ4 . Because
lim (โ๏ธ4 ) = 0 and lim ๏ธ4 = 0, the Squeeze Theorem gives us lim (๏ธ4 sin(1๏ฝ๏ธ)) = 0, which equals ๏ฆ(0). Thus, ๏ฆ is
๏ธโ0
๏ธโ0
๏ธโ0
continuous at 0 and, hence, on (โโ๏ป โ).
72. (a) lim ๏ (๏ธ) = 0 and lim ๏ (๏ธ) = 0, so lim ๏ (๏ธ) = 0, which is ๏ (0), and hence ๏ is continuous at ๏ธ = ๏ก if ๏ก = 0. For
๏ธโ0โ
๏ธโ0+
๏ธโ0
๏ก ๏พ 0, lim ๏ (๏ธ) = lim ๏ธ = ๏ก = ๏ (๏ก). For ๏ก ๏ผ 0, lim ๏ (๏ธ) = lim (โ๏ธ) = โ๏ก = ๏ (๏ก). Thus, ๏ is continuous at
๏ธโ๏ก
๏ธโ๏ก
๏ธโ๏ก
๏ธโ๏ก
๏ธ = ๏ก; that is, continuous everywhere.
๏ฏ
๏ฏ
๏ฏ
๏ฏ
(b) Assume that ๏ฆ is continuous on the interval ๏. Then for ๏ก โ ๏, lim |๏ฆ (๏ธ)| = ๏ฏ lim ๏ฆ (๏ธ)๏ฏ = |๏ฆ (๏ก)| by Theorem 8. (If ๏ก is
๏ธโ๏ก
๏ธโ๏ก
an endpoint of ๏, use the appropriate one-sided limit.) So |๏ฆ | is continuous on ๏.
๏จ
1 if ๏ธ โฅ 0
(c) No, the converse is false. For example, the function ๏ฆ(๏ธ) =
is not continuous at ๏ธ = 0, but |๏ฆ(๏ธ)| = 1 is
โ1 if ๏ธ ๏ผ 0
continuous on R.
73. De๏ฌne ๏ต(๏ด) to be the monkโs distance from the monastery, as a function of time ๏ด (in hours), on the ๏ฌrst day, and de๏ฌne ๏ค(๏ด)
to be his distance from the monastery, as a function of time, on the second day. Let ๏ be the distance from the monastery to
the top of the mountain. From the given information we know that ๏ต(0) = 0, ๏ต(12) = ๏, ๏ค(0) = ๏ and ๏ค(12) = 0. Now
consider the function ๏ต โ ๏ค, which is clearly continuous. We calculate that (๏ต โ ๏ค)(0) = โ๏ and (๏ต โ ๏ค)(12) = ๏.
So by the Intermediate Value Theorem, there must be some time ๏ด0 between 0 and 12 such that (๏ต โ ๏ค)(๏ด0 ) = 0 โ
๏ต(๏ด0 ) = ๏ค(๏ด0 ). So at time ๏ด0 after 7:00 AM, the monk will be at the same place on both days.
2.6 Limits at Infinity; Horizontal Asymptotes
1. (a) As ๏ธ becomes large, the values of ๏ฆ (๏ธ) approach 5.
(b) As ๏ธ becomes large negative, the values of ๏ฆ (๏ธ) approach 3.
2. (a) The graph of a function can intersect a
The graph of a function can intersect a horizontal asymptote.
vertical asymptote in the sense that it can
It can even intersect its horizontal asymptote an in๏ฌnite
meet but not cross it.
number of times.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
110
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
(b) The graph of a function can have 0, 1, or 2 horizontal asymptotes. Representative examples are shown.
No horizontal asymptote
3. (a) lim ๏ฆ (๏ธ) = โ2
๏ธโโ
(d) lim ๏ฆ (๏ธ) = โโ
๏ธโ3
4. (a) lim ๏ง(๏ธ) = 2
๏ธโโ
(d) lim ๏ง(๏ธ) = โโ
๏ธโ2โ
5. lim ๏ฆ (๏ธ) = โโ,
๏ธโ0
lim ๏ฆ(๏ธ) = 5,
One horizontal asymptote
(b) lim ๏ฆ (๏ธ) = 2
(b) lim ๏ง(๏ธ) = โ1
(c) lim ๏ง(๏ธ) = โโ
(e) lim ๏ง(๏ธ) = โ
(f ) Vertical: ๏ธ = 0, ๏ธ = 2;
๏ธโโโ
6. lim ๏ฆ (๏ธ) = โ,
๏ธโ2
lim ๏ฆ (๏ธ) = 0,
9. ๏ฆ (0) = 3,
๏ธโ2โ
lim ๏ฆ (๏ธ) = โ,
๏ธโ0+
lim ๏ฆ (๏ธ) = โโ,
๏ธโโโ
๏ฆ is odd
horizontal: ๏น = โ1, ๏น = 2
lim ๏ฆ (๏ธ) = โ,
๏ธโโ2+
lim ๏ฆ (๏ธ) = โโ,
๏ธโโ
๏ธโ2+
๏ธโ0
๏ธโ2+
lim ๏ฆ (๏ธ) = โ5
๏ธโโ
๏ธโ1
(e) Vertical: ๏ธ = 1, ๏ธ = 3; horizontal: ๏น = โ2, ๏น = 2
๏ธโโ2โ
8. lim ๏ฆ (๏ธ) = 3,
(c) lim ๏ฆ (๏ธ) = โ
๏ธโโโ
๏ธโโโ
๏ธโโ
Two horizontal asymptotes
lim ๏ฆ(๏ธ) = 0,
๏ธโโโ
๏ฆ (0) = 0
lim ๏ฆ (๏ธ) = 4,
๏ธโ0โ
lim ๏ฆ(๏ธ) = โโ,
lim ๏ฆ (๏ธ) = โ,
๏ธโ2
lim ๏ฆ (๏ธ) = 0,
๏ธโโโ
lim ๏ฆ (๏ธ) = โ,
๏ธโโ
lim ๏ฆ (๏ธ) = โ,
๏ธโ0+
lim ๏ฆ (๏ธ) = โโ
๏ธโ0โ
10. lim ๏ฆ (๏ธ) = โโ,
๏ธโ3
lim ๏ฆ (๏ธ) = 2,
๏ธโโ
๏ฆ (0) = 0, ๏ฆ is even
lim ๏ฆ (๏ธ) = 2,
๏ธโ4+
7. lim ๏ฆ (๏ธ) = โโ,
lim ๏ฆ(๏ธ) = โโ,
๏ธโ4โ
lim ๏ฆ(๏ธ) = 3
๏ธโโ
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.6
LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES
ยค
11. If ๏ฆ (๏ธ) = ๏ธ2๏ฝ2๏ธ , then a calculator gives ๏ฆ(0) = 0, ๏ฆ (1) = 0๏บ5, ๏ฆ(2) = 1, ๏ฆ (3) = 1๏บ125, ๏ฆ (4) = 1, ๏ฆ (5) = 0๏บ78125,
๏ฆ (6) = 0๏บ5625, ๏ฆ (7) = 0๏บ3828125, ๏ฆ (8) = 0๏บ25, ๏ฆ (9) = 0๏บ158203125, ๏ฆ(10) = 0๏บ09765625, ๏ฆ (20) โ 0๏บ00038147,
๏ก
๏ข
๏ฆ (50) โ 2๏บ2204 ร 10โ12 , ๏ฆ (100) โ 7๏บ8886 ร 10โ27 . It appears that lim ๏ธ2๏ฝ2๏ธ = 0.
๏ธโโ
๏ธ
12. (a) From a graph of ๏ฆ(๏ธ) = (1 โ 2๏ฝ๏ธ) in a window of [0๏ป 10,000] by [0๏ป 0๏บ2], we estimate that lim ๏ฆ (๏ธ) = 0๏บ14
๏ธโโ
(to two decimal places.)
(b)
From the table, we estimate that lim ๏ฆ (๏ธ) = 0๏บ1353 (to four decimal places.)
๏ธโโ
๏ธ
๏ฆ (๏ธ)
10,000
100,000
1,000,000
0๏บ135 308
0๏บ135 333
0๏บ135 335
[Divide both the numerator and denominator by ๏ธ2
2๏ธ2 โ 7
(2๏ธ2 โ 7)๏ฝ๏ธ2
= lim
2
๏ธโโ 5๏ธ + ๏ธ โ 3
๏ธโโ (5๏ธ2 + ๏ธ โ 3)๏ฝ๏ธ2
13. lim
(the highest power of ๏ธ that appears in the denominator)]
2
=
lim (2 โ 7๏ฝ๏ธ )
๏ธโโ
[Limit Law 5]
lim (5 + 1๏ฝ๏ธ โ 3๏ฝ๏ธ2 )
๏ธโโ
=
lim 2 โ lim (7๏ฝ๏ธ2 )
๏ธโโ
๏ธโโ
=
๏ธโโ
lim 5 + lim (1๏ฝ๏ธ) โ lim (3๏ฝ๏ธ2 )
๏ธโโ
2 โ 7 lim (1๏ฝ๏ธ2 )
๏ธโโ
5 + lim (1๏ฝ๏ธ) โ 3 lim (1๏ฝ๏ธ2 )
๏ธโโ
14. lim
๏ธโโ
๏ฒ
2 โ 7(0)
5 + 0 + 3(0)
=
2
5
๏ฒ
lim
๏ธโโ
๏ณ
[Limit Laws 7 and 3]
๏ธโโ
=
9๏ธ3 + 8๏ธ โ 4
=
3 โ 5๏ธ + ๏ธ3
[Limit Laws 1 and 2]
๏ธโโ
[Theorem 5]
9๏ธ3 + 8๏ธ โ 4
3 โ 5๏ธ + ๏ธ3
[Limit Law 11]
9 + 8๏ฝ๏ธ2 โ 4๏ฝ๏ธ3
๏ธโโ 3๏ฝ๏ธ3 โ 5๏ฝ๏ธ2 + 1
๏ถ
๏ต lim (9 + 8๏ฝ๏ธ2 โ 4๏ฝ๏ธ3 )
๏ต ๏ธโโ
=๏ด
lim (3๏ฝ๏ธ3 โ 5๏ฝ๏ธ2 + 1)
=
[Divide by ๏ธ3 ]
lim
[Limit Law 5]
๏ธโโ
๏ถ
๏ต lim 9 + lim (8๏ฝ๏ธ2 ) โ lim (4๏ฝ๏ธ3 )
๏ต ๏ธโโ
๏ธโโ
๏ธโโ
=๏ด
lim (3๏ฝ๏ธ3 ) โ lim (5๏ฝ๏ธ2 ) + lim 1
๏ธโโ
๏ธโโ
๏ถ
๏ต 9 + 8 lim (1๏ฝ๏ธ2 ) โ 4 lim (1๏ฝ๏ธ3 )
๏ต
๏ธโโ
๏ธโโ
=๏ด
3 lim (1๏ฝ๏ธ3 ) โ 5 lim (1๏ฝ๏ธ2 ) + 1
๏ธโโ
=
๏ณ
=
๏ฒ
9 + 8(0) โ 4(0)
3(0) โ 5(0) + 1
[Limit Laws 1 and 2]
๏ธโโ
[Limit Laws 7 and 3]
๏ธโโ
[Theorem 5]
9 โ
= 9=3
1
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
111
112
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
lim 3 โ 2 lim 1๏ฝ๏ธ
3 โ 2(0)
3
3๏ธ โ 2
(3๏ธ โ 2)๏ฝ๏ธ
3 โ 2๏ฝ๏ธ
๏ธโโ
๏ธโโ
= lim
= lim
=
=
=
๏ธโโ 2๏ธ + 1
๏ธโโ (2๏ธ + 1)๏ฝ๏ธ
๏ธโโ 2 + 1๏ฝ๏ธ
lim 2 + lim 1๏ฝ๏ธ
2+0
2
15. lim
๏ธโโ
๏ธโโ
1 โ ๏ธ2
(1 โ ๏ธ2 )๏ฝ๏ธ3
1๏ฝ๏ธ3 โ 1๏ฝ๏ธ
=
lim
=
lim
๏ธโโ ๏ธ3 โ ๏ธ + 1
๏ธโโ (๏ธ3 โ ๏ธ + 1)๏ฝ๏ธ3
๏ธโโ 1 โ 1๏ฝ๏ธ2 + 1๏ฝ๏ธ3
16. lim
lim 1๏ฝ๏ธ3 โ lim 1๏ฝ๏ธ
๏ธโโ
=
๏ธโโ
17.
๏ธโโ
lim 1 โ lim 1๏ฝ๏ธ2 + lim 1๏ฝ๏ธ3
๏ธโโ
=
๏ธโโ
0โ0
=0
1โ0+0
lim 1๏ฝ๏ธ โ 2 lim 1๏ฝ๏ธ2
0 โ 2(0)
๏ธโ2
(๏ธ โ 2)๏ฝ๏ธ2
1๏ฝ๏ธ โ 2๏ฝ๏ธ2
๏ธโโโ
๏ธโโโ
=
lim
=0
=
lim
=
=
๏ธโโโ ๏ธ2 + 1
๏ธโโโ (๏ธ2 + 1)๏ฝ๏ธ2
๏ธโโโ 1 + 1๏ฝ๏ธ2
lim 1 + lim 1๏ฝ๏ธ2
1+0
lim
๏ธโโโ
18.
lim
๏ธโโโ
๏ธโโโ
(4๏ธ3 + 6๏ธ2 โ 2)๏ฝ๏ธ3
4 + 6๏ฝ๏ธ โ 2๏ฝ๏ธ3
4+0โ0
4๏ธ3 + 6๏ธ2 โ 2
= lim
=2
= lim
=
3
3
3
๏ธโโโ
๏ธโโโ
2๏ธ โ 4๏ธ + 5
(2๏ธ โ 4๏ธ + 5)๏ฝ๏ธ
2 โ 4๏ฝ๏ธ2 + 5๏ฝ๏ธ3
2โ0+0
โ
โ
0+1
๏ด + ๏ด2
( ๏ด + ๏ด2 )๏ฝ๏ด2
1๏ฝ๏ด3๏ฝ2 + 1
=
= โ1
=
lim
= lim
๏ดโโ 2๏ด โ ๏ด2
๏ดโโ (2๏ด โ ๏ด2 )๏ฝ๏ด2
๏ดโโ 2๏ฝ๏ด โ 1
0โ1
19. lim
โ ๏ข
๏ก
โ
๏ด โ ๏ด ๏ด ๏ฝ๏ด3๏ฝ2
1๏ฝ๏ด1๏ฝ2 โ 1
1
0โ1
๏ดโ๏ด ๏ด
=โ
= lim
=
=
lim
๏ดโโ 2๏ด3๏ฝ2 + 3๏ด โ 5
๏ดโโ (2๏ด3๏ฝ2 + 3๏ด โ 5) ๏ฝ๏ด3๏ฝ2
๏ดโโ 2 + 3๏ฝ๏ด1๏ฝ2 โ 5๏ฝ๏ด3๏ฝ2
2+0โ0
2
20. lim
(2๏ธ2 + 1)2
(2๏ธ2 + 1)2 ๏ฝ๏ธ4
[(2๏ธ2 + 1)๏ฝ๏ธ2 ]2
=
lim
=
lim
๏ธโโ (๏ธ โ 1)2 (๏ธ2 + ๏ธ)
๏ธโโ [(๏ธ โ 1)2 (๏ธ2 + ๏ธ)]๏ฝ๏ธ4
๏ธโโ [(๏ธ2 โ 2๏ธ + 1)๏ฝ๏ธ2 ][(๏ธ2 + ๏ธ)๏ฝ๏ธ2 ]
21. lim
(2 + 0)2
(2 + 1๏ฝ๏ธ2 )2
=
=4
2
๏ธโโ (1 โ 2๏ฝ๏ธ + 1๏ฝ๏ธ )(1 + 1๏ฝ๏ธ)
(1 โ 0 + 0)(1 + 0)
= lim
๏ธ2
๏ธ2 ๏ฝ๏ธ2
1
= lim ๏ฐ
= lim โ
4
4
2
4
๏ธโโ
๏ธโโ
๏ธ +1
๏ธ + 1๏ฝ๏ธ
(๏ธ + 1)๏ฝ๏ธ4
[since ๏ธ2 =
22. lim โ
๏ธโโ
โ
๏ธ4 for ๏ธ ๏พ 0]
1
1
=1
= โ
= lim ๏ฐ
๏ธโโ
1+0
1 + 1๏ฝ๏ธ4
๏ฐ
โ
โ
lim
(1 + 4๏ธ6 )๏ฝ๏ธ6
1 + 4๏ธ6
1 + 4๏ธ6 ๏ฝ๏ธ3
๏ธโโ
23. lim
=
lim
=
๏ธโโ
๏ธโโ (2 โ ๏ธ3 )๏ฝ๏ธ3
2 โ ๏ธ3
lim (2๏ฝ๏ธ3 โ 1)
[since ๏ธ3 =
โ
๏ธ6 for ๏ธ ๏พ 0]
๏ธโโ
๏ฐ
lim
1๏ฝ๏ธ6 + 4
๏ธโโ
=
lim (2๏ฝ๏ธ3 ) โ lim 1
๏ธโโ
=
๏ธโโ
๏ฑ
lim (1๏ฝ๏ธ6 ) + lim 4
๏ธโโ
๏ธโโ
0โ1
โ
2
0+4
=
=
= โ2
โ1
โ1
๏ฐ
โ
โ
lim โ (1 + 4๏ธ6 )๏ฝ๏ธ6
1 + 4๏ธ6
1 + 4๏ธ6 ๏ฝ๏ธ3
๏ธโโโ
24. lim
= lim
=
๏ธโโโ
๏ธโโโ (2 โ ๏ธ3 )๏ฝ๏ธ3
2 โ ๏ธ3
lim (2๏ฝ๏ธ3 โ 1)
โ
[since ๏ธ3 = โ ๏ธ6 for ๏ธ ๏ผ 0]
๏ธโโโ
=
๏ฐ
lim โ 1๏ฝ๏ธ6 + 4
๏ธโโโ
2 lim (1๏ฝ๏ธ3 ) โ lim 1
๏ธโโโ
๏ธโโโ
โ
โ2
โ 0+4
=
=2
=
โ1
โ1
=
๏ฑ
โ
lim (1๏ฝ๏ธ6 ) + lim 4
๏ธโโโ
๏ธโโโ
2(0) โ 1
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.6
๏ฐ
(๏ธ + 3๏ธ2 )๏ฝ๏ธ2
lim
โ
โ
๏ธ + 3๏ธ2
๏ธ + 3๏ธ2 ๏ฝ๏ธ
๏ธโโ
= lim
=
๏ธโโ
๏ธโโ (4๏ธ โ 1)๏ฝ๏ธ
4๏ธ โ 1
lim (4 โ 1๏ฝ๏ธ)
25. lim
LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES
[since ๏ธ =
ยค
113
โ
๏ธ2 for ๏ธ ๏พ 0]
๏ธโโ
=
๏ฐ
lim
1๏ฝ๏ธ + 3
๏ธโโ
lim 4 โ lim (1๏ฝ๏ธ)
๏ธโโ
=
๏ธโโ
๏ฑ
lim (1๏ฝ๏ธ) + lim 3
๏ธโโ
๏ธโโ
4โ0
=
โ
โ
0+3
3
=
4
4
๏ธ + 3๏ธ2
(๏ธ + 3๏ธ2 )๏ฝ๏ธ
1 + 3๏ธ
= lim
= lim
๏ธโโ 4๏ธ โ 1
๏ธโโ (4๏ธ โ 1)๏ฝ๏ธ
๏ธโโ 4 โ 1๏ฝ๏ธ
26. lim
= โ since 1 + 3๏ธ โ โ and 4 โ 1๏ฝ๏ธ โ 4 as ๏ธ โ โ.
๏กโ
๏กโ
๏ข๏กโ
๏ข
๏ข2
9๏ธ2 + ๏ธ โ 3๏ธ
9๏ธ2 + ๏ธ + 3๏ธ
9๏ธ2 + ๏ธ โ (3๏ธ)2
โ
โ
= lim
๏ธโโ
๏ธโโ
9๏ธ2 + ๏ธ + 3๏ธ
9๏ธ2 + ๏ธ + 3๏ธ
๏ก 2
๏ข
9๏ธ + ๏ธ โ 9๏ธ2
1๏ฝ๏ธ
๏ธ
= lim โ
= lim โ
ยท
๏ธโโ
๏ธโโ
9๏ธ2 + ๏ธ + 3๏ธ
9๏ธ2 + ๏ธ + 3๏ธ 1๏ฝ๏ธ
๏กโ
๏ข
27. lim
9๏ธ2 + ๏ธ โ 3๏ธ = lim
๏ธโโ
1
1
๏ธ๏ฝ๏ธ
1
1
=
= lim ๏ฐ
= โ
= lim ๏ฐ
=
2
2
2
๏ธโโ
๏ธโโ
3
+
3
6
9
+
3
9๏ธ ๏ฝ๏ธ + ๏ธ๏ฝ๏ธ + 3๏ธ๏ฝ๏ธ
9 + 1๏ฝ๏ธ + 3
28.
๏ทโ 2
๏ธ
๏กโ
๏กโ
๏ข
๏ข
4๏ธ + 3๏ธ โ 2๏ธ
4๏ธ2 + 3๏ธ + 2๏ธ = lim
4๏ธ2 + 3๏ธ + 2๏ธ โ
๏ธโโโ
๏ธโโโ
4๏ธ2 + 3๏ธ โ 2๏ธ
๏ก 2
๏ข
2
4๏ธ + 3๏ธ โ (2๏ธ)
3๏ธ
โ
= lim โ
= lim
๏ธโโโ
๏ธโโโ
4๏ธ2 + 3๏ธ โ 2๏ธ
4๏ธ2 + 3๏ธ โ 2๏ธ
3๏ธ๏ฝ๏ธ
3
๏ฐ
๏ข
= lim ๏กโ
= lim
2
๏ธโโโ
๏ธโโโ
4๏ธ + 3๏ธ โ 2๏ธ ๏ฝ๏ธ
โ 4 + 3๏ฝ๏ธ โ 2
3
3
=โ
= โ
4
โ 4+0โ2
lim
29. lim
๏ธโโ
โ
[since ๏ธ = โ ๏ธ2 for ๏ธ ๏ผ 0]
โ
โ
๏กโ
๏ข ๏กโ
๏ข
๏ธ2 + ๏ก๏ธ โ ๏ธ2 + ๏ข๏ธ
๏ธ2 + ๏ก๏ธ + ๏ธ2 + ๏ข๏ธ
โ
โ
๏ธโโ
๏ธ2 + ๏ก๏ธ + ๏ธ2 + ๏ข๏ธ
โ
๏กโ
๏ข
๏ธ2 + ๏ก๏ธ โ ๏ธ2 + ๏ข๏ธ = lim
(๏ธ2 + ๏ก๏ธ) โ (๏ธ2 + ๏ข๏ธ)
[(๏ก โ ๏ข)๏ธ]๏ฝ๏ธ
โ
= lim ๏กโ
= lim โ
โ
๏ข โ
๏ธโโ
๏ธ2 + ๏ก๏ธ + ๏ธ2 + ๏ข๏ธ ๏ธโโ
๏ธ2 + ๏ก๏ธ + ๏ธ2 + ๏ข๏ธ ๏ฝ ๏ธ2
30. For ๏ธ ๏พ 0,
๏กโ๏ข
๏กโ๏ข
๏กโ๏ข
๏ฐ
โ
=
= lim ๏ฐ
= โ
๏ธโโ
2
1+0+ 1+0
1 + ๏ก๏ฝ๏ธ + 1 + ๏ข๏ฝ๏ธ
โ
โ
โ
โ
๏ธ2 + 1 ๏พ ๏ธ2 = ๏ธ. So as ๏ธ โ โ, we have ๏ธ2 + 1 โ โ, that is, lim ๏ธ2 + 1 = โ.
๏ธโโ
๏ธ4 โ 3๏ธ2 + ๏ธ
(๏ธ4 โ 3๏ธ2 + ๏ธ)๏ฝ๏ธ3
= lim
3
๏ธโโ ๏ธ โ ๏ธ + 2
๏ธโโ (๏ธ3 โ ๏ธ + 2)๏ฝ๏ธ3
31. lim
๏ท
divide by the highest power
of ๏ธ in the denominator
๏ธ
๏ธ โ 3๏ฝ๏ธ + 1๏ฝ๏ธ2
=โ
๏ธโโ 1 โ 1๏ฝ๏ธ2 + 2๏ฝ๏ธ3
= lim
since the numerator increases without bound and the denominator approaches 1 as ๏ธ โ โ.
32. lim (๏ฅโ๏ธ + 2 cos 3๏ธ) does not exist. lim ๏ฅโ๏ธ = 0, but lim (2 cos 3๏ธ) does not exist because the values of 2 cos 3๏ธ
๏ธโโ
๏ธโโ
๏ธโโ
oscillate between the values of โ2 and 2 in๏ฌnitely often, so the given limit does not exist.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
114
ยค
33.
lim (๏ธ2 + 2๏ธ7 ) = lim ๏ธ7
CHAPTER 2
๏ธโโโ
LIMITS AND DERIVATIVES
๏ธโโโ
๏ต
๏ถ
1
+
2
[factor out the largest power of ๏ธ] = โโ because ๏ธ7 โ โโ and
๏ธ5
1๏ฝ๏ธ5 + 2 โ 2 as ๏ธ โ โโ.
๏ก
๏ข
๏ก
๏ข
Or: lim ๏ธ2 + 2๏ธ7 = lim ๏ธ2 1 + 2๏ธ5 = โโ.
๏ธโโโ
34.
๏ธโโโ
1 + ๏ธ6
(1 + ๏ธ6 )๏ฝ๏ธ4
= lim
๏ธโโโ ๏ธ4 + 1
๏ธโโโ (๏ธ4 + 1)๏ฝ๏ธ4
lim
๏ท
divide by the highest power
of ๏ธ in the denominator
๏ธ
= lim
๏ธโโโ
1๏ฝ๏ธ4 + ๏ธ2
=โ
1 + 1๏ฝ๏ธ4
since the numerator increases without bound and the denominator approaches 1 as ๏ธ โ โโ.
35. Let ๏ด = ๏ฅ๏ธ . As ๏ธ โ โ, ๏ด โ โ. lim arctan(๏ฅ๏ธ ) = lim arctan ๏ด = ๏ผ2 by (3).
๏ธโโ
๏ดโโ
1โ0
๏ฅ3๏ธ โ ๏ฅโ3๏ธ
1 โ ๏ฅโ6๏ธ
=1
= lim
=
3๏ธ
โ3๏ธ
๏ธโโ ๏ฅ
๏ธโโ 1 + ๏ฅโ6๏ธ
+๏ฅ
1+0
36. Divide numerator and denominator by ๏ฅ3๏ธ : lim
0โ1
1
1 โ ๏ฅ๏ธ
(1 โ ๏ฅ๏ธ )๏ฝ๏ฅ๏ธ
1๏ฝ๏ฅ๏ธ โ 1
=
=โ
= lim
= lim
๏ธ
๏ธ
๏ธ
๏ธโโ 1 + 2๏ฅ
๏ธโโ (1 + 2๏ฅ )๏ฝ๏ฅ
๏ธโโ 1๏ฝ๏ฅ๏ธ + 2
0+2
2
37. lim
38. Since 0 โค sin2 ๏ธ โค 1, we have 0 โค
Theorem, lim
sin2 ๏ธ
๏ธโโ ๏ธ2 + 1
1
sin2 ๏ธ
1
โค 2
. We know that lim 0 = 0 and lim 2
= 0, so by the Squeeze
๏ธโโ
๏ธโโ ๏ธ + 1
๏ธ2 + 1
๏ธ +1
= 0.
39. Since โ1 โค cos ๏ธ โค 1 and ๏ฅโ2๏ธ ๏พ 0, we have โ๏ฅโ2๏ธ โค ๏ฅโ2๏ธ cos ๏ธ โค ๏ฅโ2๏ธ . We know that lim (โ๏ฅโ2๏ธ ) = 0 and
๏ธโโ
๏ก
๏ข
lim ๏ฅโ2๏ธ = 0, so by the Squeeze Theorem, lim (๏ฅโ2๏ธ cos ๏ธ) = 0.
๏ธโโ
๏ธโโ
40. Let ๏ด = ln ๏ธ. As ๏ธ โ 0+ , ๏ด โ โโ. lim tanโ1 (ln ๏ธ) = lim tanโ1 ๏ด = โ ๏ผ2 by (4).
๏ดโโโ
๏ธโ0+
41. lim [ln(1 + ๏ธ2 ) โ ln(1 + ๏ธ)] = lim ln
๏ธโโ
๏ธโโ
parentheses is โ.
42. lim [ln(2 + ๏ธ) โ ln(1 + ๏ธ)] = lim ln
๏ธโโ
๏ธโโ
1 + ๏ธ2
= ln
1+๏ธ
๏ต
2+๏ธ
1+๏ธ
๏ถ
๏ต
1 + ๏ธ2
๏ธโโ 1 + ๏ธ
lim
= lim ln
๏ธโโ
๏ต
๏ถ
2๏ฝ๏ธ + 1
1๏ฝ๏ธ + 1
= ln
๏ถ
๏ธ
(ii) lim ๏ฆ (๏ธ) = lim
๏ธ
(iii) lim ๏ฆ (๏ธ) = lim
๏ธ
= โ since ๏ธ โ 1 and ln ๏ธ โ 0+ as ๏ธ โ 1+ .
ln ๏ธ
๏ธโ1โ
๏ธโ1+
๏ธโ0+ ln ๏ธ
๏ธโ1โ ln ๏ธ
๏ธโ1+
lim
= ln
43. (a) (i) lim ๏ฆ (๏ธ) = lim
๏ธโ0+
๏ถ
1
+๏ธ
๏ธ
= โ, since the limit in
๏ธโโ 1 + 1
๏ธ
๏ต
1
= ln 1 = 0
1
= 0 since ๏ธ โ 0+ and ln ๏ธ โ โโ as ๏ธ โ 0+ .
= โโ since ๏ธ โ 1 and ln ๏ธ โ 0โ as ๏ธ โ 1โ .
(c)
(b)
๏ธ
๏ฆ (๏ธ)
10,000
1085๏บ7
100,000
8685๏บ9
1,000,000
72,382๏บ4
It appears that lim ๏ฆ(๏ธ) = โ.
๏ธโโ
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.6
44. (a) lim ๏ฆ (๏ธ) = lim
๏ธโโ
๏ธโโ
๏ต
1
2
โ
๏ธ ln ๏ธ
๏ถ
LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES
ยค
(e)
=0
2
1
โ 0 and
โ 0 as ๏ธ โ โ.
๏ธ
ln ๏ธ
๏ต
๏ถ
1
2
โ
(b) lim ๏ฆ(๏ธ) = lim
=โ
๏ธ
ln ๏ธ
๏ธโ0+
๏ธโ0+
since
1
2
โ โ and
โ 0 as ๏ธ โ 0+ .
๏ธ
ln ๏ธ
๏ต
๏ถ
1
2
1
2
(c) lim ๏ฆ (๏ธ) = lim
โ
= โ since โ 2 and
โ โโ as ๏ธ โ 1โ .
๏ธ
ln ๏ธ
๏ธ
ln ๏ธ
๏ธโ1โ
๏ธโ1โ
since
(d) lim ๏ฆ(๏ธ) = lim
๏ธโ1+
๏ธโ1+
๏ต
1
2
โ
๏ธ
ln ๏ธ
๏ถ
= โโ since
1
2
โ 2 and
โ โ as ๏ธ โ 1+ .
๏ธ
ln ๏ธ
(b)
45. (a)
๏ธ
๏ฆ (๏ธ)
โ10,000
โ0๏บ499 962 5
โ1,000,000
โ0๏บ499 999 6
โ100,000
From the graph of ๏ฆ (๏ธ) =
โ
๏ธ2 + ๏ธ + 1 + ๏ธ, we
โ0๏บ499 996 2
From the table, we estimate the limit to be โ0๏บ5.
estimate the value of lim ๏ฆ (๏ธ) to be โ0๏บ5.
๏ธโโโ
๏ก 2
๏ข
๏ทโ 2
๏ธ
๏กโ
๏กโ
๏ข
๏ข
๏ธ + ๏ธ + 1 โ ๏ธ2
๏ธ +๏ธ+1โ๏ธ
๏ธ2 + ๏ธ + 1 + ๏ธ = lim
๏ธ2 + ๏ธ + 1 + ๏ธ โ
= lim โ
๏ธโโโ
๏ธโโโ
๏ธโโโ
๏ธ2 + ๏ธ + 1 โ ๏ธ
๏ธ2 + ๏ธ + 1 โ ๏ธ
(c) lim
(๏ธ + 1)(1๏ฝ๏ธ)
1 + (1๏ฝ๏ธ)
๏ฐ
๏ข
= lim
= lim ๏กโ
๏ธโโโ
๏ธ2 + ๏ธ + 1 โ ๏ธ (1๏ฝ๏ธ) ๏ธโโโ โ 1 + (1๏ฝ๏ธ) + (1๏ฝ๏ธ2 ) โ 1
=
Note that for ๏ธ ๏ผ 0, we have
1
1+0
โ
=โ
2
โ 1+0+0โ1
โ
๏ธ2 = |๏ธ| = โ๏ธ, so when we divide the radical by ๏ธ, with ๏ธ ๏ผ 0, we get
๏ฐ
1 โ 2
1โ 2
๏ธ + ๏ธ + 1 = โโ
๏ธ + ๏ธ + 1 = โ 1 + (1๏ฝ๏ธ) + (1๏ฝ๏ธ2 ).
2
๏ธ
๏ธ
46. (a)
(b)
From the graph of
โ
โ
๏ฆ (๏ธ) = 3๏ธ2 + 8๏ธ + 6 โ 3๏ธ2 + 3๏ธ + 1, we estimate
๏ธ
๏ฆ (๏ธ)
10,000
1๏บ443 39
100,000
1๏บ443 38
1,000,000
1๏บ443 38
From the table, we estimate (to four decimal
places) the limit to be 1๏บ4434.
(to one decimal place) the value of lim ๏ฆ (๏ธ) to be 1๏บ4.
๏ธโโ
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
115
116
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
โ
โ
๏กโ
๏ข๏กโ
๏ข
3๏ธ2 + 8๏ธ + 6 โ 3๏ธ2 + 3๏ธ + 1
3๏ธ2 + 8๏ธ + 6 + 3๏ธ2 + 3๏ธ + 1
โ
โ
๏ธโโ
3๏ธ2 + 8๏ธ + 6 + 3๏ธ2 + 3๏ธ + 1
๏ก 2
๏ข ๏ก 2
๏ข
3๏ธ + 8๏ธ + 6 โ 3๏ธ + 3๏ธ + 1
(5๏ธ + 5)(1๏ฝ๏ธ)
โ
โ
๏ข
= lim โ
= lim ๏กโ
๏ธโโ
๏ธโโ
3๏ธ2 + 8๏ธ + 6 + 3๏ธ2 + 3๏ธ + 1
3๏ธ2 + 8๏ธ + 6 + 3๏ธ2 + 3๏ธ + 1 (1๏ฝ๏ธ)
โ
5
5
5 3
5 + 5๏ฝ๏ธ
๏ฐ
โ = โ =
= lim ๏ฐ
โ 1๏บ443376
= โ
๏ธโโ
6
3+ 3
2 3
3 + 8๏ฝ๏ธ + 6๏ฝ๏ธ2 + 3 + 3๏ฝ๏ธ + 1๏ฝ๏ธ2
(c) lim ๏ฆ (๏ธ) = lim
๏ธโโ
47.
lim
๏ธโยฑโ
0+4
5 + 4๏ธ
(5 + 4๏ธ)๏ฝ๏ธ
5๏ฝ๏ธ + 4
= lim
= lim
=
= 4, so
๏ธโยฑโ (๏ธ + 3)๏ฝ๏ธ
๏ธโยฑโ 1 + 3๏ฝ๏ธ
๏ธ+3
1+0
๏น = 4 is a horizontal asymptote. ๏น = ๏ฆ (๏ธ) =
5 + 4๏ธ
, so lim ๏ฆ (๏ธ) = โโ
๏ธ+3
๏ธโโ3+
since 5 + 4๏ธ โ โ7 and ๏ธ + 3 โ 0+ as ๏ธ โ โ3+ . Thus, ๏ธ = โ3 is a vertical
asymptote. The graph con๏ฌrms our work.
48.
lim
2๏ธ2 + 1
๏ธโยฑโ 3๏ธ2 + 2๏ธ โ 1
(2๏ธ2 + 1)๏ฝ๏ธ2
๏ธโยฑโ (3๏ธ2 + 2๏ธ โ 1)๏ฝ๏ธ2
= lim
2 + 1๏ฝ๏ธ2
2
=
๏ธโยฑโ 3 + 2๏ฝ๏ธ โ 1๏ฝ๏ธ2
3
= lim
so ๏น =
2๏ธ2 + 1
2๏ธ2 + 1
2
is a horizontal asymptote. ๏น = ๏ฆ (๏ธ) = 2
=
.
3
3๏ธ + 2๏ธ โ 1
(3๏ธ โ 1)(๏ธ + 1)
The denominator is zero when ๏ธ = 13 and โ1, but the numerator is nonzero, so ๏ธ = 13 and ๏ธ = โ1 are vertical asymptotes.
The graph con๏ฌrms our work.
๏ต
๏ถ
1
1
1
1
2๏ธ2 + ๏ธ โ 1
2
+
โ
lim
2+ โ 2
๏ธ ๏ธ2
2๏ธ2 + ๏ธ โ 1
๏ธ2
๏ธ
๏ธ = ๏ธโยฑโ ๏ต
๏ถ
= lim
49. lim
= lim
2
2
2
1
๏ธโยฑโ ๏ธ + ๏ธ โ 2
๏ธโยฑโ ๏ธ + ๏ธ โ 2
๏ธโยฑโ
1
2
1+ โ 2
1+ โ 2
lim
๏ธ
๏ธ
๏ธโยฑโ
๏ธ ๏ธ
๏ธ2
1
1
lim 2 + lim
โ lim
2+0โ0
๏ธโยฑโ
๏ธโยฑโ ๏ธ
๏ธโยฑโ ๏ธ2
= 2, so ๏น = 2 is a horizontal asymptote.
=
=
1
1
1 + 0 โ 2(0)
โ 2 lim
lim 1 + lim
๏ธโยฑโ
๏ธโยฑโ ๏ธ
๏ธโยฑโ ๏ธ2
๏น = ๏ฆ (๏ธ) =
(2๏ธ โ 1)(๏ธ + 1)
2๏ธ2 + ๏ธ โ 1
=
, so lim ๏ฆ(๏ธ) = โ,
๏ธ2 + ๏ธ โ 2
(๏ธ + 2)(๏ธ โ 1)
๏ธโโ2โ
lim ๏ฆ (๏ธ) = โโ, lim ๏ฆ (๏ธ) = โโ, and lim ๏ฆ (๏ธ) = โ. Thus, ๏ธ = โ2
๏ธโ1โ
๏ธโโ2+
๏ธโ1+
and ๏ธ = 1 are vertical asymptotes. The graph con๏ฌrms our work.
๏ถ
๏ต
1
1
1 + ๏ธ4
1
+
1
lim
lim
+ lim 1
+1
4
4
๏ธโยฑโ
4
4
๏ธ
1 + ๏ธ4
๏ธโยฑโ
๏ธโยฑโ
๏ธ
๏ธ
๏ถ =
๏ต
50. lim
= lim
= lim ๏ธ
=
2
4
2
4
1
๏ธโยฑโ ๏ธ โ ๏ธ
๏ธโยฑโ ๏ธ โ ๏ธ
๏ธโยฑโ 1
1
โ1
lim
โ lim 1
lim
โ1
๏ธโยฑโ ๏ธ2
๏ธโยฑโ
๏ธ2
๏ธโยฑโ
๏ธ2
๏ธ4
=
0+1
= โ1, so ๏น = โ1 is a horizontal asymptote.
0โ1
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.6
๏น = ๏ฆ (๏ธ) =
LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES
1 + ๏ธ4
1 + ๏ธ4
1 + ๏ธ4
=
. The denominator is
=
๏ธ2 โ ๏ธ4
๏ธ2 (1 โ ๏ธ2 )
๏ธ2 (1 + ๏ธ)(1 โ ๏ธ)
zero when ๏ธ = 0, โ1, and 1, but the numerator is nonzero, so ๏ธ = 0, ๏ธ = โ1, and
๏ธ = 1 are vertical asymptotes. Notice that as ๏ธ โ 0, the numerator and
denominator are both positive, so lim ๏ฆ (๏ธ) = โ. The graph con๏ฌrms our work.
๏ธโ0
51. ๏น = ๏ฆ (๏ธ) =
๏ธ(๏ธ2 โ 1)
๏ธ(๏ธ + 1)(๏ธ โ 1)
๏ธ(๏ธ + 1)
๏ธ3 โ ๏ธ
=
=
=
= ๏ง(๏ธ) for ๏ธ 6= 1.
๏ธ2 โ 6๏ธ + 5
(๏ธ โ 1)(๏ธ โ 5)
(๏ธ โ 1)(๏ธ โ 5)
๏ธโ5
The graph of ๏ง is the same as the graph of ๏ฆ with the exception of a hole in the
graph of ๏ฆ at ๏ธ = 1. By long division, ๏ง(๏ธ) =
๏ธ2 + ๏ธ
30
=๏ธ+6+
.
๏ธโ5
๏ธโ5
As ๏ธ โ ยฑโ, ๏ง(๏ธ) โ ยฑโ, so there is no horizontal asymptote. The denominator
of ๏ง is zero when ๏ธ = 5. lim ๏ง(๏ธ) = โโ and lim ๏ง(๏ธ) = โ, so ๏ธ = 5 is a
๏ธโ5โ
๏ธโ5+
vertical asymptote. The graph con๏ฌrms our work.
52. lim
2๏ฅ๏ธ
๏ธโโ ๏ฅ๏ธ โ 5
= lim
2๏ฅ๏ธ
๏ธโโ ๏ฅ๏ธ โ 5
2๏ฅ๏ธ
ยท
1๏ฝ๏ฅ๏ธ
2
2
=
= 2, so ๏น = 2 is a horizontal asymptote.
= lim
๏ธโโ 1 โ (5๏ฝ๏ฅ๏ธ )
1๏ฝ๏ฅ๏ธ
1โ0
2(0)
= 0, so ๏น = 0 is a horizontal asymptote. The denominator is zero (and the numerator isnโt)
0โ5
when ๏ฅ๏ธ โ 5 = 0 โ ๏ฅ๏ธ = 5 โ ๏ธ = ln 5.
lim
๏ธโโโ ๏ฅ๏ธ โ 5
lim
๏ธโ(ln 5)+
=
2๏ฅ๏ธ
= โ since the numerator approaches 10 and the denominator
๏ฅ๏ธ โ 5
approaches 0 through positive values as ๏ธ โ (ln 5)+ . Similarly,
2๏ฅ๏ธ
= โโ. Thus, ๏ธ = ln 5 is a vertical asymptote. The graph
๏ธ
๏ธโ(ln 5)โ ๏ฅ โ 5
lim
con๏ฌrms our work.
53. From the graph, it appears ๏น = 1 is a horizontal asymptote.
3๏ธ3 + 500๏ธ2
3๏ธ3 + 500๏ธ2
๏ธ3
= lim
lim
๏ธโยฑโ ๏ธ3 + 500๏ธ2 + 100๏ธ + 2000
๏ธโยฑโ ๏ธ3 + 500๏ธ2 + 100๏ธ + 2000
๏ธ3
= lim
3 + (500๏ฝ๏ธ)
๏ธโยฑโ 1 + (500๏ฝ๏ธ) + (100๏ฝ๏ธ2 ) + (2000๏ฝ๏ธ3 )
=
3+0
= 3, so ๏น = 3 is a horizontal asymptote.
1+0+0+0
The discrepancy can be explained by the choice of the viewing window. Try
[โ100,000๏ป 100,000] by [โ1๏ป 4] to get a graph that lends credibility to our
calculation that ๏น = 3 is a horizontal asymptote.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
ยค
117
118
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
54. (a)
From the graph, it appears at ๏ฌrst that there is only one horizontal asymptote, at ๏น โ 0๏ป and a vertical asymptote at
๏ธ โ 1๏บ7. However, if we graph the function with a wider and shorter viewing rectangle, we see that in fact there seem to be
two horizontal asymptotes: one at ๏น โ 0๏บ5 and one at ๏น โ โ0๏บ5. So we estimate that
โ
2๏ธ2 + 1
โ 0๏บ5
๏ธโโ 3๏ธ โ 5
โ
2๏ธ2 + 1
โ โ0๏บ5
๏ธโโโ 3๏ธ โ 5
โ
2๏ธ2 + 1
โ 0๏บ47.
(b) ๏ฆ (1000) โ 0๏บ4722 and ๏ฆ(10,000) โ 0๏บ4715, so we estimate that lim
๏ธโโ 3๏ธ โ 5
โ
2๏ธ2 + 1
๏ฆ (โ1000) โ โ0๏บ4706 and ๏ฆ(โ10,000) โ โ0๏บ4713, so we estimate that lim
โ โ0๏บ47.
๏ธโโโ 3๏ธ โ 5
lim
and
lim
๏ฐ
โ
โ
โ
2 + 1๏ฝ๏ธ2
2๏ธ2 + 1
2
2
(c) lim
= lim
[since ๏ธ = ๏ธ for ๏ธ ๏พ 0] =
โ 0๏บ471404.
๏ธโโ 3๏ธ โ 5
๏ธโโ
3 โ 5๏ฝ๏ธ
3
โ
For ๏ธ ๏ผ 0, we have ๏ธ2 = |๏ธ| = โ๏ธ, so when we divide the numerator by ๏ธ, with ๏ธ ๏ผ 0, we
๏ฐ
1 โ 2
1โ 2
2๏ธ + 1 = โ โ
2๏ธ + 1 = โ 2 + 1๏ฝ๏ธ2 . Therefore,
2
๏ธ
๏ธ
๏ฐ
โ
โ
โ 2 + 1๏ฝ๏ธ2
2๏ธ2 + 1
2
lim
= lim
=โ
โ โ0๏บ471404.
๏ธโโโ 3๏ธ โ 5
๏ธโโโ
3 โ 5๏ฝ๏ธ
3
get
55. Divide the numerator and the denominator by the highest power of ๏ธ in ๏(๏ธ).
(a) If deg ๏ ๏ผ deg ๏, then the numerator โ 0 but the denominator doesnโt. So lim [๏ (๏ธ)๏ฝ๏(๏ธ)] = 0.
๏ธโโ
(b) If deg ๏ ๏พ deg ๏, then the numerator โ ยฑโ but the denominator doesnโt, so lim [๏ (๏ธ)๏ฝ๏(๏ธ)] = ยฑโ
๏ธโโ
(depending on the ratio of the leading coef๏ฌcients of ๏ and ๏).
56.
(i) ๏ฎ = 0
(ii) ๏ฎ ๏พ 0 (๏ฎ odd)
(iii) ๏ฎ ๏พ 0 (๏ฎ even)
From these sketches we see that
๏ธ
1 if ๏ฎ = 0
๏พ
๏ผ
๏ฎ
(a) lim ๏ธ = 0 if ๏ฎ ๏พ 0
๏พ
๏ธโ0+
๏บ
โ if ๏ฎ ๏ผ 0
(b) lim ๏ธ๏ฎ =
๏ธโ0โ
(iv) ๏ฎ ๏ผ 0 (๏ฎ odd)
๏ธ
๏พ
๏พ
๏พ
๏พ
๏ผ
(v) ๏ฎ ๏ผ 0 (๏ฎ even)
1 if ๏ฎ = 0
0 if ๏ฎ ๏พ 0
๏พ
โโ if ๏ฎ ๏ผ 0, ๏ฎ odd
๏พ
๏พ
๏พ
๏บ
โ if ๏ฎ ๏ผ 0, ๏ฎ even
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.6
๏ธ
1 if ๏ฎ = 0
๏พ
๏ผ
(c) lim ๏ธ๏ฎ = โ if ๏ฎ ๏พ 0
๏ธโโ
๏พ
๏บ
0 if ๏ฎ ๏ผ 0
(d) lim ๏ธ๏ฎ =
๏ธโโโ
57. Letโs look for a rational function.
(1)
LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES
ยค
119
๏ธ
1 if ๏ฎ = 0
๏พ
๏พ
๏พ
๏พ
๏ผโโ if ๏ฎ ๏พ 0, ๏ฎ odd
๏พ
โ if ๏ฎ ๏พ 0, ๏ฎ even
๏พ
๏พ
๏พ
๏บ
0 if ๏ฎ ๏ผ 0
lim ๏ฆ(๏ธ) = 0 โ degree of numerator ๏ผ degree of denominator
๏ธโยฑโ
(2) lim ๏ฆ (๏ธ) = โโ โ there is a factor of ๏ธ2 in the denominator (not just ๏ธ, since that would produce a sign
๏ธโ0
change at ๏ธ = 0), and the function is negative near ๏ธ = 0.
(3) lim ๏ฆ (๏ธ) = โ and lim ๏ฆ(๏ธ) = โโ โ vertical asymptote at ๏ธ = 3; there is a factor of (๏ธ โ 3) in the
๏ธโ3โ
๏ธโ3+
denominator.
(4) ๏ฆ (2) = 0 โ 2 is an ๏ธ-intercept; there is at least one factor of (๏ธ โ 2) in the numerator.
Combining all of this information and putting in a negative sign to give us the desired left- and right-hand limits gives us
๏ฆ (๏ธ) =
2โ๏ธ
as one possibility.
๏ธ2 (๏ธ โ 3)
58. Since the function has vertical asymptotes ๏ธ = 1 and ๏ธ = 3, the denominator of the rational function we are looking for must
have factors (๏ธ โ 1) and (๏ธ โ 3). Because the horizontal asymptote is ๏น = 1, the degree of the numerator must equal the
degree of the denominator, and the ratio of the leading coef๏ฌcients must be 1. One possibility is ๏ฆ (๏ธ) =
๏ธ2
.
(๏ธ โ 1)(๏ธ โ 3)
59. (a) We must ๏ฌrst ๏ฌnd the function ๏ฆ . Since ๏ฆ has a vertical asymptote ๏ธ = 4 and ๏ธ-intercept ๏ธ = 1, ๏ธ โ 4 is a factor of the
denominator and ๏ธ โ 1 is a factor of the numerator. There is a removable discontinuity at ๏ธ = โ1, so ๏ธ โ (โ1) = ๏ธ + 1 is
a factor of both the numerator and denominator. Thus, ๏ฆ now looks like this: ๏ฆ (๏ธ) =
be determined. Then lim ๏ฆ (๏ธ) = lim
๏ธโโ1
๏ก = 5. Thus ๏ฆ (๏ธ) =
๏ฆ (0) =
๏ก(โ1 โ 1)
2
2
๏ก(๏ธ โ 1)(๏ธ + 1)
๏ก(๏ธ โ 1)
= lim
=
= ๏ก, so ๏ก = 2, and
๏ธโโ1 ๏ธ โ 4
(๏ธ โ 4)(๏ธ + 1)
(โ1 โ 4)
5
5
5(๏ธ โ 1)(๏ธ + 1)
is a ratio of quadratic functions satisfying all the given conditions and
(๏ธ โ 4)(๏ธ + 1)
5(โ1)(1)
5
= .
(โ4)(1)
4
(b) lim ๏ฆ (๏ธ) = 5 lim
๏ธโโ
๏ธโโ1
๏ก(๏ธ โ 1)(๏ธ + 1)
, where ๏ก is still to
(๏ธ โ 4)(๏ธ + 1)
๏ธ2 โ 1
๏ธโโ ๏ธ2 โ 3๏ธ โ 4
60. ๏น = ๏ฆ (๏ธ) = 2๏ธ3 โ ๏ธ4 = ๏ธ3 (2 โ ๏ธ).
= 5 lim
(๏ธ2 ๏ฝ๏ธ2 ) โ (1๏ฝ๏ธ2 )
๏ธโโ (๏ธ2 ๏ฝ๏ธ2 ) โ (3๏ธ๏ฝ๏ธ2 ) โ (4๏ฝ๏ธ2 )
=5
1โ0
= 5(1) = 5
1โ0โ0
The ๏น-intercept is ๏ฆ(0) = 0. The
๏ธ-intercepts are 0 and 2. There are sign changes at 0 and 2 (odd exponents on ๏ธ
and 2 โ ๏ธ). As ๏ธ โ โ, ๏ฆ (๏ธ) โ โโ because ๏ธ3 โ โ and 2 โ ๏ธ โ โโ. As
๏ธ โ โโ, ๏ฆ (๏ธ) โ โโ because ๏ธ3 โ โโ and 2 โ ๏ธ โ โ. Note that the graph
of ๏ฆ near ๏ธ = 0 ๏ฌattens out (looks like ๏น = ๏ธ3 ).
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
120
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
61. ๏น = ๏ฆ (๏ธ) = ๏ธ4 โ ๏ธ6 = ๏ธ4 (1 โ ๏ธ2 ) = ๏ธ4 (1 + ๏ธ)(1 โ ๏ธ).
The ๏น-intercept is
๏ฆ (0) = 0. The ๏ธ-intercepts are 0, โ1, and 1 [found by solving ๏ฆ (๏ธ) = 0 for ๏ธ].
Since ๏ธ4 ๏พ 0 for ๏ธ 6= 0, ๏ฆ doesnโt change sign at ๏ธ = 0. The function does change
sign at ๏ธ = โ1 and ๏ธ = 1. As ๏ธ โ ยฑโ, ๏ฆ (๏ธ) = ๏ธ4 (1 โ ๏ธ2 ) approaches โโ
because ๏ธ4 โ โ and (1 โ ๏ธ2 ) โ โโ.
62. ๏น = ๏ฆ (๏ธ) = ๏ธ3 (๏ธ + 2)2 (๏ธ โ 1).
The ๏น-intercept is ๏ฆ (0) = 0. The ๏ธ-intercepts
are 0, โ2, and 1. There are sign changes at 0 and 1 (odd exponents on ๏ธ and
๏ธ โ 1). There is no sign change at โ2. Also, ๏ฆ (๏ธ) โ โ as ๏ธ โ โ because all
three factors are large. And ๏ฆ (๏ธ) โ โ as ๏ธ โ โโ because ๏ธ3 โ โโ,
(๏ธ + 2)2 โ โ, and (๏ธ โ 1) โ โโ. Note that the graph of ๏ฆ at ๏ธ = 0 ๏ฌattens out
(looks like ๏น = โ๏ธ3 ).
63. ๏น = ๏ฆ (๏ธ) = (3 โ ๏ธ)(1 + ๏ธ)2 (1 โ ๏ธ)4 .
The ๏น-intercept is ๏ฆ (0) = 3(1)2 (1)4 = 3.
The ๏ธ-intercepts are 3, โ1, and 1. There is a sign change at 3, but not at โ1 and 1.
When ๏ธ is large positive, 3 โ ๏ธ is negative and the other factors are positive, so
lim ๏ฆ (๏ธ) = โโ. When ๏ธ is large negative, 3 โ ๏ธ is positive, so
๏ธโโ
lim ๏ฆ(๏ธ) = โ.
๏ธโโโ
64. ๏น = ๏ฆ (๏ธ) = ๏ธ2 (๏ธ2 โ 1)2 (๏ธ + 2) = ๏ธ2 (๏ธ + 1)2 (๏ธ โ 1)2 (๏ธ + 2).
The
๏น-intercept is ๏ฆ (0) = 0. The ๏ธ-intercepts are 0, โ1, 1๏ป and โ2. There is a sign
change at โ2, but not at 0, โ1, and 1. When ๏ธ is large positive, all the factors are
positive, so lim ๏ฆ (๏ธ) = โ. When ๏ธ is large negative, only ๏ธ + 2 is negative, so
๏ธโโ
lim ๏ฆ(๏ธ) = โโ.
๏ธโโโ
sin ๏ธ
1
1
โค
โค for ๏ธ ๏พ 0. As ๏ธ โ โ, โ1๏ฝ๏ธ โ 0 and 1๏ฝ๏ธ โ 0, so by the Squeeze
๏ธ
๏ธ
๏ธ
sin ๏ธ
Theorem, (sin ๏ธ)๏ฝ๏ธ โ 0. Thus, lim
= 0.
๏ธโโ
๏ธ
65. (a) Since โ1 โค sin ๏ธ โค 1 for all ๏ธ๏ป โ
(b) From part (a), the horizontal asymptote is ๏น = 0. The function
๏น = (sin ๏ธ)๏ฝ๏ธ crosses the horizontal asymptote whenever sin ๏ธ = 0;
that is, at ๏ธ = ๏ผ๏ฎ for every integer ๏ฎ. Thus, the graph crosses the
asymptote an infinite number of times.
66. (a) In both viewing rectangles,
lim ๏ (๏ธ) = lim ๏(๏ธ) = โ and
๏ธโโ
๏ธโโ
lim ๏ (๏ธ) = lim ๏(๏ธ) = โโ.
๏ธโโโ
๏ธโโโ
In the larger viewing rectangle, ๏ and ๏
become less distinguishable.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.6
LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES
ยค
121
๏ต
๏ถ
5 1
2 1
๏ (๏ธ)
3๏ธ5 โ 5๏ธ3 + 2๏ธ
1
โ
= 1 โ 53 (0) + 23 (0) = 1 โ
= lim
ยท
ยท
(b) lim
=
lim
+
๏ธโโ ๏(๏ธ)
๏ธโโ
๏ธโโ
3๏ธ5
3 ๏ธ2
3 ๏ธ4
๏ and ๏ have the same end behavior.
โ
โ
1๏ฝ ๏ธ
5
5 ๏ธ
5
ยท โ = lim ๏ฐ
= 5 and
= โ
๏ธโโ
๏ธ โ 1 1๏ฝ ๏ธ
1โ0
1 โ (1๏ฝ๏ธ)
67. lim โ
๏ธโโ
โ
10 โ 0
10๏ฅ๏ธ โ 21
5 ๏ธ
10๏ฅ๏ธ โ 21 1๏ฝ๏ฅ๏ธ
10 โ (21๏ฝ๏ฅ๏ธ )
โ
lim
,
=
= 5. Since
ยท
= lim
๏ผ ๏ฆ (๏ธ) ๏ผ
๏ธโโ
๏ธโโ
2๏ฅ๏ธ
1๏ฝ๏ฅ๏ธ
2
2
2๏ฅ๏ธ
๏ธโ1
we have lim ๏ฆ(๏ธ) = 5 by the Squeeze Theorem.
๏ธโโ
68. (a) After ๏ด minutes, 25๏ด liters of brine with 30 g of salt per liter has been pumped into the tank, so it contains
(5000 + 25๏ด) liters of water and 25๏ด ยท 30 = 750๏ด grams of salt. Therefore, the salt concentration at time ๏ด will be
๏(๏ด) =
750๏ด
30๏ด g
=
.
5000 + 25๏ด
200 + ๏ด L
(b) lim ๏(๏ด) = lim
30๏ด
๏ดโโ 200 + ๏ด
๏ดโโ
= lim
30๏ด๏ฝ๏ด
๏ดโโ 200๏ฝ๏ด + ๏ด๏ฝ๏ด
=
30
= 30. So the salt concentration approaches that of the brine
0+1
being pumped into the tank.
๏ณ
๏ด
โ
= ๏ถ โ (1 โ 0) = ๏ถ โ
69. (a) lim ๏ถ(๏ด) = lim ๏ถ โ 1 โ ๏ฅโ๏ง๏ด๏ฝ๏ถ
๏ดโโ
๏ดโโ
(b) We graph ๏ถ(๏ด) = 1 โ ๏ฅโ9๏บ8๏ด and ๏ถ(๏ด) = 0๏บ99๏ถ โ , or in this case,
๏ถ(๏ด) = 0๏บ99. Using an intersect feature or zooming in on the point of
intersection, we ๏ฌnd that ๏ด โ 0๏บ47 s.
70. (a) ๏น = ๏ฅโ๏ธ๏ฝ10 and ๏น = 0๏บ1 intersect at ๏ธ1 โ 23๏บ03.
If ๏ธ ๏พ ๏ธ1 , then ๏ฅโ๏ธ๏ฝ10 ๏ผ 0๏บ1.
(b) ๏ฅโ๏ธ๏ฝ10 ๏ผ 0๏บ1 โ โ๏ธ๏ฝ10 ๏ผ ln 0๏บ1 โ
1
= โ10 ln 10โ1 = 10 ln 10 โ 23๏บ03
๏ธ ๏พ โ10 ln 10
71. Let ๏ง(๏ธ) =
3๏ธ2 + 1
and ๏ฆ (๏ธ) = |๏ง(๏ธ) โ 1๏บ5|. Note that
2๏ธ2 + ๏ธ + 1
lim ๏ง(๏ธ) = 32 and lim ๏ฆ(๏ธ) = 0. We are interested in ๏ฌnding the
๏ธโโ
๏ธโโ
๏ธ-value at which ๏ฆ (๏ธ) ๏ผ 0๏บ05. From the graph, we ๏ฌnd that ๏ธ โ 14๏บ804,
so we choose ๏ = 15 (or any larger number).
72. We want to ๏ฌnd a value of ๏ such that ๏ธ ๏พ ๏
๏ฏ
๏ฏ
๏ฏ
๏ฏ 1 โ 3๏ธ
โ (โ3)๏ฏ๏ฏ ๏ผ ๏ข, or equivalently,
โ ๏ฏ๏ฏ โ
2
๏ธ +1
1 โ 3๏ธ
1 โ 3๏ธ
โ3 โ ๏ข ๏ผ โ
๏ผ โ3 + ๏ข. When ๏ข = 0๏บ1, we graph ๏น = ๏ฆ (๏ธ) = โ
, ๏น = โ3๏บ1, and ๏น = โ2๏บ9. From the graph,
2
๏ธ +1
๏ธ2 + 1
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
122
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
we ๏ฌnd that ๏ฆ(๏ธ) = โ2๏บ9 at about ๏ธ = 11๏บ283, so we choose ๏ = 12 (or any larger number). Similarly for ๏ข = 0๏บ05, we ๏ฌnd
that ๏ฆ(๏ธ) = โ2๏บ95 at about ๏ธ = 21๏บ379, so we choose ๏ = 22 (or any larger number).
๏ฏ
๏ฏ 1 โ 3๏ธ
๏ฏ
๏ฏ
1 โ 3๏ธ
โ 3๏ฏ๏ฏ ๏ผ ๏ข, or equivalently, 3 โ ๏ข ๏ผ โ
๏ผ 3 + ๏ข. When ๏ข = 0๏บ1,
๏ธ2 + 1
๏ธ2 + 1
73. We want a value of ๏ such that ๏ธ ๏ผ ๏ โ ๏ฏ๏ฏ โ
1 โ 3๏ธ
we graph ๏น = ๏ฆ (๏ธ) = โ
, ๏น = 3๏บ1, and ๏น = 2๏บ9. From the graph, we ๏ฌnd that ๏ฆ (๏ธ) = 3๏บ1 at about ๏ธ = โ8๏บ092, so we
๏ธ2 + 1
choose ๏ = โ9 (or any lesser number). Similarly for ๏ข = 0๏บ05, we ๏ฌnd that ๏ฆ (๏ธ) = 3๏บ05 at about ๏ธ = โ18๏บ338, so we
choose ๏ = โ19 (or any lesser number).
74. We want to ๏ฌnd a value of ๏ such that ๏ธ ๏พ ๏
We graph ๏น = ๏ฆ (๏ธ) =
โ
โ
๏ธ ln ๏ธ ๏พ 100.
โ
๏ธ ln ๏ธ and ๏น = 100. From the graph, we ๏ฌnd
that ๏ฆ(๏ธ) = 100 at about ๏ธ = 1382๏บ773, so we choose ๏ = 1383 (or
any larger number).
75. (a) 1๏ฝ๏ธ2 ๏ผ 0๏บ0001
โ ๏ธ2 ๏พ 1๏ฝ0๏บ0001 = 10 000 โ ๏ธ ๏พ 100 (๏ธ ๏พ 0)
โ
โ
(b) If ๏ข ๏พ 0 is given, then 1๏ฝ๏ธ2 ๏ผ ๏ข โ ๏ธ2 ๏พ 1๏ฝ๏ข โ ๏ธ ๏พ 1๏ฝ ๏ข. Let ๏ = 1๏ฝ ๏ข.
๏ฏ
๏ฏ
๏ฏ1
๏ฏ
1
1
1
โ ๏ฏ๏ฏ 2 โ 0๏ฏ๏ฏ = 2 ๏ผ ๏ข, so lim 2 = 0.
Then ๏ธ ๏พ ๏ โ ๏ธ ๏พ โ
๏ธโโ ๏ธ
๏ธ
๏ธ
๏ข
โ
โ
76. (a) 1๏ฝ ๏ธ ๏ผ 0๏บ0001 โ
๏ธ ๏พ 1๏ฝ0๏บ0001 = 104 โ ๏ธ ๏พ 108
โ
โ
(b) If ๏ข ๏พ 0 is given, then 1๏ฝ ๏ธ ๏ผ ๏ข โ
๏ธ ๏พ 1๏ฝ๏ข โ ๏ธ ๏พ 1๏ฝ๏ข2 . Let ๏ = 1๏ฝ๏ข2 .
๏ฏ
๏ฏ
๏ฏ
๏ฏ 1
1
1
1
Then ๏ธ ๏พ ๏ โ ๏ธ ๏พ 2 โ ๏ฏ๏ฏ โ โ 0๏ฏ๏ฏ = โ ๏ผ ๏ข, so lim โ = 0.
๏ธโโ
๏ข
๏ธ
๏ธ
๏ธ
77. For ๏ธ ๏ผ 0, |1๏ฝ๏ธ โ 0| = โ1๏ฝ๏ธ. If ๏ข ๏พ 0 is given, then โ1๏ฝ๏ธ ๏ผ ๏ข
Take ๏ = โ1๏ฝ๏ข. Then ๏ธ ๏ผ ๏
โ ๏ธ ๏ผ โ1๏ฝ๏ข โ |(1๏ฝ๏ธ) โ 0| = โ1๏ฝ๏ธ ๏ผ ๏ข, so lim (1๏ฝ๏ธ) = 0.
๏ธโโโ
78. Given ๏ ๏พ 0, we need ๏ ๏พ 0 such that ๏ธ ๏พ ๏
โ
๏ธ๏พ๏ = 3๏
โ ๏ธ ๏ผ โ1๏ฝ๏ข.
โ ๏ธ3 ๏พ ๏. Now ๏ธ3 ๏พ ๏
โ
โ
โ ๏ธ ๏พ 3 ๏, so take ๏ = 3 ๏. Then
โ ๏ธ3 ๏พ ๏, so lim ๏ธ3 = โ.
๏ธโโ
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.7
79. Given ๏ ๏พ 0, we need ๏ ๏พ 0 such that ๏ธ ๏พ ๏
DERIVATIVES AND RATES OF CHANGE
โ ๏ฅ๏ธ ๏พ ๏. Now ๏ฅ๏ธ ๏พ ๏
ยค
123
โ ๏ธ ๏พ ln ๏, so take
๏ = max(1๏ป ln ๏). (This ensures that ๏ ๏พ 0.) Then ๏ธ ๏พ ๏ = max(1๏ป ln ๏) โ ๏ฅ๏ธ ๏พ max(๏ฅ๏ป ๏) โฅ ๏,
so lim ๏ฅ๏ธ = โ.
๏ธโโ
80. De๏ฌnition
Let ๏ฆ be a function de๏ฌned on some interval (โโ๏ป ๏ก). Then lim ๏ฆ(๏ธ) = โโ means that for every negative
๏ธโโโ
number ๏ there is a corresponding negative number ๏ such that ๏ฆ (๏ธ) ๏ผ ๏ whenever ๏ธ ๏ผ ๏. Now we use the de๏ฌnition to
๏ก
๏ข
prove that lim 1 + ๏ธ3 = โโ. Given a negative number ๏, we need a negative number ๏ such that ๏ธ ๏ผ ๏ โ
๏ธโโโ
โ
โ
โ ๏ธ3 ๏ผ ๏ โ 1 โ ๏ธ ๏ผ 3 ๏ โ 1. Thus, we take ๏ = 3 ๏ โ 1 and ๏ฌnd that
๏ก
๏ข
โ 1 + ๏ธ3 ๏ผ ๏. This proves that lim 1 + ๏ธ3 = โโ.
1 + ๏ธ3 ๏ผ ๏. Now 1 + ๏ธ3 ๏ผ ๏
๏ธ๏ผ๏
๏ธโโโ
81. (a) Suppose that lim ๏ฆ (๏ธ) = ๏. Then for every ๏ข ๏พ 0 there is a corresponding positive number ๏ such that |๏ฆ (๏ธ) โ ๏| ๏ผ ๏ข
๏ธโโ
whenever ๏ธ ๏พ ๏. If ๏ด = 1๏ฝ๏ธ, then ๏ธ ๏พ ๏
โ 0 ๏ผ 1๏ฝ๏ธ ๏ผ 1๏ฝ๏
โ
0 ๏ผ ๏ด ๏ผ 1๏ฝ๏. Thus, for every ๏ข ๏พ 0 there is a
corresponding ๏ฑ ๏พ 0 (namely 1๏ฝ๏) such that |๏ฆ (1๏ฝ๏ด) โ ๏| ๏ผ ๏ข whenever 0 ๏ผ ๏ด ๏ผ ๏ฑ. This proves that
lim ๏ฆ(1๏ฝ๏ด) = ๏ = lim ๏ฆ(๏ธ).
๏ธโโ
๏ดโ0+
Now suppose that lim ๏ฆ(๏ธ) = ๏. Then for every ๏ข ๏พ 0 there is a corresponding negative number ๏ such that
๏ธโโโ
|๏ฆ (๏ธ) โ ๏| ๏ผ ๏ข whenever ๏ธ ๏ผ ๏. If ๏ด = 1๏ฝ๏ธ, then ๏ธ ๏ผ ๏
โ 1๏ฝ๏ ๏ผ 1๏ฝ๏ธ ๏ผ 0 โ 1๏ฝ๏ ๏ผ ๏ด ๏ผ 0. Thus, for every
๏ข ๏พ 0 there is a corresponding ๏ฑ ๏พ 0 (namely โ1๏ฝ๏) such that |๏ฆ (1๏ฝ๏ด) โ ๏| ๏ผ ๏ข whenever โ๏ฑ ๏ผ ๏ด ๏ผ 0. This proves that
lim ๏ฆ (1๏ฝ๏ด) = ๏ = lim ๏ฆ (๏ธ).
๏ธโโโ
๏ดโ0โ
(b) lim ๏ธ sin
๏ธโ0+
1
1
= lim ๏ด sin
๏ธ ๏ดโ0+
๏ด
= lim
1
๏นโโ ๏น
= lim
๏ธโโ
=0
sin ๏น
sin ๏ธ
๏ธ
[let ๏ธ = ๏ด]
[part (a) with ๏น = 1๏ฝ๏ด]
[let ๏น = ๏ธ]
[by Exercise 65]
2.7 Derivatives and Rates of Change
1. (a) This is just the slope of the line through two points: ๏ญ๏ ๏ =
โ๏น
๏ฆ (๏ธ) โ ๏ฆ (3)
=
.
โ๏ธ
๏ธโ3
(b) This is the limit of the slope of the secant line ๏ ๏ as ๏ approaches ๏ : ๏ญ = lim
๏ธโ3
๏ฆ(๏ธ) โ ๏ฆ (3)
.
๏ธโ3
2. The curve looks more like a line as the viewing rectangle gets smaller.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
124
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
3. (a) (i) Using De๏ฌnition 1 with ๏ฆ (๏ธ) = 4๏ธ โ ๏ธ2 and ๏ (1๏ป 3),
๏ญ = lim
๏ธโ๏ก
๏ฆ (๏ธ) โ ๏ฆ (๏ก)
(4๏ธ โ ๏ธ2 ) โ 3
โ(๏ธ2 โ 4๏ธ + 3)
โ(๏ธ โ 1)(๏ธ โ 3)
= lim
= lim
= lim
๏ธโ1
๏ธโ1
๏ธโ1
๏ธโ๏ก
๏ธโ1
๏ธโ1
๏ธโ1
= lim (3 โ ๏ธ) = 3 โ 1 = 2
๏ธโ1
(ii) Using Equation 2 with ๏ฆ (๏ธ) = 4๏ธ โ ๏ธ2 and ๏ (1๏ป 3),
๏ฃ
๏ค
4(1 + ๏จ) โ (1 + ๏จ)2 โ 3
๏ฆ (๏ก + ๏จ) โ ๏ฆ(๏ก)
๏ฆ (1 + ๏จ) โ ๏ฆ (1)
= lim
= lim
๏ญ = lim
๏จโ0
๏จโ0
๏จโ0
๏จ
๏จ
๏จ
4 + 4๏จ โ 1 โ 2๏จ โ ๏จ2 โ 3
โ๏จ2 + 2๏จ
๏จ(โ๏จ + 2)
= lim
= lim
= lim (โ๏จ + 2) = 2
๏จโ0
๏จโ0
๏จโ0
๏จโ0
๏จ
๏จ
๏จ
= lim
(b) An equation of the tangent line is ๏น โ ๏ฆ(๏ก) = ๏ฆ 0 (๏ก)(๏ธ โ ๏ก) โ ๏น โ ๏ฆ (1) = ๏ฆ 0 (1)(๏ธ โ 1) โ ๏น โ 3 = 2(๏ธ โ 1),
or ๏น = 2๏ธ + 1.
The graph of ๏น = 2๏ธ + 1 is tangent to the graph of ๏น = 4๏ธ โ ๏ธ2 at the
(c)
point (1๏ป 3). Now zoom in toward the point (1๏ป 3) until the parabola and
the tangent line are indistiguishable.
4. (a) (i) Using De๏ฌnition 1 with ๏ฆ (๏ธ) = ๏ธ โ ๏ธ3 and ๏ (1๏ป 0),
๏ฆ (๏ธ) โ 0
๏ธ โ ๏ธ3
๏ธ(1 โ ๏ธ2 )
๏ธ(1 + ๏ธ)(1 โ ๏ธ)
= lim
= lim
= lim
๏ธโ1 ๏ธ โ 1
๏ธโ1 ๏ธ โ 1
๏ธโ1
๏ธโ1
๏ธโ1
๏ธโ1
๏ญ = lim
= lim [โ๏ธ(1 + ๏ธ)] = โ1(2) = โ2
๏ธโ1
(ii) Using Equation 2 with ๏ฆ (๏ธ) = ๏ธ โ ๏ธ3 and ๏ (1๏ป 0),
๏ฃ
๏ค
(1 + ๏จ) โ (1 + ๏จ)3 โ 0
๏ฆ (๏ก + ๏จ) โ ๏ฆ (๏ก)
๏ฆ(1 + ๏จ) โ ๏ฆ(1)
= lim
= lim
๏จโ0
๏จโ0
๏จโ0
๏จ
๏จ
๏จ
๏ญ = lim
1 + ๏จ โ (1 + 3๏จ + 3๏จ2 + ๏จ3 )
โ๏จ3 โ 3๏จ2 โ 2๏จ
๏จ(โ๏จ2 โ 3๏จ โ 2)
= lim
= lim
๏จโ0
๏จโ0
๏จโ0
๏จ
๏จ
๏จ
= lim
= lim (โ๏จ2 โ 3๏จ โ 2) = โ2
๏จโ0
(b) An equation of the tangent line is ๏น โ ๏ฆ (๏ก) = ๏ฆ 0 (๏ก)(๏ธ โ ๏ก) โ ๏น โ ๏ฆ (1) = ๏ฆ 0 (1)(๏ธ โ 1) โ ๏น โ 0 = โ2(๏ธ โ 1),
or ๏น = โ2๏ธ + 2.
(c)
The graph of ๏น = โ2๏ธ + 2 is tangent to the graph of ๏น = ๏ธ โ ๏ธ3 at the
point (1๏ป 0). Now zoom in toward the point (1๏ป 0) until the cubic and the
tangent line are indistinguishable.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.7
DERIVATIVES AND RATES OF CHANGE
5. Using (1) with ๏ฆ (๏ธ) = 4๏ธ โ 3๏ธ2 and ๏ (2๏ป โ4) [we could also use (2)],
๏ก
๏ข
4๏ธ โ 3๏ธ2 โ (โ4)
๏ฆ (๏ธ) โ ๏ฆ (๏ก)
โ3๏ธ2 + 4๏ธ + 4
๏ญ = lim
= lim
= lim
๏ธโ๏ก
๏ธโ2
๏ธโ2
๏ธโ๏ก
๏ธโ2
๏ธโ2
= lim
๏ธโ2
(โ3๏ธ โ 2)(๏ธ โ 2)
= lim (โ3๏ธ โ 2) = โ3(2) โ 2 = โ8
๏ธโ2
๏ธโ2
Tangent line: ๏น โ (โ4) = โ8(๏ธ โ 2) โ ๏น + 4 = โ8๏ธ + 16 โ ๏น = โ8๏ธ + 12.
6. Using (2) with ๏ฆ (๏ธ) = ๏ธ3 โ 3๏ธ + 1 and ๏ (2๏ป 3),
๏ญ = lim
๏ฆ (๏ก + ๏จ) โ ๏ฆ (๏ก)
๏ฆ (2 + ๏จ) โ ๏ฆ (2)
(2 + ๏จ)3 โ 3(2 + ๏จ) + 1 โ 3
= lim
= lim
๏จโ0
๏จโ0
๏จ
๏จ
๏จ
= lim
๏จ(9 + 6๏จ + ๏จ2 )
8 + 12๏จ + 6๏จ2 + ๏จ3 โ 6 โ 3๏จ โ 2
9๏จ + 6๏จ2 + ๏จ3
= lim
= lim
๏จโ0
๏จโ0
๏จ
๏จ
๏จ
๏จโ0
๏จโ0
= lim (9 + 6๏จ + ๏จ2 ) = 9
๏จโ0
Tangent line: ๏น โ 3 = 9(๏ธ โ 2) โ ๏น โ 3 = 9๏ธ โ 18
โ
๏น = 9๏ธ โ 15
โ
โ
โ
โ
1
๏ธโ 1
( ๏ธ โ 1)( ๏ธ + 1)
๏ธโ1
1
โ
โ
= lim
= lim โ
= .
= lim
๏ธโ1
๏ธโ1 (๏ธ โ 1)( ๏ธ + 1)
๏ธโ1 (๏ธ โ 1)( ๏ธ + 1)
๏ธโ1
๏ธโ1
2
๏ธ+1
7. Using (1), ๏ญ = lim
Tangent line: ๏น โ 1 = 12 (๏ธ โ 1) โ
8. Using (1) with ๏ฆ (๏ธ) =
๏น = 12 ๏ธ + 12
2๏ธ + 1
and ๏ (1๏ป 1),
๏ธ+2
2๏ธ + 1
2๏ธ + 1 โ (๏ธ + 2)
โ1
๏ฆ (๏ธ) โ ๏ฆ (๏ก)
๏ธโ1
๏ธ
+
2
๏ธ+2
๏ญ = lim
= lim
= lim
= lim
๏ธโ๏ก
๏ธโ1
๏ธโ1
๏ธโ1 (๏ธ โ 1)(๏ธ + 2)
๏ธโ๏ก
๏ธโ1
๏ธโ1
= lim
1
๏ธโ1 ๏ธ + 2
=
1
1
=
1+2
3
Tangent line: ๏น โ 1 = 13 (๏ธ โ 1) โ
๏น โ 1 = 13 ๏ธ โ 13
โ
๏น = 13 ๏ธ + 23
9. (a) Using (2) with ๏น = ๏ฆ (๏ธ) = 3 + 4๏ธ2 โ 2๏ธ3 ,
๏ฆ (๏ก + ๏จ) โ ๏ฆ (๏ก)
3 + 4(๏ก + ๏จ)2 โ 2(๏ก + ๏จ)3 โ (3 + 4๏ก2 โ 2๏ก3 )
= lim
๏จโ0
๏จโ0
๏จ
๏จ
๏ญ = lim
3 + 4(๏ก2 + 2๏ก๏จ + ๏จ2 ) โ 2(๏ก3 + 3๏ก2 ๏จ + 3๏ก๏จ2 + ๏จ3 ) โ 3 โ 4๏ก2 + 2๏ก3
๏จโ0
๏จ
= lim
3 + 4๏ก2 + 8๏ก๏จ + 4๏จ2 โ 2๏ก3 โ 6๏ก2 ๏จ โ 6๏ก๏จ2 โ 2๏จ3 โ 3 โ 4๏ก2 + 2๏ก3
๏จโ0
๏จ
= lim
= lim
๏จโ0
8๏ก๏จ + 4๏จ2 โ 6๏ก2 ๏จ โ 6๏ก๏จ2 โ 2๏จ3
๏จ(8๏ก + 4๏จ โ 6๏ก2 โ 6๏ก๏จ โ 2๏จ2 )
= lim
๏จโ0
๏จ
๏จ
= lim (8๏ก + 4๏จ โ 6๏ก2 โ 6๏ก๏จ โ 2๏จ2 ) = 8๏ก โ 6๏ก2
๏จโ0
(b) At (1๏ป 5): ๏ญ = 8(1) โ 6(1)2 = 2, so an equation of the tangent line
(c)
is ๏น โ 5 = 2(๏ธ โ 1) โ ๏น = 2๏ธ + 3.
At (2๏ป 3): ๏ญ = 8(2) โ 6(2)2 = โ8, so an equation of the tangent
line is ๏น โ 3 = โ8(๏ธ โ 2) โ ๏น = โ8๏ธ + 19.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
ยค
125
126
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
10. (a) Using (1),
1
1
โ โโ
๏ธ
๏ก
= lim
๏ญ = lim
๏ธโ๏ก
๏ธโ๏ก
๏ธโ๏ก
โ
โ
๏กโ ๏ธ
โ
โ
โ
โ
โ
( ๏ก โ ๏ธ)( ๏ก + ๏ธ)
๏กโ๏ธ
๏ก๏ธ
โ
โ
โ
โ
= lim โ
= lim โ
๏ธโ๏ก
๏ธโ๏ก
๏ก๏ธ (๏ธ โ ๏ก) ( ๏ก + ๏ธ ) ๏ธโ๏ก ๏ก๏ธ (๏ธ โ ๏ก) ( ๏ก + ๏ธ )
1
โ1
1
โ1
โ
โ
= โ 3๏ฝ2 or โ ๏กโ3๏ฝ2 [๏ก ๏พ 0]
= โ
= lim โ
โ
๏ธโ๏ก
2
2๏ก
๏ก๏ธ ( ๏ก + ๏ธ )
๏ก2 (2 ๏ก )
(b) At (1๏ป 1): ๏ญ = โ 12 , so an equation of the tangent line
is ๏น โ 1 = โ 12 (๏ธ โ 1)
โ
(c)
๏น = โ 12 ๏ธ + 32 .
๏ก
๏ข
1
At 4๏ป 12 : ๏ญ = โ 16
, so an equation of the tangent line
1
1
is ๏น โ 12 = โ 16
(๏ธ โ 4) โ ๏น = โ 16
๏ธ + 34 .
11. (a) The particle is moving to the right when ๏ณ is increasing; that is, on the intervals (0๏ป 1) and (4๏ป 6). The particle is moving to
the left when ๏ณ is decreasing; that is, on the interval (2๏ป 3). The particle is standing still when ๏ณ is constant; that is, on the
intervals (1๏ป 2) and (3๏ป 4).
(b) The velocity of the particle is equal to the slope of the tangent line of the
graph. Note that there is no slope at the corner points on the graph. On the
interval (0๏ป 1)๏ป the slope is
3โ0
= 3. On the interval (2๏ป 3), the slope is
1โ0
3โ1
1โ3
= โ2. On the interval (4๏ป 6), the slope is
= 1.
3โ2
6โ4
12. (a) Runner A runs the entire 100-meter race at the same velocity since the slope of the position function is constant.
Runner B starts the race at a slower velocity than runner A, but ๏ฌnishes the race at a faster velocity.
(b) The distance between the runners is the greatest at the time when the largest vertical line segment ๏ฌts between the two
graphsโthis appears to be somewhere between 9 and 10 seconds.
(c) The runners had the same velocity when the slopes of their respective position functions are equalโthis also appears to be
at about 9๏บ5 s. Note that the answers for parts (b) and (c) must be the same for these graphs because as soon as the velocity
for runner B overtakes the velocity for runner A, the distance between the runners starts to decrease.
13. Let ๏ณ(๏ด) = 40๏ด โ 16๏ด2 .
๏ก
๏ข
๏ก
๏ข
40๏ด โ 16๏ด2 โ 16
โ8 2๏ด2 โ 5๏ด + 2
๏ณ(๏ด) โ ๏ณ(2)
โ16๏ด2 + 40๏ด โ 16
= lim
= lim
= lim
๏ถ(2) = lim
๏ดโ2
๏ดโ2
๏ดโ2
๏ดโ2
๏ดโ2
๏ดโ2
๏ดโ2
๏ดโ2
= lim
๏ดโ2
โ8(๏ด โ 2)(2๏ด โ 1)
= โ8 lim (2๏ด โ 1) = โ8(3) = โ24
๏ดโ2
๏ดโ2
Thus, the instantaneous velocity when ๏ด = 2 is โ24 ft๏ฝs.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.7
DERIVATIVES AND RATES OF CHANGE
ยค
127
14. (a) Let ๏(๏ด) = 10๏ด โ 1๏บ86๏ด2 .
๏ฃ
๏ค
10(1 + ๏จ) โ 1๏บ86(1 + ๏จ)2 โ (10 โ 1๏บ86)
๏(1 + ๏จ) โ ๏(1)
= lim
๏จโ0
๏จโ0
๏จ
๏จ
๏ถ(1) = lim
10 + 10๏จ โ 1๏บ86(1 + 2๏จ + ๏จ2 ) โ 10 + 1๏บ86
๏จโ0
๏จ
= lim
10 + 10๏จ โ 1๏บ86 โ 3๏บ72๏จ โ 1๏บ86๏จ2 โ 10 + 1๏บ86
๏จโ0
๏จ
= lim
6๏บ28๏จ โ 1๏บ86๏จ2
= lim (6๏บ28 โ 1๏บ86๏จ) = 6๏บ28
๏จโ0
๏จโ0
๏จ
= lim
The velocity of the rock after one second is 6๏บ28 m๏ฝs.
๏ฃ
๏ค
10(๏ก + ๏จ) โ 1๏บ86(๏ก + ๏จ)2 โ (10๏ก โ 1๏บ86๏ก2 )
๏(๏ก + ๏จ) โ ๏(๏ก)
(b) ๏ถ(๏ก) = lim
= lim
๏จโ0
๏จโ0
๏จ
๏จ
= lim
10๏ก + 10๏จ โ 1๏บ86(๏ก2 + 2๏ก๏จ + ๏จ2 ) โ 10๏ก + 1๏บ86๏ก2
๏จ
= lim
10๏ก + 10๏จ โ 1๏บ86๏ก2 โ 3๏บ72๏ก๏จ โ 1๏บ86๏จ2 โ 10๏ก + 1๏บ86๏ก2
10๏จ โ 3๏บ72๏ก๏จ โ 1๏บ86๏จ2
= lim
๏จโ0
๏จ
๏จ
= lim
๏จ(10 โ 3๏บ72๏ก โ 1๏บ86๏จ)
= lim (10 โ 3๏บ72๏ก โ 1๏บ86๏จ) = 10 โ 3๏บ72๏ก
๏จโ0
๏จ
๏จโ0
๏จโ0
๏จโ0
The velocity of the rock when ๏ด = ๏ก is (10 โ 3๏บ72๏ก) m๏ฝs๏บ
(c) The rock will hit the surface when ๏ = 0 โ 10๏ด โ 1๏บ86๏ด2 = 0 โ ๏ด(10 โ 1๏บ86๏ด) = 0 โ ๏ด = 0 or 1๏บ86๏ด = 10.
The rock hits the surface when ๏ด = 10๏ฝ1๏บ86 โ 5๏บ4 s.
๏ก 10 ๏ข
๏ก 10 ๏ข
(d) The velocity of the rock when it hits the surface is ๏ถ 1๏บ86
= 10 โ 3๏บ72 1๏บ86
= 10 โ 20 = โ10 m๏ฝs.
1
1
๏ก2 โ (๏ก + ๏จ)2
โ 2
2
๏ณ(๏ก + ๏จ) โ ๏ณ(๏ก)
(๏ก + ๏จ)
๏ก
๏ก2 (๏ก + ๏จ)2
๏ก2 โ (๏ก2 + 2๏ก๏จ + ๏จ2 )
= lim
= lim
= lim
15. ๏ถ(๏ก) = lim
๏จโ0
๏จโ0
๏จโ0
๏จโ0
๏จ
๏จ
๏จ
๏จ๏ก2 (๏ก + ๏จ)2
= lim
โ(2๏ก๏จ + ๏จ2 )
๏จโ0 ๏จ๏ก2 (๏ก + ๏จ)2
So ๏ถ (1) =
= lim
โ๏จ(2๏ก + ๏จ)
๏จโ0 ๏จ๏ก2 (๏ก + ๏จ)2
= lim
โ(2๏ก + ๏จ)
๏จโ0 ๏ก2 (๏ก + ๏จ)2
=
โ2๏ก
โ2
= 3 m๏ฝs
๏ก2 ยท ๏ก2
๏ก
โ2
โ2
โ2
1
2
m๏ฝs.
= โ2 m๏ฝs, ๏ถ(2) = 3 = โ m๏ฝs, and ๏ถ(3) = 3 = โ
13
2
4
3
27
16. (a) The average velocity between times ๏ด and ๏ด + ๏จ is
1
2
(๏ด + ๏จ) โ 6(๏ด + ๏จ) + 23 โ
๏ณ(๏ด + ๏จ) โ ๏ณ(๏ด)
= 2
(๏ด + ๏จ) โ ๏ด
๏จ
1 2
๏ก1 2
๏ข
2 ๏ด โ 6๏ด + 23
๏ด + ๏ด๏จ + 12 ๏จ2 โ 6๏ด โ 6๏จ + 23 โ 12 ๏ด2 + 6๏ด โ 23
๏จ
๏ข
๏ก
1
1 2
๏ข
๏ก
๏จโ6
๏จ
๏ด
+
๏ด๏จ + 2 ๏จ โ 6๏จ
2
=
= ๏ด + 12 ๏จ โ 6 ft๏ฝs
=
๏จ
๏จ
(i) [4๏ป 8]: ๏ด = 4, ๏จ = 8 โ 4 = 4, so the average velocity is 4 + 12 (4) โ 6 = 0 ft๏ฝs.
= 2
(ii) [6๏ป 8]: ๏ด = 6, ๏จ = 8 โ 6 = 2, so the average velocity is 6 + 12 (2) โ 6 = 1 ft๏ฝs.
(iii) [8๏ป 10]: ๏ด = 8, ๏จ = 10 โ 8 = 2, so the average velocity is 8 + 12 (2) โ 6 = 3 ft๏ฝs.
(iv) [8๏ป 12]: ๏ด = 8, ๏จ = 12 โ 8 = 4, so the average velocity is 8 + 12 (4) โ 6 = 4 ft๏ฝs.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
128
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
๏ก
๏ข
๏ณ(๏ด + ๏จ) โ ๏ณ(๏ด)
= lim ๏ด + 12 ๏จ โ 6
๏จโ0
๏จ
= ๏ด โ 6, so ๏ถ(8) = 2 ft๏ฝs.
(b) ๏ถ(๏ด) = lim
๏จโ0
(c)
17. ๏ง 0 (0) is the only negative value. The slope at ๏ธ = 4 is smaller than the slope at ๏ธ = 2 and both are smaller than the slope
at ๏ธ = โ2. Thus, ๏ง0 (0) ๏ผ 0 ๏ผ ๏ง0 (4) ๏ผ ๏ง 0 (2) ๏ผ ๏ง 0 (โ2).
18. (a) On [20๏ป 60]:
700 โ 300
400
๏ฆ (60) โ ๏ฆ (20)
=
=
= 10
60 โ 20
40
40
(b) Pick any interval that has the same ๏น-value at its endpoints. [0๏ป 57] is such an interval since ๏ฆ (0) = 600 and ๏ฆ (57) = 600.
(c) On [40๏ป 60]:
700 โ 200
500
๏ฆ (60) โ ๏ฆ (40)
=
=
= 25
60 โ 40
20
20
On [40๏ป 70]:
๏ฆ (70) โ ๏ฆ (40)
900 โ 200
700
=
=
= 23 13
70 โ 40
30
30
Since 25 ๏พ 23 13 , the average rate of change on [40๏ป 60] is larger.
(d)
200 โ 400
โ200
๏ฆ (40) โ ๏ฆ (10)
=
=
= โ6 23
40 โ 10
30
30
This value represents the slope of the line segment from (10๏ป ๏ฆ(10)) to (40๏ป ๏ฆ(40)).
19. (a) The tangent line at ๏ธ = 50 appears to pass through the points (43๏ป 200) and (60๏ป 640), so
๏ฆ 0 (50) โ
440
640 โ 200
=
โ 26.
60 โ 43
17
(b) The tangent line at ๏ธ = 10 is steeper than the tangent line at ๏ธ = 30, so it is larger in magnitude, but less in numerical
value, that is, ๏ฆ 0 (10) ๏ผ ๏ฆ 0 (30).
(c) The slope of the tangent line at ๏ธ = 60, ๏ฆ 0 (60), is greater than the slope of the line through (40๏ป ๏ฆ(40)) and (80๏ป ๏ฆ(80)).
So yes, ๏ฆ 0 (60) ๏พ
๏ฆ(80) โ ๏ฆ (40)
.
80 โ 40
20. Since ๏ง(5) = โ3, the point (5๏ป โ3) is on the graph of ๏ง. Since ๏ง0 (5) = 4, the slope of the tangent line at ๏ธ = 5 is 4.
Using the point-slope form of a line gives us ๏น โ (โ3) = 4(๏ธ โ 5), or ๏น = 4๏ธ โ 23.
21. For the tangent line ๏น = 4๏ธ โ 5: when ๏ธ = 2, ๏น = 4(2) โ 5 = 3 and its slope is 4 (the coef๏ฌcient of ๏ธ). At the point of
tangency, these values are shared with the curve ๏น = ๏ฆ (๏ธ); that is, ๏ฆ (2) = 3 and ๏ฆ 0 (2) = 4.
22. Since (4๏ป 3) is on ๏น = ๏ฆ (๏ธ), ๏ฆ (4) = 3. The slope of the tangent line between (0๏ป 2) and (4๏ป 3) is 14 , so ๏ฆ 0 (4) = 14 .
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.7
DERIVATIVES AND RATES OF CHANGE
23. We begin by drawing a curve through the origin with a
slope of 3 to satisfy ๏ฆ (0) = 0 and ๏ฆ 0 (0) = 3. Since
๏ฆ 0 (1) = 0, we will round off our ๏ฌgure so that there is
a horizontal tangent directly over ๏ธ = 1. Last, we
make sure that the curve has a slope of โ1 as we pass
over ๏ธ = 2. Two of the many possibilities are shown.
24. We begin by drawing a curve through the origin with a slope of 1 to satisfy
๏ง(0) = 0 and ๏ง 0 (0) = 1. We round off our ๏ฌgure at ๏ธ = 1 to satisfy ๏ง0 (1) = 0,
and then pass through (2๏ป 0) with slope โ1 to satisfy ๏ง(2) = 0 and ๏ง 0 (2) = โ1.
We round the ๏ฌgure at ๏ธ = 3 to satisfy ๏ง 0 (3) = 0, and then pass through (4๏ป 0)
with slope 1 to satisfy ๏ง(4) = 0 and ๏ง 0 (4) = 1๏บ Finally we extend the curve on
both ends to satisfy lim ๏ง(๏ธ) = โ and lim ๏ง(๏ธ) = โโ.
๏ธโโ
๏ธโโโ
25. We begin by drawing a curve through (0๏ป 1) with a slope of 1 to satisfy ๏ง(0) = 1
and ๏ง 0 (0) = 1. We round off our ๏ฌgure at ๏ธ = โ2 to satisfy ๏ง 0 (โ2) = 0. As
๏ธ โ โ5+ , ๏น โ โ, so we draw a vertical asymptote at ๏ธ = โ5. As ๏ธ โ 5โ ,
๏น โ 3, so we draw a dot at (5๏ป 3) [the dot could be open or closed].
26. We begin by drawing an odd function (symmetric with respect to the origin)
through the origin with slope โ2 to satisfy ๏ฆ 0 (0) = โ2. Now draw a curve starting
at ๏ธ = 1 and increasing without bound as ๏ธ โ 2โ since lim ๏ฆ (๏ธ) = โ. Lastly,
๏ธโ2โ
re๏ฌect the last curve through the origin (rotate 180โฆ ) since ๏ฆ is an odd function.
27. Using (4) with ๏ฆ (๏ธ) = 3๏ธ2 โ ๏ธ3 and ๏ก = 1,
๏ฆ (1 + ๏จ) โ ๏ฆ (1)
[3(1 + ๏จ)2 โ (1 + ๏จ)3 ] โ 2
= lim
๏จโ0
๏จโ0
๏จ
๏จ
๏ฆ 0 (1) = lim
(3 + 6๏จ + 3๏จ2 ) โ (1 + 3๏จ + 3๏จ2 + ๏จ3 ) โ 2
3๏จ โ ๏จ3
๏จ(3 โ ๏จ2 )
= lim
= lim
๏จโ0
๏จโ0
๏จโ0
๏จ
๏จ
๏จ
= lim
= lim (3 โ ๏จ2 ) = 3 โ 0 = 3
๏จโ0
Tangent line: ๏น โ 2 = 3(๏ธ โ 1) โ ๏น โ 2 = 3๏ธ โ 3 โ ๏น = 3๏ธ โ 1
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
ยค
129
130
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
28. Using (5) with ๏ง(๏ธ) = ๏ธ4 โ 2 and ๏ก = 1,
๏ง 0 (1) = lim
๏ธโ1
= lim
๏ธโ1
๏ง(๏ธ) โ ๏ง(1)
(๏ธ4 โ 2) โ (โ1)
๏ธ4 โ 1
(๏ธ2 + 1)(๏ธ2 โ 1)
= lim
= lim
= lim
๏ธโ1
๏ธโ1 ๏ธ โ 1
๏ธโ1
๏ธโ1
๏ธโ1
๏ธโ1
(๏ธ2 + 1)(๏ธ + 1)(๏ธ โ 1)
= lim [(๏ธ2 + 1)(๏ธ + 1)] = 2(2) = 4
๏ธโ1
๏ธโ1
Tangent line: ๏น โ (โ1) = 4(๏ธ โ 1) โ ๏น + 1 = 4๏ธ โ 4 โ ๏น = 4๏ธ โ 5
29. (a) Using (4) with ๏ (๏ธ) = 5๏ธ๏ฝ(1 + ๏ธ2 ) and the point (2๏ป 2), we have
(b)
5(2 + ๏จ)
โ2
๏ (2 + ๏จ) โ ๏ (2)
1 + (2 + ๏จ)2
๏ (2) = lim
= lim
๏จโ0
๏จโ0
๏จ
๏จ
0
5๏จ + 10
= lim
๏จโ0
๏จ2 + 4๏จ + 5
โ2
๏จ
5๏จ + 10 โ 2(๏จ2 + 4๏จ + 5)
๏จ2 + 4๏จ + 5
= lim
๏จโ0
๏จ
โ3
โ2๏จ2 โ 3๏จ
๏จ(โ2๏จ โ 3)
โ2๏จ โ 3
= lim
= lim 2
=
๏จโ0 ๏จ(๏จ2 + 4๏จ + 5)
๏จโ0 ๏จ(๏จ2 + 4๏จ + 5)
๏จโ0 ๏จ + 4๏จ + 5
5
= lim
.
So an equation of the tangent line at (2๏ป 2) is ๏น โ 2 = โ 35 (๏ธ โ 2) or ๏น = โ 35 ๏ธ + 16
5
30. (a) Using (4) with ๏(๏ธ) = 4๏ธ2 โ ๏ธ3 , we have
๏(๏ก + ๏จ) โ ๏(๏ก)
[4(๏ก + ๏จ)2 โ (๏ก + ๏จ)3 ] โ (4๏ก2 โ ๏ก3 )
= lim
๏จโ0
๏จโ0
๏จ
๏จ
๏0 (๏ก) = lim
4๏ก2 + 8๏ก๏จ + 4๏จ2 โ (๏ก3 + 3๏ก2 ๏จ + 3๏ก๏จ2 + ๏จ3 ) โ 4๏ก2 + ๏ก3
๏จโ0
๏จ
= lim
8๏ก๏จ + 4๏จ2 โ 3๏ก2 ๏จ โ 3๏ก๏จ2 โ ๏จ3
๏จ(8๏ก + 4๏จ โ 3๏ก2 โ 3๏ก๏จ โ ๏จ2 )
= lim
๏จโ0
๏จโ0
๏จ
๏จ
= lim
= lim (8๏ก + 4๏จ โ 3๏ก2 โ 3๏ก๏จ โ ๏จ2 ) = 8๏ก โ 3๏ก2
๏จโ0
At the point (2๏ป 8), ๏0 (2) = 16 โ 12 = 4, and an equation of the
(b)
tangent line is ๏น โ 8 = 4(๏ธ โ 2), or ๏น = 4๏ธ. At the point (3๏ป 9),
๏0 (3) = 24 โ 27 = โ3, and an equation of the tangent line is
๏น โ 9 = โ3(๏ธ โ 3), or ๏น = โ3๏ธ + 18๏บ
31. Use (4) with ๏ฆ (๏ธ) = 3๏ธ2 โ 4๏ธ + 1.
๏ฆ (๏ก + ๏จ) โ ๏ฆ(๏ก)
[3(๏ก + ๏จ)2 โ 4(๏ก + ๏จ) + 1] โ (3๏ก2 โ 4๏ก + 1)]
= lim
๏จโ0
๏จโ0
๏จ
๏จ
๏ฆ 0 (๏ก) = lim
3๏ก2 + 6๏ก๏จ + 3๏จ2 โ 4๏ก โ 4๏จ + 1 โ 3๏ก2 + 4๏ก โ 1
6๏ก๏จ + 3๏จ2 โ 4๏จ
= lim
๏จโ0
๏จโ0
๏จ
๏จ
= lim
= lim
๏จโ0
๏จ(6๏ก + 3๏จ โ 4)
= lim (6๏ก + 3๏จ โ 4) = 6๏ก โ 4
๏จโ0
๏จ
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.7
DERIVATIVES AND RATES OF CHANGE
32. Use (4) with ๏ฆ (๏ด) = 2๏ด3 + ๏ด.
๏ฆ 0 (๏ก) = lim
๏จโ0
๏ฆ (๏ก + ๏จ) โ ๏ฆ (๏ก)
[2(๏ก + ๏จ)3 + (๏ก + ๏จ)] โ (2๏ก3 + ๏ก)
= lim
๏จโ0
๏จ
๏จ
= lim
2๏ก3 + 6๏ก2 ๏จ + 6๏ก๏จ2 + 2๏จ3 + ๏ก + ๏จ โ 2๏ก3 โ ๏ก
6๏ก2 ๏จ + 6๏ก๏จ2 + 2๏จ3 + ๏จ
= lim
๏จโ0
๏จ
๏จ
= lim
๏จ(6๏ก2 + 6๏ก๏จ + 2๏จ2 + 1)
= lim (6๏ก2 + 6๏ก๏จ + 2๏จ2 + 1) = 6๏ก2 + 1
๏จโ0
๏จ
๏จโ0
๏จโ0
33. Use (4) with ๏ฆ (๏ด) = (2๏ด + 1)๏ฝ(๏ด + 3).
2๏ก + 1
2(๏ก + ๏จ) + 1
โ
๏ฆ (๏ก + ๏จ) โ ๏ฆ (๏ก)
(๏ก + ๏จ) + 3
๏ก+3
= lim
๏ฆ (๏ก) = lim
๏จโ0
๏จโ0
๏จ
๏จ
0
= lim
(2๏ก + 2๏จ + 1)(๏ก + 3) โ (2๏ก + 1)(๏ก + ๏จ + 3)
๏จ(๏ก + ๏จ + 3)(๏ก + 3)
= lim
(2๏ก2 + 6๏ก + 2๏ก๏จ + 6๏จ + ๏ก + 3) โ (2๏ก2 + 2๏ก๏จ + 6๏ก + ๏ก + ๏จ + 3)
๏จ(๏ก + ๏จ + 3)(๏ก + 3)
๏จโ0
๏จโ0
= lim
5๏จ
๏จโ0 ๏จ(๏ก + ๏จ + 3)(๏ก + 3)
= lim
5
๏จโ0 (๏ก + ๏จ + 3)(๏ก + 3)
=
5
(๏ก + 3)2
34. Use (4) with ๏ฆ (๏ธ) = ๏ธโ2 = 1๏ฝ๏ธ2 .
1
1
๏ก2 โ (๏ก + ๏จ)2
โ
๏ฆ (๏ก + ๏จ) โ ๏ฆ (๏ก)
(๏ก + ๏จ)2
๏ก2
๏ก2 (๏ก + ๏จ)2
= lim
= lim
๏ฆ 0 (๏ก) = lim
๏จโ0
๏จโ0
๏จโ0
๏จ
๏จ
๏จ
๏ก2 โ (๏ก2 + 2๏ก๏จ + ๏จ2 )
โ2๏ก๏จ โ ๏จ2
๏จ(โ2๏ก โ ๏จ)
= lim
= lim
2
2
๏จโ0
๏จโ0 ๏จ๏ก2 (๏ก + ๏จ)2
๏จโ0 ๏จ๏ก2 (๏ก + ๏จ)2
๏จ๏ก (๏ก + ๏จ)
= lim
= lim
โ2๏ก โ ๏จ
๏จโ0 ๏ก2 (๏ก + ๏จ)2
35. Use (4) with ๏ฆ (๏ธ) =
=
โ2
โ2๏ก
= 3
๏ก2 (๏ก2 )
๏ก
โ
1 โ 2๏ธ.
๏ฐ
โ
1 โ 2(๏ก + ๏จ) โ 1 โ 2๏ก
๏ฆ (๏ก + ๏จ) โ ๏ฆ (๏ก)
= lim
๏ฆ (๏ก) = lim
๏จโ0
๏จโ0
๏จ
๏จ
๏ฐ
๏ฐ
โ
โ
1 โ 2(๏ก + ๏จ) โ 1 โ 2๏ก
1 โ 2(๏ก + ๏จ) + 1 โ 2๏ก
ยท๏ฐ
= lim
โ
๏จโ0
๏จ
1 โ 2(๏ก + ๏จ) + 1 โ 2๏ก
๏ณ๏ฐ
๏ด2 ๏กโ
๏ข2
1 โ 2(๏ก + ๏จ) โ
1 โ 2๏ก
(1 โ 2๏ก โ 2๏จ) โ (1 โ 2๏ก)
๏ณ๏ฐ
๏ด = lim ๏ณ๏ฐ
๏ด
= lim
โ
โ
๏จโ0
๏จโ0
๏จ
1 โ 2(๏ก + ๏จ) + 1 โ 2๏ก
๏จ
1 โ 2(๏ก + ๏จ) + 1 โ 2๏ก
0
= lim
๏จโ0
โ2๏จ
โ2
๏ณ๏ฐ
๏ด = lim ๏ฐ
โ
โ
๏จโ0
1
โ
2(๏ก
+
๏จ) + 1 โ 2๏ก
๏จ
1 โ 2(๏ก + ๏จ) + 1 โ 2๏ก
โ2
โ1
โ2
โ
= โ
= โ
= โ
1 โ 2๏ก + 1 โ 2๏ก
2 1 โ 2๏ก
1 โ 2๏ก
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
ยค
131
132
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
4
.
1โ๏ธ
36. Use (4) with ๏ฆ (๏ธ) = โ
4
4
๏ฐ
โโ
1
โ๏ก
1
โ
(๏ก
+
๏จ)
๏ฆ
(๏ก
+
๏จ)
โ
๏ฆ
(๏ก)
๏ฆ 0 (๏ก) = lim
= lim
๏จโ0
๏จโ0
๏จ
๏จ
โ
โ
1โ๏กโ 1โ๏กโ๏จ
โ
โ
โ
โ
1โ๏กโ 1โ๏กโ๏จ
1โ๏กโ๏จ 1โ๏ก
= 4 lim โ
= 4 lim
โ
๏จโ0
๏จโ0 ๏จ 1 โ ๏ก โ ๏จ
๏จ
1โ๏ก
โ
โ
โ
โ
โ
โ
1โ๏กโ 1โ๏กโ๏จ
1โ๏ก+ 1โ๏กโ๏จ
( 1 โ ๏ก)2 โ ( 1 โ ๏ก โ ๏จ)2
โ
โ
= 4 lim โ
ยทโ
= 4 lim โ
โ
โ
โ
๏จโ0 ๏จ 1 โ ๏ก โ ๏จ
๏จโ0 ๏จ 1 โ ๏ก โ ๏จ
1โ๏ก
1โ๏ก+ 1โ๏กโ๏จ
1 โ ๏ก( 1 โ ๏ก + 1 โ ๏ก โ ๏จ)
(1 โ ๏ก) โ (1 โ ๏ก โ ๏จ)
๏จ
โ
โ
โ
= 4 lim โ
โ
โ
โ
โ
๏จโ0 ๏จ 1 โ ๏ก โ ๏จ
1 โ ๏ก โ ๏จ 1 โ ๏ก( 1 โ ๏ก + 1 โ ๏ก โ ๏จ)
1 โ ๏ก( 1 โ ๏ก + 1 โ ๏ก โ ๏จ)
= 4 lim
๏จโ0 ๏จ
1
1
โ
โ
โ
โ
=4ยท โ
= 4 lim โ
โ
โ
๏จโ0
1 โ ๏ก 1 โ ๏ก( 1 โ ๏ก + 1 โ ๏ก)
1 โ ๏ก โ ๏จ 1 โ ๏ก( 1 โ ๏ก + 1 โ ๏ก โ ๏จ)
=
2
4
2
โ
=
=
1 (1 โ ๏ก)1๏ฝ2
(1
โ
๏ก)
(1
โ
๏ก)3๏ฝ2
(1 โ ๏ก)(2 1 โ ๏ก)
โ
โ
9+๏จโ3
= ๏ฆ 0 (9), where ๏ฆ (๏ธ) = ๏ธ and ๏ก = 9.
๏จโ0
๏จ
37. By (4), lim
๏ฅโ2+๏จ โ ๏ฅโ2
= ๏ฆ 0 (โ2), where ๏ฆ(๏ธ) = ๏ฅ๏ธ and ๏ก = โ2.
๏จโ0
๏จ
38. By (4), lim
๏ธ6 โ 64
= ๏ฆ 0 (2), where ๏ฆ (๏ธ) = ๏ธ6 and ๏ก = 2.
๏ธโ2 ๏ธ โ 2
39. By Equation 5, lim
1
โ4
1
1
๏ธ
= ๏ฆ 0 (4), where ๏ฆ (๏ธ) =
and ๏ก = .
40. By Equation 5, lim
1
๏ธโ1๏ฝ4
๏ธ
4
๏ธโ
4
41. By (4), lim
๏จโ0
cos(๏ผ + ๏จ) + 1
= ๏ฆ 0 (๏ผ), where ๏ฆ (๏ธ) = cos ๏ธ and ๏ก = ๏ผ.
๏จ
Or: By (4), lim
๏จโ0
cos(๏ผ + ๏จ) + 1
= ๏ฆ 0 (0), where ๏ฆ (๏ธ) = cos(๏ผ + ๏ธ) and ๏ก = 0.
๏จ
๏ณ ๏ด
sin ๏ต โ 12
๏ผ
0 ๏ผ
=
๏ฆ
, where ๏ฆ (๏ต) = sin ๏ต and ๏ก = .
๏ผ
๏ตโ๏ผ๏ฝ6 ๏ต โ
6
6
6
42. By Equation 5, lim
๏ฃ
๏ค ๏ฃ
๏ค
80(4 + ๏จ) โ 6(4 + ๏จ)2 โ 80(4) โ 6(4)2
๏ฆ (4 + ๏จ) โ ๏ฆ (4)
= lim
43. ๏ถ(4) = ๏ฆ (4) = lim
๏จโ0
๏จโ0
๏จ
๏จ
0
= lim
(320 + 80๏จ โ 96 โ 48๏จ โ 6๏จ2 ) โ (320 โ 96)
32๏จ โ 6๏จ2
= lim
๏จโ0
๏จ
๏จ
= lim
๏จ(32 โ 6๏จ)
= lim (32 โ 6๏จ) = 32 m/s
๏จโ0
๏จ
๏จโ0
๏จโ0
The speed when ๏ด = 4 is |32| = 32 m๏ฝs.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.7
๏ฆ (4 + ๏จ) โ ๏ฆ (4)
= lim
44. ๏ถ(4) = ๏ฆ (4) = lim
๏จโ0
๏จโ0
๏จ
0
๏ต
10 +
45
4+๏จ+1
๏ถ
๏จ
DERIVATIVES AND RATES OF CHANGE
๏ต
๏ถ
45
โ 10 +
4+1
ยค
133
45
โ9
5
= lim + ๏จ
๏จโ0
๏จ
45 โ 9(5 + ๏จ)
9
โ9๏จ
โ9
= lim
= lim
= โ m/s.
๏จโ0 ๏จ(5 + ๏จ)
๏จโ0 5 + ๏จ
๏จ(5 + ๏จ)
5
๏ฏ ๏ฏ
The speed when ๏ด = 4 is ๏ฏโ 95 ๏ฏ = 95 m๏ฝs.
= lim
๏จโ0
45. The sketch shows the graph for a room temperature of 72โฆ and a refrigerator
temperature of 38โฆ . The initial rate of change is greater in magnitude than the
rate of change after an hour.
46. The slope of the tangent (that is, the rate of change of temperature with respect
to time) at ๏ด = 1 h seems to be about
47. (a) (i) [1๏บ0๏ป 2๏บ0]:
75 โ 168
โ โ0๏บ7 โฆ F๏ฝmin.
132 โ 0
0๏บ18 โ 0๏บ33
mg/mL
๏(2) โ ๏(1)
=
= โ0๏บ15
2โ1
1
h
(ii) [1๏บ5๏ป 2๏บ0]:
0๏บ18 โ 0๏บ24
โ0๏บ06
mg/mL
๏(2) โ ๏(1๏บ5)
=
=
= โ0๏บ12
2 โ 1๏บ5
0๏บ5
0๏บ5
h
(iii) [2๏บ0๏ป 2๏บ5]:
0๏บ12 โ 0๏บ18
โ0๏บ06
mg/mL
๏(2๏บ5) โ ๏(2)
=
=
= โ0๏บ12
2๏บ5 โ 2
0๏บ5
0๏บ5
h
(iv) [2๏บ0๏ป 3๏บ0]:
0๏บ07 โ 0๏บ18
mg/mL
๏(3) โ ๏(2)
=
= โ0๏บ11
3โ2
1
h
(b) We estimate the instantaneous rate of change at ๏ด = 2 by averaging the average rates of change for [1๏บ5๏ป 2๏บ0] and [2๏บ0๏ป 2๏บ5]:
mg/mL
โ0๏บ12 + (โ0๏บ12)
= โ0๏บ12
. After 2 hours, the BAC is decreasing at a rate of 0๏บ12 (mg๏ฝmL)๏ฝh.
2
h
48. (a) (i) [2006๏ป 2008]:
(ii) [2008๏ป 2010]:
16,680 โ 12,440
4240
๏(2008) โ ๏(2006)
=
=
= 2120 locations๏ฝyear
2008 โ 2006
2
2
16,858 โ 16,680
178
๏(2010) โ ๏(2008)
=
=
= 89 locations๏ฝyear.
2010 โ 2008
2
2
The rate of growth decreased over the period from 2006 to 2010.
(b) [2010๏ป 2012]:
๏(2012) โ ๏(2010)
18,066 โ 16,858
1208
=
=
= 604 locations๏ฝyear.
2012 โ 2010
2
2
Using that value and the value from part (a)(ii), we have
693
89 + 604
=
= 346๏บ5 locations๏ฝyear.
2
2
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
134
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
(c) The tangent segment has endpoints (2008๏ป 16,250) and (2012๏ป 17,500).
An estimate of the instantaneous rate of growth in 2010 is
17,500 โ 16,250
1250
=
= 312๏บ5 locations/year.
2012 โ 2008
4
49. (a) [1990๏ป 2005]:
17,544
84,077 โ 66,533
=
= 1169๏บ6 thousands of barrels per day per year. This means that oil
2005 โ 1990
15
consumption rose by an average of 1169๏บ6 thousands of barrels per day each year from 1990 to 2005.
(b) [1995๏ป 2000]:
[2000๏ป 2005]:
6685
76,784 โ 70,099
=
= 1337
2000 โ 1995
5
7293
84,077 โ 76,784
=
= 1458๏บ6
2005 โ 2000
5
An estimate of the instantaneous rate of change in 2000 is 12 (1337 + 1458๏บ6) = 1397๏บ8 thousands of barrels
per day per year.
50. (a) (i) [4๏ป 11]:
9๏บ4 โ 53
โ43๏บ6
RNA copies๏ฝmL
๏ (11) โ ๏ (4)
=
=
โ โ6๏บ23
11 โ 4
7
7
day
(ii) [8๏ป 11]:
9๏บ4 โ 18
โ8๏บ6
RNA copies๏ฝmL
๏ (11) โ ๏ (8)
=
=
โ โ2๏บ87
11 โ 8
3
3
day
(iii) [11๏ป 15]:
5๏บ2 โ 9๏บ4
โ4๏บ2
RNA copies๏ฝmL
๏ (15) โ ๏ (11)
=
=
= โ1๏บ05
15 โ 11
4
4
day
(iv) [11๏ป 22]:
3๏บ6 โ 9๏บ4
โ5๏บ8
RNA copies๏ฝmL
๏ (22) โ ๏ (11)
=
=
โ โ0๏บ53
22 โ 11
11
11
day
(b) An estimate of ๏ 0 (11) is the average of the answers from part (a)(ii) and (iii).
๏ 0 (11) โ 12 [โ2๏บ87 + (โ1๏บ05)] = โ1๏บ96
RNA copies๏ฝmL
.
day
๏ 0 (11) measures the instantaneous rate of change of patient 303โs viral load 11 days after ABT-538 treatment began.
51. (a) (i)
๏(105) โ ๏(100)
6601๏บ25 โ 6500
โ๏
=
=
= $20๏บ25๏ฝunit.
โ๏ธ
105 โ 100
5
(ii)
๏(101) โ ๏(100)
6520๏บ05 โ 6500
โ๏
=
=
= $20๏บ05๏ฝunit.
โ๏ธ
101 โ 100
1
(b)
๏ค
๏ฃ
5000 + 10(100 + ๏จ) + 0๏บ05(100 + ๏จ)2 โ 6500
๏(100 + ๏จ) โ ๏(100)
20๏จ + 0๏บ05๏จ2
=
=
๏จ
๏จ
๏จ
= 20 + 0๏บ05๏จ, ๏จ 6= 0
So the instantaneous rate of change is lim
๏จโ0
๏(100 + ๏จ) โ ๏(100)
= lim (20 + 0๏บ05๏จ) = $20๏ฝunit.
๏จโ0
๏จ
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.7
DERIVATIVES AND RATES OF CHANGE
ยค
135
๏ถ2
๏ถ2
๏ต
๏ต
๏ด+๏จ
๏ด
52. โ๏ = ๏ (๏ด + ๏จ) โ ๏ (๏ด) = 100,000 1 โ
โ 100,000 1 โ
60
60
๏ต
๏ถ๏ธ
๏ต
๏ถ
๏ท๏ต
2๏ถ
(๏ด + ๏จ)
๏ด
๏ด2
๏จ
2๏ด๏จ
๏จ2
๏ด+๏จ
+
โ 1โ
+
= 100,000 โ +
+
= 100,000 1 โ
30
3600
30
3600
30
3600
3600
=
250
100,000
๏จ (โ120 + 2๏ด + ๏จ) =
๏จ (โ120 + 2๏ด + ๏จ)
3600
9
(๏ด โ 60) gal๏ฝmin.
Dividing โ๏ by ๏จ and then letting ๏จ โ 0, we see that the instantaneous rate of change is 500
9
๏ด
Flow rate (gal๏ฝmin)
Water remaining ๏ (๏ด) (gal)
0
โ3333๏บ3
100๏ป 000
โ2222๏บ2
44๏ป 444๏บ4
โ1111๏บ1
11๏ป 111๏บ1
10
20
30
40
50
60
โ2777๏บ7
69๏ป 444๏บ4
โ1666๏บ6
25๏ป 000
โ 555๏บ5
2๏ป 777๏บ7
0
0
The magnitude of the ๏ฌow rate is greatest at the beginning and gradually decreases to 0.
53. (a) ๏ฆ 0 (๏ธ) is the rate of change of the production cost with respect to the number of ounces of gold produced. Its units are
dollars per ounce.
(b) After 800 ounces of gold have been produced, the rate at which the production cost is increasing is $17๏ฝounce. So the cost
of producing the 800th (or 801st) ounce is about $17.
(c) In the short term, the values of ๏ฆ 0 (๏ธ) will decrease because more ef๏ฌcient use is made of start-up costs as ๏ธ increases. But
eventually ๏ฆ 0 (๏ธ) might increase due to large-scale operations.
54. (a) ๏ฆ 0 (5) is the rate of growth of the bacteria population when ๏ด = 5 hours. Its units are bacteria per hour.
(b) With unlimited space and nutrients, ๏ฆ 0 should increase as ๏ด increases; so ๏ฆ 0 (5) ๏ผ ๏ฆ 0 (10). If the supply of nutrients is
limited, the growth rate slows down at some point in time, and the opposite may be true.
55. (a) ๏ 0 (58) is the rate at which the daily heating cost changes with respect to temperature when the outside temperature is
58 โฆ F. The units are dollars๏ฝ โฆ F.
(b) If the outside temperature increases, the building should require less heating, so we would expect ๏ 0 (58) to be negative.
56. (a) ๏ฆ 0 (8) is the rate of change of the quantity of coffee sold with respect to the price per pound when the price is $8 per pound.
The units for ๏ฆ 0 (8) are pounds๏ฝ(dollars๏ฝpound).
(b) ๏ฆ 0 (8) is negative since the quantity of coffee sold will decrease as the price charged for it increases. People are generally
less willing to buy a product when its price increases.
57. (a) ๏ 0 (๏ ) is the rate at which the oxygen solubility changes with respect to the water temperature. Its units are (mg๏ฝL)๏ฝโฆ C.
(b) For ๏ = 16โฆ C, it appears that the tangent line to the curve goes through the points (0๏ป 14) and (32๏ป 6). So
๏ 0 (16) โ
8
6 โ 14
=โ
= โ0๏บ25 (mg๏ฝL)๏ฝโฆ C. This means that as the temperature increases past 16โฆ C, the oxygen
32 โ 0
32
solubility is decreasing at a rate of 0๏บ25 (mg๏ฝL)๏ฝโฆ C.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
136
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
58. (a) ๏ 0 (๏ ) is the rate of change of the maximum sustainable speed of Coho salmon with respect to the temperature. Its units
are (cm๏ฝs)๏ฝโฆ C.
(b) For ๏ = 15โฆ C, it appears the tangent line to the curve goes through the points (10๏ป 25) and (20๏ป 32). So
๏ 0 (15) โ
32 โ 25
= 0๏บ7 (cm๏ฝs)๏ฝโฆ C. This tells us that at ๏ = 15โฆ C, the maximum sustainable speed of Coho salmon is
20 โ 10
changing at a rate of 0.7 (cm๏ฝs)๏ฝโฆ C. In a similar fashion for ๏ = 25โฆ C, we can use the points (20๏ป 35) and (25๏ป 25) to
obtain ๏ 0 (25) โ
25 โ 35
= โ2 (cm๏ฝs)๏ฝโฆ C. As it gets warmer than 20โฆ C, the maximum sustainable speed decreases
25 โ 20
rapidly.
59. Since ๏ฆ (๏ธ) = ๏ธ sin(1๏ฝ๏ธ) when ๏ธ 6= 0 and ๏ฆ (0) = 0, we have
๏ฆ 0 (0) = lim
๏จโ0
๏ฆ (0 + ๏จ) โ ๏ฆ (0)
๏จ sin(1๏ฝ๏จ) โ 0
= lim
= lim sin(1๏ฝ๏จ). This limit does not exist since sin(1๏ฝ๏จ) takes the
๏จโ0
๏จโ0
๏จ
๏จ
values โ1 and 1 on any interval containing 0. (Compare with Example 2.2.4.)
60. Since ๏ฆ(๏ธ) = ๏ธ2 sin(1๏ฝ๏ธ) when ๏ธ 6= 0 and ๏ฆ (0) = 0, we have
1
๏ฆ (0 + ๏จ) โ ๏ฆ (0)
๏จ2 sin(1๏ฝ๏จ) โ 0
= lim
= lim ๏จ sin(1๏ฝ๏จ). Since โ1 โค sin โค 1, we have
๏จโ0
๏จโ0
๏จโ0
๏จ
๏จ
๏จ
๏ฆ 0 (0) = lim
1
1
โค |๏จ| โ โ |๏จ| โค ๏จ sin โค |๏จ|. Because lim (โ |๏จ|) = 0 and lim |๏จ| = 0, we know that
๏จโ0
๏จโ0
๏จ
๏จ
๏ต
๏ถ
1
= 0 by the Squeeze Theorem. Thus, ๏ฆ 0 (0) = 0.
lim ๏จ sin
๏จโ0
๏จ
โ |๏จ| โค |๏จ| sin
61. (a) The slope at the origin appears to be 1.
(b) The slope at the origin still appears to be 1.
(c) Yes, the slope at the origin now appears to be 0.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.8
THE DERIVATIVE AS A FUNCTION
ยค
137
2.8 The Derivative as a Function
1. It appears that ๏ฆ is an odd function, so ๏ฆ 0 will be an even functionโthat
is, ๏ฆ 0 (โ๏ก) = ๏ฆ 0 (๏ก).
(a) ๏ฆ 0 (โ3) โ โ0๏บ2
(b) ๏ฆ 0 (โ2) โ 0
(c) ๏ฆ 0 (โ1) โ 1
(d) ๏ฆ 0 (0) โ 2
(e) ๏ฆ 0 (1) โ 1
(f) ๏ฆ 0 (2) โ 0
(g) ๏ฆ 0 (3) โ โ0๏บ2
2. Your answers may vary depending on your estimates.
(a) Note: By estimating the slopes of tangent lines on the
graph of ๏ฆ , it appears that ๏ฆ 0 (0) โ 6.
(b) ๏ฆ 0 (1) โ 0
(c) ๏ฆ 0 (2) โ โ1๏บ5
(d) ๏ฆ 0 (3) โ โ1๏บ3
(e) ๏ฆ 0 (4) โ โ0๏บ8
(f) ๏ฆ 0 (5) โ โ0๏บ3
(g) ๏ฆ 0 (6) โ 0
(h) ๏ฆ 0 (7) โ 0๏บ2
3. (a)0 = II, since from left to right, the slopes of the tangents to graph (a) start out negative, become 0, then positive, then 0, then
negative again. The actual function values in graph II follow the same pattern.
(b) = IV, since from left to right, the slopes of the tangents to graph (b) start out at a ๏ฌxed positive quantity, then suddenly
0
become negative, then positive again. The discontinuities in graph IV indicate sudden changes in the slopes of the tangents.
(c) = I, since the slopes of the tangents to graph (c) are negative for ๏ธ ๏ผ 0 and positive for ๏ธ ๏พ 0, as are the function values of
0
graph I.
(d) = III, since from left to right, the slopes of the tangents to graph (d) are positive, then 0, then negative, then 0, then
0
positive, then 0, then negative again, and the function values in graph III follow the same pattern.
Hints for Exercises 4 โ11: First plot ๏ธ-intercepts on the graph of ๏ฆ 0 for any horizontal tangents on the graph of ๏ฆ . Look for any corners on the graph
of ๏ฆ โ there will be a discontinuity on the graph of ๏ฆ 0 . On any interval where ๏ฆ has a tangent with positive (or negative) slope, the graph of ๏ฆ 0 will be
positive (or negative). If the graph of the function is linear, the graph of ๏ฆ 0 will be a horizontal line.
4.
5.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
138
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
6.
7.
8.
9.
10.
11.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.8
THE DERIVATIVE AS A FUNCTION
12. The slopes of the tangent lines on the graph of ๏น = ๏ (๏ด) are always
positive, so the ๏น-values of ๏น = ๏ 0(๏ด) are always positive. These values start
out relatively small and keep increasing, reaching a maximum at about
๏ด = 6. Then the ๏น-values of ๏น = ๏ 0(๏ด) decrease and get close to zero. The
graph of ๏ 0 tells us that the yeast culture grows most rapidly after 6 hours
and then the growth rate declines.
13. (a) ๏ 0 (๏ด) is the instantaneous rate of change of percentage
of full capacity with respect to elapsed time in hours.
(b) The graph of ๏ 0 (๏ด) tells us that the rate of change of
percentage of full capacity is decreasing and
approaching 0.
14. (a) ๏ 0 (๏ถ) is the instantaneous rate of change of fuel
economy with respect to speed.
(b) Graphs will vary depending on estimates of ๏ 0 , but
will change from positive to negative at about ๏ถ = 50.
(c) To save on gas, drive at the speed where ๏ is a
maximum and ๏ 0 is 0, which is about 50 mi๏ฝ h.
15. It appears that there are horizontal tangents on the graph of ๏ for ๏ด = 1963
and ๏ด = 1971. Thus, there are zeros for those values of ๏ด on the graph of
๏ 0 . The derivative is negative for the years 1963 to 1971.
16. See Figure 3.3.1.
17.
The slope at 0 appears to be 1 and the slope at 1 appears
to be 2๏บ7. As ๏ธ decreases, the slope gets closer to 0. Since
the graphs are so similar, we might guess that ๏ฆ 0 (๏ธ) = ๏ฅ๏ธ .
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
ยค
139
140
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
18.
As ๏ธ increases toward 1, ๏ฆ 0 (๏ธ) decreases from very large
numbers to 1. As ๏ธ becomes large, ๏ฆ 0 (๏ธ) gets closer to 0.
As a guess, ๏ฆ 0 (๏ธ) = 1๏ฝ๏ธ2 or ๏ฆ 0 (๏ธ) = 1๏ฝ๏ธ makes sense.
๏ก ๏ข
19. (a) By zooming in, we estimate that ๏ฆ 0 (0) = 0, ๏ฆ 0 12 = 1, ๏ฆ 0 (1) = 2,
and ๏ฆ 0 (2) = 4.
๏ก ๏ข
(b) By symmetry, ๏ฆ 0 (โ๏ธ) = โ๏ฆ 0 (๏ธ). So ๏ฆ 0 โ 12 = โ1, ๏ฆ 0 (โ1) = โ2,
and ๏ฆ 0 (โ2) = โ4.
(c) It appears that ๏ฆ 0 (๏ธ) is twice the value of ๏ธ, so we guess that ๏ฆ 0 (๏ธ) = 2๏ธ.
๏ฆ (๏ธ + ๏จ) โ ๏ฆ (๏ธ)
(๏ธ + ๏จ)2 โ ๏ธ2
= lim
๏จโ0
๏จโ0
๏จ
๏จ
๏ก 2
๏ข
๏ธ + 2๏จ๏ธ + ๏จ2 โ ๏ธ2
2๏จ๏ธ + ๏จ2
๏จ(2๏ธ + ๏จ)
= lim
= lim
= lim
= lim (2๏ธ + ๏จ) = 2๏ธ
๏จโ0
๏จโ0
๏จโ0
๏จโ0
๏จ
๏จ
๏จ
(d) ๏ฆ 0 (๏ธ) = lim
๏ก ๏ข
20. (a) By zooming in, we estimate that ๏ฆ 0 (0) = 0, ๏ฆ 0 12 โ 0๏บ75, ๏ฆ 0 (1) โ 3, ๏ฆ 0 (2) โ 12, and ๏ฆ 0 (3) โ 27.
๏ก ๏ข
(b) By symmetry, ๏ฆ 0 (โ๏ธ) = ๏ฆ 0 (๏ธ). So ๏ฆ 0 โ 12 โ 0๏บ75, ๏ฆ 0 (โ1) โ 3, ๏ฆ 0 (โ2) โ 12, and ๏ฆ 0 (โ3) โ 27.
(c)
(d) Since ๏ฆ 0 (0) = 0, it appears that ๏ฆ 0 may have the form ๏ฆ 0 (๏ธ) = ๏ก๏ธ2 .
Using ๏ฆ 0 (1) = 3, we have ๏ก = 3, so ๏ฆ 0 (๏ธ) = 3๏ธ2 .
๏ฆ (๏ธ + ๏จ) โ ๏ฆ (๏ธ)
(๏ธ + ๏จ)3 โ ๏ธ3
(๏ธ3 + 3๏ธ2 ๏จ + 3๏ธ๏จ2 + ๏จ3 ) โ ๏ธ3
= lim
= lim
๏จโ0
๏จโ0
๏จโ0
๏จ
๏จ
๏จ
(e) ๏ฆ 0 (๏ธ) = lim
3๏ธ2 ๏จ + 3๏ธ๏จ2 + ๏จ3
๏จ(3๏ธ2 + 3๏ธ๏จ + ๏จ2 )
= lim
= lim (3๏ธ2 + 3๏ธ๏จ + ๏จ2 ) = 3๏ธ2
๏จโ0
๏จโ0
๏จโ0
๏จ
๏จ
= lim
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.8
21. ๏ฆ 0 (๏ธ) = lim
๏จโ0
= lim
๏จโ0
THE DERIVATIVE AS A FUNCTION
ยค
๏ฆ(๏ธ + ๏จ) โ ๏ฆ (๏ธ)
[3(๏ธ + ๏จ) โ 8] โ (3๏ธ โ 8)
3๏ธ + 3๏จ โ 8 โ 3๏ธ + 8
= lim
= lim
๏จโ0
๏จโ0
๏จ
๏จ
๏จ
3๏จ
= lim 3 = 3
๏จโ0
๏จ
Domain of ๏ฆ = domain of ๏ฆ 0 = R.
22. ๏ฆ 0 (๏ธ) = lim
๏จโ0
๏ฆ(๏ธ + ๏จ) โ ๏ฆ (๏ธ)
[๏ญ(๏ธ + ๏จ) + ๏ข] โ (๏ญ๏ธ + ๏ข)
๏ญ๏ธ + ๏ญ๏จ + ๏ข โ ๏ญ๏ธ โ ๏ข
= lim
= lim
๏จโ0
๏จโ0
๏จ
๏จ
๏จ
๏ญ๏จ
= lim ๏ญ = ๏ญ
๏จโ0
๏จ
Domain of ๏ฆ = domain of ๏ฆ 0 = R.
= lim
๏จโ0
๏ฃ
๏ค ๏ก
๏ข
2๏บ5(๏ด + ๏จ)2 + 6(๏ด + ๏จ) โ 2๏บ5๏ด2 + 6๏ด
๏ฆ (๏ด + ๏จ) โ ๏ฆ(๏ด)
= lim
23. ๏ฆ (๏ด) = lim
๏จโ0
๏จโ0
๏จ
๏จ
0
= lim
2๏บ5(๏ด2 + 2๏ด๏จ + ๏จ2 ) + 6๏ด + 6๏จ โ 2๏บ5๏ด2 โ 6๏ด
2๏บ5๏ด2 + 5๏ด๏จ + 2๏บ5๏จ2 + 6๏จ โ 2๏บ5๏ด2
= lim
๏จโ0
๏จ
๏จ
= lim
๏จ (5๏ด + 2๏บ5๏จ + 6)
5๏ด๏จ + 2๏บ5๏จ2 + 6๏จ
= lim
= lim (5๏ด + 2๏บ5๏จ + 6)
๏จโ0
๏จโ0
๏จ
๏จ
๏จโ0
๏จโ0
= 5๏ด + 6
Domain of ๏ฆ = domain of ๏ฆ 0 = R.
๏ฃ
๏ค
4 + 8(๏ธ + ๏จ) โ 5(๏ธ + ๏จ)2 โ (4 + 8๏ธ โ 5๏ธ2 )
๏ฆ(๏ธ + ๏จ) โ ๏ฆ (๏ธ)
= lim
๏จโ0
๏จโ0
๏จ
๏จ
24. ๏ฆ 0 (๏ธ) = lim
= lim
4 + 8๏ธ + 8๏จ โ 5(๏ธ2 + 2๏ธ๏จ + ๏จ2 ) โ 4 โ 8๏ธ + 5๏ธ2
8๏จ โ 5๏ธ2 โ 10๏ธ๏จ โ 5๏จ2 + 5๏ธ2
= lim
๏จโ0
๏จ
๏จ
= lim
8๏จ โ 10๏ธ๏จ โ 5๏จ2
๏จ(8 โ 10๏ธ โ 5๏จ)
= lim
= lim (8 โ 10๏ธ โ 5๏จ)
๏จโ0
๏จโ0
๏จ
๏จ
๏จโ0
๏จโ0
= 8 โ 10๏ธ
Domain of ๏ฆ = domain of ๏ฆ 0 = R.
25. ๏ฆ 0 (๏ธ) = lim
๏จโ0
= lim
๏จโ0
๏ฆ(๏ธ + ๏จ) โ ๏ฆ (๏ธ)
[(๏ธ + ๏จ)2 โ 2(๏ธ + ๏จ)3 ] โ (๏ธ2 โ 2๏ธ3 )
= lim
๏จโ0
๏จ
๏จ
๏ธ2 + 2๏ธ๏จ + ๏จ2 โ 2๏ธ3 โ 6๏ธ2 ๏จ โ 6๏ธ๏จ2 โ 2๏จ3 โ ๏ธ2 + 2๏ธ3
๏จ
2๏ธ๏จ + ๏จ2 โ 6๏ธ2 ๏จ โ 6๏ธ๏จ2 โ 2๏จ3
๏จ(2๏ธ + ๏จ โ 6๏ธ2 โ 6๏ธ๏จ โ 2๏จ2 )
= lim
๏จโ0
๏จ
๏จ
2
2
2
= lim (2๏ธ + ๏จ โ 6๏ธ โ 6๏ธ๏จ โ 2๏จ ) = 2๏ธ โ 6๏ธ
= lim
๏จโ0
๏จโ0
Domain of ๏ฆ = domain of ๏ฆ 0 = R.
โ
โ
๏ดโ ๏ด+๏จ
1
1
โ
โ
โ
๏ตโ
๏ถ
โ
โ
โ
โโ
๏ง(๏ด + ๏จ) โ ๏ง(๏ด)
๏ดโ ๏ด+๏จ
๏ด+ ๏ด+๏จ
๏ด+๏จ
๏ด+๏จ ๏ด
๏ด
โ ยทโ
โ
โ
= lim
= lim
= lim
26. ๏ง0 (๏ด) = lim
๏จโ0
๏จโ0
๏จโ0
๏จโ0
๏จ
๏จ
๏จ
๏จ ๏ด+๏จ ๏ด
๏ด+ ๏ด+๏จ
= lim
๏จโ0 ๏จ
๏ด โ (๏ด + ๏จ)
โ๏จ
โ1
โ ๏กโ
โ ๏กโ
โ ๏กโ
โ
โ
๏ข = lim โ
โ
๏ข = lim โ
โ
๏ข
๏จโ0 ๏จ
๏จโ0
๏ด+๏จ ๏ด ๏ด+ ๏ด+๏จ
๏ด+๏จ ๏ด ๏ด+ ๏ด+๏จ
๏ด+๏จ ๏ด ๏ด+ ๏ด+๏จ
โ1
1
โ1
โ ๏ข = ๏ก โ ๏ข = โ 3๏ฝ2
= โ โ ๏กโ
2๏ด
๏ด ๏ด ๏ด+ ๏ด
๏ด 2 ๏ด
Domain of ๏ง = domain of ๏ง0 = (0๏ป โ).
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
141
142
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
๏ง(๏ธ + ๏จ) โ ๏ง(๏ธ)
= lim
27. ๏ง (๏ธ) = lim
๏จโ0
๏จโ0
๏จ
0
= lim
๏จโ0
๏ฃ
๏ข๏ฐ
๏ฐ
โ
โ
9 โ (๏ธ + ๏จ) โ 9 โ ๏ธ
9 โ (๏ธ + ๏จ) + 9 โ ๏ธ
๏ฐ
โ
๏จ
9 โ (๏ธ + ๏จ) + 9 โ ๏ธ
[9 โ (๏ธ + ๏จ)] โ (9 โ ๏ธ)
โ๏จ
๏จ๏ฐ
๏ฉ = lim ๏จ๏ฐ
๏ฉ
โ
โ
๏จโ0
๏จ
9 โ (๏ธ + ๏จ) + 9 โ ๏ธ
๏จ
9 โ (๏ธ + ๏จ) + 9 โ ๏ธ
โ1
โ1
= lim ๏ฐ
= โ
โ
๏จโ0
2 9โ๏ธ
9 โ (๏ธ + ๏จ) + 9 โ ๏ธ
Domain of ๏ง = (โโ๏ป 9], domain of ๏ง0 = (โโ๏ป 9).
(๏ธ + ๏จ)2 โ 1
๏ธ2 โ 1
โ
๏ฆ(๏ธ + ๏จ) โ ๏ฆ (๏ธ)
2(๏ธ + ๏จ) โ 3
2๏ธ โ 3
= lim
28. ๏ฆ 0 (๏ธ) = lim
๏จโ0
๏จโ0
๏จ
๏จ
[(๏ธ + ๏จ)2 โ 1](2๏ธ โ 3) โ [2(๏ธ + ๏จ) โ 3](๏ธ2 โ 1)
[2(๏ธ + ๏จ) โ 3](2๏ธ โ 3)
= lim
๏จโ0
๏จ
(๏ธ2 + 2๏ธ๏จ + ๏จ2 โ 1)(2๏ธ โ 3) โ (2๏ธ + 2๏จ โ 3)(๏ธ2 โ 1)
๏จโ0
๏จ[2(๏ธ + ๏จ) โ 3](2๏ธ โ 3)
= lim
(2๏ธ3 + 4๏ธ2 ๏จ + 2๏ธ๏จ2 โ 2๏ธ โ 3๏ธ2 โ 6๏ธ๏จ โ 3๏จ2 + 3) โ (2๏ธ3 + 2๏ธ2 ๏จ โ 3๏ธ2 โ 2๏ธ โ 2๏จ + 3)
๏จโ0
๏จ(2๏ธ + 2๏จ โ 3)(2๏ธ โ 3)
= lim
4๏ธ2 ๏จ + 2๏ธ๏จ2 โ 6๏ธ๏จ โ 3๏จ2 โ 2๏ธ2 ๏จ + 2๏จ
๏จ(2๏ธ2 + 2๏ธ๏จ โ 6๏ธ โ 3๏จ + 2)
= lim
๏จโ0
๏จโ0
๏จ(2๏ธ + 2๏จ โ 3)(2๏ธ โ 3)
๏จ(2๏ธ + 2๏จ โ 3)(2๏ธ โ 3)
= lim
2๏ธ2 โ 6๏ธ + 2
2๏ธ2 + 2๏ธ๏จ โ 6๏ธ โ 3๏จ + 2
=
๏จโ0 (2๏ธ + 2๏จ โ 3)(2๏ธ โ 3)
(2๏ธ โ 3)2
= lim
Domain of ๏ฆ = domain of ๏ฆ 0 = (โโ๏ป 32 ) โช ( 32 ๏ป โ).
1 โ 2๏ด
1 โ 2(๏ด + ๏จ)
โ
๏(๏ด + ๏จ) โ ๏(๏ด)
3 + (๏ด + ๏จ)
3+๏ด
= lim
29. ๏ (๏ด) = lim
๏จโ0
๏จโ0
๏จ
๏จ
0
[1 โ 2(๏ด + ๏จ)](3 + ๏ด) โ [3 + (๏ด + ๏จ)](1 โ 2๏ด)
[3 + (๏ด + ๏จ)](3 + ๏ด)
= lim
๏จโ0
๏จ
= lim
๏จโ0
= lim
3 + ๏ด โ 6๏ด โ 2๏ด2 โ 6๏จ โ 2๏จ๏ด โ (3 โ 6๏ด + ๏ด โ 2๏ด2 + ๏จ โ 2๏จ๏ด)
โ6๏จ โ ๏จ
= lim
๏จโ0 ๏จ(3 + ๏ด + ๏จ)(3 + ๏ด)
๏จ[3 + (๏ด + ๏จ)](3 + ๏ด)
โ7๏จ
๏จโ0 ๏จ(3 + ๏ด + ๏จ)(3 + ๏ด)
= lim
โ7
๏จโ0 (3 + ๏ด + ๏จ)(3 + ๏ด)
=
โ7
(3 + ๏ด)2
Domain of ๏ = domain of ๏0 = (โโ๏ป โ3) โช (โ3๏ป โ).
๏ฆ(๏ธ + ๏จ) โ ๏ฆ (๏ธ)
(๏ธ + ๏จ)3๏ฝ2 โ ๏ธ3๏ฝ2
[(๏ธ + ๏จ)3๏ฝ2 โ ๏ธ3๏ฝ2 ][(๏ธ + ๏จ)3๏ฝ2 + ๏ธ3๏ฝ2 ]
= lim
= lim
๏จโ0
๏จโ0
๏จ
๏จ
๏จ [(๏ธ + ๏จ)3๏ฝ2 + ๏ธ3๏ฝ2 ]
๏ข
๏ก
๏จ 3๏ธ2 + 3๏ธ๏จ + ๏จ2
(๏ธ + ๏จ)3 โ ๏ธ3
๏ธ3 + 3๏ธ2 ๏จ + 3๏ธ๏จ2 + ๏จ3 โ ๏ธ3
= lim
= lim
= lim
๏จโ0 ๏จ[(๏ธ + ๏จ)3๏ฝ2 + ๏ธ3๏ฝ2 ]
๏จโ0
๏จโ0 ๏จ[(๏ธ + ๏จ)3๏ฝ2 + ๏ธ3๏ฝ2 ]
๏จ[(๏ธ + ๏จ)3๏ฝ2 + ๏ธ3๏ฝ2 ]
30. ๏ฆ 0 (๏ธ) = lim
๏จโ0
3๏ธ2
3๏ธ2 + 3๏ธ๏จ + ๏จ2
= 3๏ฝ2 = 32 ๏ธ1๏ฝ2
3๏ฝ2
3๏ฝ2
๏จโ0 (๏ธ + ๏จ)
+๏ธ
2๏ธ
= lim
Domain of ๏ฆ = domain of ๏ฆ 0 = [0๏ป โ). Strictly speaking, the domain of ๏ฆ 0 is (0๏ป โ) because the limit that de๏ฌnes ๏ฆ 0 (0) does
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.8
THE DERIVATIVE AS A FUNCTION
ยค
143
not exist (as a two-sided limit). But the right-hand derivative (in the sense of Exercise 64) does exist at 0, so in that sense one
could regard the domain of ๏ฆ 0 to be [0๏ป โ).
๏ก 4
๏ข
๏ธ + 4๏ธ3 ๏จ + 6๏ธ2 ๏จ2 + 4๏ธ๏จ3 + ๏จ4 โ ๏ธ4
๏ฆ(๏ธ + ๏จ) โ ๏ฆ (๏ธ)
(๏ธ + ๏จ)4 โ ๏ธ4
= lim
= lim
31. ๏ฆ (๏ธ) = lim
๏จโ0
๏จโ0
๏จโ0
๏จ
๏จ
๏จ
๏ก 3
๏ข
4๏ธ3 ๏จ + 6๏ธ2 ๏จ2 + 4๏ธ๏จ3 + ๏จ4
= lim
= lim 4๏ธ + 6๏ธ2 ๏จ + 4๏ธ๏จ2 + ๏จ3 = 4๏ธ3
๏จโ0
๏จโ0
๏จ
0
Domain of ๏ฆ = domain of ๏ฆ 0 = R.
32. (a)
(b) Note that the third graph in part (a) has small negative values for its slope, ๏ฆ 0 ; but as ๏ธ โ 6โ , ๏ฆ 0 โ โโ.
See the graph in part (d).
๏ฆ(๏ธ + ๏จ) โ ๏ฆ (๏ธ)
๏จ
๏ฃ
๏ข๏ฐ
๏ฐ
โ
โ
6 โ (๏ธ + ๏จ) โ 6 โ ๏ธ
6 โ (๏ธ + ๏จ) + 6 โ ๏ธ
๏ฐ
= lim
โ
๏จโ0
๏จ
6 โ (๏ธ + ๏จ) + 6 โ ๏ธ
(c) ๏ฆ 0 (๏ธ) = lim
๏จโ0
= lim
๏จโ0
(d)
[6 โ (๏ธ + ๏จ)] โ (6 โ ๏ธ)
โ๏จ
๏จ๏ฐ
๏ฉ = lim ๏กโ
๏ข
โ
โ
๏จโ0 ๏จ
6
โ
๏ธ
โ
๏จ+ 6โ๏ธ
๏จ
6 โ (๏ธ + ๏จ) + 6 โ ๏ธ
โ1
โ1
= โ
= lim โ
โ
๏จโ0
2 6โ๏ธ
6โ๏ธโ๏จ+ 6โ๏ธ
Domain of ๏ฆ = (โโ๏ป 6], domain of ๏ฆ 0 = (โโ๏ป 6).
๏ฆ(๏ธ + ๏จ) โ ๏ฆ (๏ธ)
[(๏ธ + ๏จ)4 + 2(๏ธ + ๏จ)] โ (๏ธ4 + 2๏ธ)
= lim
๏จโ0
๏จโ0
๏จ
๏จ
33. (a) ๏ฆ 0 (๏ธ) = lim
๏ธ4 + 4๏ธ3 ๏จ + 6๏ธ2 ๏จ2 + 4๏ธ๏จ3 + ๏จ4 + 2๏ธ + 2๏จ โ ๏ธ4 โ 2๏ธ
๏จโ0
๏จ
= lim
= lim
๏จโ0
4๏ธ3 ๏จ + 6๏ธ2 ๏จ2 + 4๏ธ๏จ3 + ๏จ4 + 2๏จ
๏จ(4๏ธ3 + 6๏ธ2 ๏จ + 4๏ธ๏จ2 + ๏จ3 + 2)
= lim
๏จโ0
๏จ
๏จ
= lim (4๏ธ3 + 6๏ธ2 ๏จ + 4๏ธ๏จ2 + ๏จ3 + 2) = 4๏ธ3 + 2
๏จโ0
(b) Notice that ๏ฆ 0 (๏ธ) = 0 when ๏ฆ has a horizontal tangent, ๏ฆ 0 (๏ธ) is
positive when the tangents have positive slope, and ๏ฆ 0 (๏ธ) is
negative when the tangents have negative slope.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
144
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
๏ฆ (๏ธ + ๏จ) โ ๏ฆ (๏ธ)
[(๏ธ + ๏จ) + 1๏ฝ(๏ธ + ๏จ)] โ (๏ธ + 1๏ฝ๏ธ)
= lim
= lim
34. (a) ๏ฆ 0 (๏ธ) = lim
๏จโ0
๏จโ0
๏จโ0
๏จ
๏จ
๏ธ2 + 1
(๏ธ + ๏จ)2 + 1
โ
๏ธ+๏จ
๏ธ
๏จ
๏ธ[(๏ธ + ๏จ)2 + 1] โ (๏ธ + ๏จ)(๏ธ2 + 1)
(๏ธ3 + 2๏จ๏ธ2 + ๏ธ๏จ2 + ๏ธ) โ (๏ธ3 + ๏ธ + ๏จ๏ธ2 + ๏จ)
= lim
๏จโ0
๏จโ0
๏จ(๏ธ + ๏จ)๏ธ
๏จ(๏ธ + ๏จ)๏ธ
= lim
๏ธ2 โ 1
1
๏จ๏ธ2 + ๏ธ๏จ2 โ ๏จ
๏จ(๏ธ2 + ๏ธ๏จ โ 1)
๏ธ2 + ๏ธ๏จ โ 1
= lim
= lim
=
, or 1 โ 2
๏จโ0
๏จโ0
๏จโ0
๏จ(๏ธ + ๏จ)๏ธ
๏จ(๏ธ + ๏จ)๏ธ
(๏ธ + ๏จ)๏ธ
๏ธ2
๏ธ
= lim
(b) Notice that ๏ฆ 0 (๏ธ) = 0 when ๏ฆ has a horizontal tangent, ๏ฆ 0 (๏ธ) is
positive when the tangents have positive slope, and ๏ฆ 0 (๏ธ) is
negative when the tangents have negative slope. Both functions
are discontinuous at ๏ธ = 0.
35. (a) ๏ 0 (๏ด) is the rate at which the unemployment rate is changing with respect to time. Its units are percent unemployed
per year.
(b) To ๏ฌnd ๏ 0 (๏ด), we use lim
๏จโ0
For 2003: ๏ 0 (2003) โ
๏(๏ด + ๏จ) โ ๏ (๏ด)
๏ (๏ด + ๏จ) โ ๏(๏ด)
โ
for small values of ๏จ.
๏จ
๏จ
5๏บ5 โ 6๏บ0
๏ (2004) โ ๏(2003)
=
= โ0๏บ5
2004 โ 2003
1
For 2004: We estimate ๏ 0 (2004) by using ๏จ = โ1 and ๏จ = 1, and then average the two results to obtain a ๏ฌnal estimate.
๏จ = โ1 โ ๏ 0 (2004) โ
๏จ = 1 โ ๏ 0 (2004) โ
6๏บ0 โ 5๏บ5
๏ (2003) โ ๏ (2004)
=
= โ0๏บ5;
2003 โ 2004
โ1
๏ (2005) โ ๏ (2004)
5๏บ1 โ 5๏บ5
=
= โ0๏บ4.
2005 โ 2004
1
So we estimate that ๏ 0 (2004) โ 12 [โ0๏บ5 + (โ0๏บ4)] = โ0๏บ45. Other values for ๏ 0 (๏ด) are calculated in a similar fashion.
๏ด
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
0
โ0๏บ50
โ0๏บ45
โ0๏บ45
โ0๏บ25
0๏บ60
2๏บ35
1๏บ90
โ0๏บ20
โ0๏บ75
โ0๏บ80
๏ (๏ด)
36. (a) ๏ 0 (๏ด) is the rate at which the number of minimally invasive cosmetic surgery procedures performed in the United States is
changing with respect to time. Its units are thousands of surgeries per year.
(b) To ๏ฌnd ๏ 0 (๏ด), we use lim
๏จโ0
For 2000: ๏ 0 (2000) โ
๏(๏ด + ๏จ) โ ๏(๏ด)
๏(๏ด + ๏จ) โ ๏(๏ด)
โ
for small values of ๏จ.
๏จ
๏จ
4897 โ 5500
๏(2002) โ ๏(2000)
=
= โ301๏บ5
2002 โ 2000
2
For 2002: We estimate ๏ 0 (2002) by using ๏จ = โ2 and ๏จ = 2, and then average the two results to obtain a ๏ฌnal estimate.
๏จ = โ2 โ ๏ 0 (2002) โ
๏จ = 2 โ ๏ 0 (2002) โ
5500 โ 4897
๏(2000) โ ๏(2002)
=
= โ301๏บ5
2000 โ 2002
โ2
7470 โ 4897
๏(2004) โ ๏(2002)
=
= 1286๏บ5
2004 โ 2002
2
So we estimate that ๏ 0 (2002) โ 12 [โ301๏บ5 + 1286๏บ5] = 492๏บ5.
๏ด
2000
2002
2004
2006
2008
2010
2012
0
โ301๏บ5
492๏บ5
1060๏บ25
856๏บ75
605๏บ75
534๏บ5
737
๏ (๏ด)
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.8
(c)
THE DERIVATIVE AS A FUNCTION
ยค
145
(d) We could get more accurate values
for ๏ 0 (๏ด) by obtaining data for
more values of ๏ด.
37. As in Exercise 35, we use one-sided difference quotients for the
๏ฌrst and last values, and average two difference quotients for all
other values.
๏ด
14
21
28
35
42
49
๏(๏ด)
41
54
64
72
78
83
๏ 0 (๏ด)
13
7
23
14
18
14
14
14
11
14
5
7
38. As in Exercise 35, we use one-sided difference quotients for the
๏ฌrst and last values, and average two difference quotients for all
other values. The units for ๏ 0 (๏ธ) are grams per degree (g๏ฝโฆ C).
๏ธ
15๏บ5
17๏บ7
20๏บ0
22๏บ4
24๏บ4
๏ (๏ธ)
37๏บ2
31๏บ0
19๏บ8
9๏บ7
0
โ9๏บ8
โ2๏บ82
โ3๏บ87
โ4๏บ53
โ6๏บ73
โ9๏บ75
๏ (๏ธ)
39. (a) ๏ค๏๏ฝ๏ค๏ด is the rate at which the percentage of the cityโs electrical power produced by solar panels changes with respect to
time ๏ด, measured in percentage points per year.
(b) 2 years after January 1, 2000 (January 1, 2002), the percentage of electrical power produced by solar panels was increasing
at a rate of 3.5 percentage points per year.
40. ๏ค๏๏ฝ๏ค๏ฐ is the rate at which the number of people who travel by car to another state for a vacation changes with respect to the
price of gasoline. If the price of gasoline goes up, we would expect fewer people to travel, so we would expect ๏ค๏๏ฝ๏ค๏ฐ to be
negative.
41. ๏ฆ is not differentiable at ๏ธ = โ4, because the graph has a corner there, and at ๏ธ = 0, because there is a discontinuity there.
42. ๏ฆ is not differentiable at ๏ธ = โ1, because there is a discontinuity there, and at ๏ธ = 2, because the graph has a corner there.
43. ๏ฆ is not differentiable at ๏ธ = 1, because ๏ฆ is not de๏ฌned there, and at ๏ธ = 5, because the graph has a vertical tangent there.
44. ๏ฆ is not differentiable at ๏ธ = โ2 and ๏ธ = 3, because the graph has corners there, and at ๏ธ = 1, because there is a discontinuity
there.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
146
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
45. As we zoom in toward (โ1๏ป 0), the curve appears more and more like a straight
line, so ๏ฆ (๏ธ) = ๏ธ +
๏ฐ
|๏ธ| is differentiable at ๏ธ = โ1. But no matter how much
we zoom in toward the origin, the curve doesnโt straighten outโwe canโt
eliminate the sharp point (a cusp). So ๏ฆ is not differentiable at ๏ธ = 0.
46. As we zoom in toward (0๏ป 1), the curve appears more and more like a straight
line, so ๏ง(๏ธ) = (๏ธ2 โ 1)2๏ฝ3 is differentiable at ๏ธ = 0. But no matter how much
we zoom in toward (1๏ป 0) or (โ1๏ป 0), the curve doesnโt straighten outโwe canโt
eliminate the sharp point (a cusp). So ๏ง is not differentiable at ๏ธ = ยฑ1.
47. Call the curve with the positive ๏น-intercept ๏ง and the other curve ๏จ. Notice that ๏ง has a maximum (horizontal tangent) at
๏ธ = 0, but ๏จ 6= 0, so ๏จ cannot be the derivative of ๏ง. Also notice that where ๏ง is positive, ๏จ is increasing. Thus, ๏จ = ๏ฆ and
๏ง = ๏ฆ 0 . Now ๏ฆ 0 (โ1) is negative since ๏ฆ 0 is below the ๏ธ-axis there and ๏ฆ 00 (1) is positive since ๏ฆ is concave upward at ๏ธ = 1.
Therefore, ๏ฆ 00 (1) is greater than ๏ฆ 0 (โ1).
48. Call the curve with the smallest positive ๏ธ-intercept ๏ง and the other curve ๏จ. Notice that where ๏ง is positive in the ๏ฌrst
quadrant, ๏จ is increasing. Thus, ๏จ = ๏ฆ and ๏ง = ๏ฆ 0 . Now ๏ฆ 0 (โ1) is positive since ๏ฆ 0 is above the ๏ธ-axis there and ๏ฆ 00 (1)
appears to be zero since ๏ฆ has an in๏ฌection point at ๏ธ = 1. Therefore, ๏ฆ 0 (1) is greater than ๏ฆ 00 (โ1).
49. ๏ก = ๏ฆ , ๏ข = ๏ฆ 0 , ๏ฃ = ๏ฆ 00 . We can see this because where ๏ก has a horizontal tangent, ๏ข = 0, and where ๏ข has a horizontal tangent,
๏ฃ = 0. We can immediately see that ๏ฃ can be neither ๏ฆ nor ๏ฆ 0 , since at the points where ๏ฃ has a horizontal tangent, neither ๏ก
nor ๏ข is equal to 0.
50. Where ๏ค has horizontal tangents, only ๏ฃ is 0, so ๏ค0 = ๏ฃ. ๏ฃ has negative tangents for ๏ธ ๏ผ 0 and ๏ข is the only graph that is
negative for ๏ธ ๏ผ 0, so ๏ฃ0 = ๏ข. ๏ข has positive tangents on R (except at ๏ธ = 0), and the only graph that is positive on the same
domain is ๏ก, so ๏ข0 = ๏ก. We conclude that ๏ค = ๏ฆ , ๏ฃ = ๏ฆ 0 , ๏ข = ๏ฆ 00 , and ๏ก = ๏ฆ 000 .
51. We can immediately see that ๏ก is the graph of the acceleration function, since at the points where ๏ก has a horizontal tangent,
neither ๏ฃ nor ๏ข is equal to 0. Next, we note that ๏ก = 0 at the point where ๏ข has a horizontal tangent, so ๏ข must be the graph of
the velocity function, and hence, ๏ข0 = ๏ก. We conclude that ๏ฃ is the graph of the position function.
52. ๏ก must be the jerk since none of the graphs are 0 at its high and low points. ๏ก is 0 where ๏ข has a maximum, so ๏ข0 = ๏ก. ๏ข is 0
where ๏ฃ has a maximum, so ๏ฃ0 = ๏ข. We conclude that ๏ค is the position function, ๏ฃ is the velocity, ๏ข is the acceleration, and ๏ก is
the jerk.
๏ฆ(๏ธ + ๏จ) โ ๏ฆ (๏ธ)
[3(๏ธ + ๏จ)2 + 2(๏ธ + ๏จ) + 1] โ (3๏ธ2 + 2๏ธ + 1)
= lim
๏จโ0
๏จโ0
๏จ
๏จ
53. ๏ฆ 0 (๏ธ) = lim
(3๏ธ2 + 6๏ธ๏จ + 3๏จ2 + 2๏ธ + 2๏จ + 1) โ (3๏ธ2 + 2๏ธ + 1)
6๏ธ๏จ + 3๏จ2 + 2๏จ
= lim
๏จโ0
๏จโ0
๏จ
๏จ
= lim
= lim
๏จโ0
๏จ(6๏ธ + 3๏จ + 2)
= lim (6๏ธ + 3๏จ + 2) = 6๏ธ + 2
๏จโ0
๏จ
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.8
THE DERIVATIVE AS A FUNCTION
ยค
๏ฆ 0 (๏ธ + ๏จ) โ ๏ฆ 0 (๏ธ)
[6(๏ธ + ๏จ) + 2] โ (6๏ธ + 2)
(6๏ธ + 6๏จ + 2) โ (6๏ธ + 2)
= lim
= lim
๏จโ0
๏จโ0
๏จ
๏จ
๏จ
๏ฆ 00 (๏ธ) = lim
๏จโ0
6๏จ
= lim 6 = 6
๏จโ0
๏จ
= lim
๏จโ0
We see from the graph that our answers are reasonable because the graph of
๏ฆ 0 is that of a linear function and the graph of ๏ฆ 00 is that of a constant
function.
๏ฆ(๏ธ + ๏จ) โ ๏ฆ (๏ธ)
[(๏ธ + ๏จ)3 โ 3(๏ธ + ๏จ)] โ (๏ธ3 โ 3๏ธ)
= lim
๏จโ0
๏จโ0
๏จ
๏จ
(๏ธ3 + 3๏ธ2 ๏จ + 3๏ธ๏จ2 + ๏จ3 โ 3๏ธ โ 3๏จ) โ (๏ธ3 โ 3๏ธ)
3๏ธ2 ๏จ + 3๏ธ๏จ2 + ๏จ3 โ 3๏จ
= lim
= lim
๏จโ0
๏จโ0
๏จ
๏จ
54. ๏ฆ 0 (๏ธ) = lim
= lim
๏จโ0
๏จ(3๏ธ2 + 3๏ธ๏จ + ๏จ2 โ 3)
= lim (3๏ธ2 + 3๏ธ๏จ + ๏จ2 โ 3) = 3๏ธ2 โ 3
๏จโ0
๏จ
๏ฆ 0 (๏ธ + ๏จ) โ ๏ฆ 0 (๏ธ)
[3(๏ธ + ๏จ)2 โ 3] โ (3๏ธ2 โ 3)
(3๏ธ2 + 6๏ธ๏จ + 3๏จ2 โ 3) โ (3๏ธ2 โ 3)
= lim
= lim
๏จโ0
๏จโ0
๏จโ0
๏จ
๏จ
๏จ
๏ฆ 00 (๏ธ) = lim
6๏ธ๏จ + 3๏จ2
๏จ(6๏ธ + 3๏จ)
= lim
= lim (6๏ธ + 3๏จ) = 6๏ธ
๏จโ0
๏จโ0
๏จโ0
๏จ
๏จ
= lim
We see from the graph that our answers are reasonable because the graph of
๏ฆ 0 is that of an even function (๏ฆ is an odd function) and the graph of ๏ฆ 00 is
that of an odd function. Furthermore, ๏ฆ 0 = 0 when ๏ฆ has a horizontal
tangent and ๏ฆ 00 = 0 when ๏ฆ 0 has a horizontal tangent.
๏ฃ
๏ค
2(๏ธ + ๏จ)2 โ (๏ธ + ๏จ)3 โ (2๏ธ2 โ ๏ธ3 )
๏ฆ (๏ธ + ๏จ) โ ๏ฆ (๏ธ)
= lim
55. ๏ฆ (๏ธ) = lim
๏จโ0
๏จโ0
๏จ
๏จ
0
๏จ(4๏ธ + 2๏จ โ 3๏ธ2 โ 3๏ธ๏จ โ ๏จ2 )
= lim (4๏ธ + 2๏จ โ 3๏ธ2 โ 3๏ธ๏จ โ ๏จ2 ) = 4๏ธ โ 3๏ธ2
๏จโ0
๏จโ0
๏จ
๏ฃ
๏ค
4(๏ธ + ๏จ) โ 3(๏ธ + ๏จ)2 โ (4๏ธ โ 3๏ธ2 )
๏ฆ 0 (๏ธ + ๏จ) โ ๏ฆ 0 (๏ธ)
๏จ(4 โ 6๏ธ โ 3๏จ)
00
= lim
= lim
๏ฆ (๏ธ) = lim
๏จโ0
๏จโ0
๏จโ0
๏จ
๏จ
๏จ
= lim
= lim (4 โ 6๏ธ โ 3๏จ) = 4 โ 6๏ธ
๏จโ0
๏ฆ 00 (๏ธ + ๏จ) โ ๏ฆ 00 (๏ธ)
[4 โ 6(๏ธ + ๏จ)] โ (4 โ 6๏ธ)
โ6๏จ
= lim
= lim
= lim (โ6) = โ6
๏จโ0
๏จโ0
๏จโ0 ๏จ
๏จโ0
๏จ
๏จ
๏ฆ 000 (๏ธ) = lim
๏ฆ 000 (๏ธ + ๏จ) โ ๏ฆ 000 (๏ธ)
โ6 โ (โ6)
0
= lim
= lim = lim (0) = 0
๏จโ0
๏จโ0
๏จโ0 ๏จ
๏จโ0
๏จ
๏จ
๏ฆ (4) (๏ธ) = lim
The graphs are consistent with the geometric interpretations of the
derivatives because ๏ฆ 0 has zeros where ๏ฆ has a local minimum and a local
maximum, ๏ฆ 00 has a zero where ๏ฆ 0 has a local maximum, and ๏ฆ 000 is a
constant function equal to the slope of ๏ฆ 00 .
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
147
148
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
56. (a) Since we estimate the velocity to be a maximum
at ๏ด = 10, the acceleration is 0 at ๏ด = 10.
(b) Drawing a tangent line at ๏ด = 10 on the graph of ๏ก, ๏ก appears to decrease by 10 ft๏ฝs2 over a period of 20 s.
So at ๏ด = 10 s, the jerk is approximately โ10๏ฝ20 = โ0๏บ5 (ft๏ฝs2 )๏ฝs or ft๏ฝs3 .
57. (a) Note that we have factored ๏ธ โ ๏ก as the difference of two cubes in the third step.
๏ฆ (๏ธ) โ ๏ฆ (๏ก)
๏ธ1๏ฝ3 โ ๏ก1๏ฝ3
๏ธ1๏ฝ3 โ ๏ก1๏ฝ3
= lim
= lim 1๏ฝ3
๏ธโ๏ก
๏ธโ๏ก
๏ธโ๏ก (๏ธ
๏ธโ๏ก
๏ธโ๏ก
โ ๏ก1๏ฝ3 )(๏ธ2๏ฝ3 + ๏ธ1๏ฝ3 ๏ก1๏ฝ3 + ๏ก2๏ฝ3 )
๏ฆ 0(๏ก) = lim
1
= lim
๏ธโ๏ก ๏ธ2๏ฝ3 + ๏ธ1๏ฝ3 ๏ก1๏ฝ3 + ๏ก2๏ฝ3
=
1
or 13 ๏กโ2๏ฝ3
3๏ก2๏ฝ3
โ
3
๏ฆ(0 + ๏จ) โ ๏ฆ(0)
๏จโ0
1
= lim
= lim 2๏ฝ3 . This function increases without bound, so the limit does not
๏จโ0
๏จโ0
๏จโ0 ๏จ
๏จ
๏จ
(b) ๏ฆ 0(0) = lim
exist, and therefore ๏ฆ 0(0) does not exist.
(c) lim |๏ฆ 0 (๏ธ)| = lim
1
๏ธโ0 3๏ธ2๏ฝ3
๏ธโ0
= โ and ๏ฆ is continuous at ๏ธ = 0 (root function), so ๏ฆ has a vertical tangent at ๏ธ = 0.
๏ง(๏ธ) โ ๏ง(0)
๏ธ2๏ฝ3 โ 0
1
= lim
= lim 1๏ฝ3 , which does not exist.
๏ธโ0
๏ธโ0
๏ธโ0 ๏ธ
๏ธโ0
๏ธ
58. (a) ๏ง 0(0) = lim
๏ง(๏ธ) โ ๏ง(๏ก)
๏ธ2๏ฝ3 โ ๏ก2๏ฝ3
(๏ธ1๏ฝ3 โ ๏ก1๏ฝ3 )(๏ธ1๏ฝ3 + ๏ก1๏ฝ3 )
= lim
= lim 1๏ฝ3
๏ธโ๏ก
๏ธโ๏ก
๏ธโ๏ก (๏ธ
๏ธโ๏ก
๏ธโ๏ก
โ ๏ก1๏ฝ3 )(๏ธ2๏ฝ3 + ๏ธ1๏ฝ3 ๏ก1๏ฝ3 + ๏ก2๏ฝ3 )
(b) ๏ง 0(๏ก) = lim
๏ธ1๏ฝ3 + ๏ก1๏ฝ3
= lim
๏ธโ๏ก ๏ธ2๏ฝ3 + ๏ธ1๏ฝ3 ๏ก1๏ฝ3 + ๏ก2๏ฝ3
=
2๏ก1๏ฝ3
2
= 1๏ฝ3 or 23 ๏กโ1๏ฝ3
3๏ก2๏ฝ3
3๏ก
(c) ๏ง(๏ธ) = ๏ธ2๏ฝ3 is continuous at ๏ธ = 0 and
lim |๏ง0(๏ธ)| = lim
๏ธโ0
2
๏ธโ0 3 |๏ธ|1๏ฝ3
(d)
= โ. This shows that
๏ง has a vertical tangent line at ๏ธ = 0.
59. ๏ฆ (๏ธ) = |๏ธ โ 6| =
๏จ
๏ธโ6
โ(๏ธ โ 6) if ๏ธ โ 6 ๏ผ 0
So the right-hand limit is lim
๏ธโ6+
is lim
๏ธโ6โ
if ๏ธ โ 6 โฅ 6
=
๏จ
๏ธ โ 6 if ๏ธ โฅ 6
6 โ ๏ธ if ๏ธ ๏ผ 6
๏ฆ (๏ธ) โ ๏ฆ (6)
|๏ธ โ 6| โ 0
๏ธโ6
= lim
= lim
= lim 1 = 1, and the left-hand limit
๏ธโ6
๏ธโ6
๏ธโ6+
๏ธโ6+ ๏ธ โ 6
๏ธโ6+
๏ฆ(๏ธ) โ ๏ฆ(6)
|๏ธ โ 6| โ 0
6โ๏ธ
= lim
= lim
= lim (โ1) = โ1. Since these limits are not equal,
๏ธโ6
๏ธโ6
๏ธโ6โ
๏ธโ6โ ๏ธ โ 6
๏ธโ6โ
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
SECTION 2.8
THE DERIVATIVE AS A FUNCTION
๏ฆ (๏ธ) โ ๏ฆ (6)
does not exist and ๏ฆ is not differentiable at 6.
๏ธโ6
๏จ
1
if ๏ธ ๏พ 6
0
0
However, a formula for ๏ฆ is ๏ฆ (๏ธ) =
โ1 if ๏ธ ๏ผ 6
๏ฆ 0 (6) = lim
๏ธโ6
Another way of writing the formula is ๏ฆ 0 (๏ธ) =
๏ธโ6
.
|๏ธ โ 6|
60. ๏ฆ (๏ธ) = [[๏ธ]] is not continuous at any integer ๏ฎ, so ๏ฆ is not differentiable
at ๏ฎ by the contrapositive of Theorem 4. If ๏ก is not an integer, then ๏ฆ
is constant on an open interval containing ๏ก, so ๏ฆ 0(๏ก) = 0. Thus,
๏ฆ 0(๏ธ) = 0, ๏ธ not an integer.
๏จ 2
๏ธ
if ๏ธ โฅ 0
61. (a) ๏ฆ (๏ธ) = ๏ธ |๏ธ| =
2
โ๏ธ if ๏ธ ๏ผ 0
(b) Since ๏ฆ (๏ธ) = ๏ธ2 for ๏ธ โฅ 0, we have ๏ฆ 0 (๏ธ) = 2๏ธ for ๏ธ ๏พ 0.
[See Exercise 19(d).] Similarly, since ๏ฆ (๏ธ) = โ๏ธ2 for ๏ธ ๏ผ 0,
we have ๏ฆ 0 (๏ธ) = โ2๏ธ for ๏ธ ๏ผ 0. At ๏ธ = 0, we have
๏ฆ 0 (0) = lim
๏ธโ0
๏ฆ (๏ธ) โ ๏ฆ (0)
๏ธ |๏ธ|
= lim
= lim |๏ธ| = 0๏บ
๏ธโ0 ๏ธ
๏ธโ0
๏ธโ0
So ๏ฆ is differentiable at 0. Thus, ๏ฆ is differentiable for all ๏ธ.
0
๏จ
2๏ธ
if ๏ธ โฅ 0
(c) From part (b), we have ๏ฆ (๏ธ) =
62. (a) |๏ธ| =
๏จ
2๏ธ if ๏ธ โฅ 0
โ2๏ธ if ๏ธ ๏ผ 0
๏ฉ
= 2 |๏ธ|.
if ๏ธ โฅ 0
๏ธ
โ๏ธ
if ๏ธ ๏ผ 0
๏จ
so ๏ง(๏ธ) = ๏ธ + |๏ธ| =
0
if ๏ธ ๏ผ 0
.
Graph the line ๏น = 2๏ธ for ๏ธ โฅ 0 and graph ๏น = 0 (the x-axis) for ๏ธ ๏ผ 0.
(b) ๏ง is not differentiable at ๏ธ = 0 because the graph has a corner there, but
is differentiable at all other values; that is, ๏ง is differentiable on (โโ๏ป 0) โช (0๏ป โ).
(c) ๏ง(๏ธ) =
๏จ
2๏ธ
0
if ๏ธ โฅ 0
if ๏ธ ๏ผ 0
0
โ ๏ง (๏ธ) =
๏จ
2
if ๏ธ ๏พ 0
0
if ๏ธ ๏ผ 0
Another way of writing the formula is ๏ง0 (๏ธ) = 1 + sgn ๏ธ for ๏ธ 6= 0.
63. (a) If ๏ฆ is even, then
๏ฆ 0 (โ๏ธ) = lim
๏จโ0
= lim
๏จโ0
๏ฆ (โ๏ธ + ๏จ) โ ๏ฆ (โ๏ธ)
๏ฆ [โ(๏ธ โ ๏จ)] โ ๏ฆ (โ๏ธ)
= lim
๏จโ0
๏จ
๏จ
๏ฆ (๏ธ โ ๏จ) โ ๏ฆ(๏ธ)
๏ฆ (๏ธ โ ๏จ) โ ๏ฆ (๏ธ)
= โ lim
๏จโ0
๏จ
โ๏จ
= โ lim
โ๏ธโ0
[let โ๏ธ = โ๏จ]
๏ฆ (๏ธ + โ๏ธ) โ ๏ฆ (๏ธ)
= โ๏ฆ 0 (๏ธ)
โ๏ธ
Therefore, ๏ฆ 0 is odd.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
ยค
149
150
ยค
CHAPTER 2
LIMITS AND DERIVATIVES
(b) If ๏ฆ is odd, then
๏ฆ 0 (โ๏ธ) = lim
๏จโ0
= lim
๏จโ0
= lim
๏ฆ (โ๏ธ + ๏จ) โ ๏ฆ (โ๏ธ)
๏ฆ [โ(๏ธ โ ๏จ)] โ ๏ฆ (โ๏ธ)
= lim
๏จโ0
๏จ
๏จ
โ๏ฆ(๏ธ โ ๏จ) + ๏ฆ (๏ธ)
๏ฆ (๏ธ โ ๏จ) โ ๏ฆ(๏ธ)
= lim
๏จโ0
๏จ
โ๏จ
โ๏ธโ0
[let โ๏ธ = โ๏จ]
๏ฆ (๏ธ + โ๏ธ) โ ๏ฆ (๏ธ)
= ๏ฆ 0 (๏ธ)
โ๏ธ
Therefore, ๏ฆ 0 is even.
๏ฆ (4 + ๏จ) โ ๏ฆ (4)
5 โ (4 + ๏จ) โ 1
= lim
๏จ
๏จ
๏จโ0โ
โ๏จ
= lim
= โ1
๏จโ0โ ๏จ
(b)
0
64. (a) ๏ฆโ
(4) = lim
๏จโ0โ
and
1
โ1
๏ฆ
(4
+
๏จ)
โ
๏ฆ
(4)
5
โ
(4
+ ๏จ)
0
๏ฆ+
= lim
(4) = lim
๏จ
๏จ
๏จโ0+
๏จโ0+
1 โ (1 โ ๏จ)
1
= lim
=1
= lim
๏จโ0+ ๏จ(1 โ ๏จ)
๏จโ0+ 1 โ ๏จ
๏ธ
0
if ๏ธ โค 0
๏พ
๏ผ
5โ๏ธ
if 0 ๏ผ ๏ธ ๏ผ 4
(c) ๏ฆ (๏ธ) =
๏พ
๏บ
1๏ฝ(5 โ ๏ธ) if ๏ธ โฅ 4
At 4 we have lim ๏ฆ(๏ธ) = lim (5 โ ๏ธ) = 1 and lim ๏ฆ(๏ธ) = lim
๏ธโ4โ
๏ธโ4โ
๏ธโ4+
๏ธโ4+
1
= 1, so lim ๏ฆ (๏ธ) = 1 = ๏ฆ (4) and ๏ฆ is
๏ธโ4
5โ๏ธ
continuous at 4. Since ๏ฆ (5) is not de๏ฌned, ๏ฆ is discontinuous at 5. These expressions show that ๏ฆ is continuous on the
intervals (โโ๏ป 0), (0๏ป 4), (4๏ป 5) and (5๏ป โ). Since lim ๏ฆ (๏ธ) = lim (5 โ ๏ธ) = 5 6= 0 = lim ๏ฆ (๏ธ), lim ๏ฆ (๏ธ) does
๏ธโ0+
๏ธโ0+
๏ธโ0โ
๏ธโ0
not exist, so ๏ฆ is discontinuous (and therefore not differentiable) at 0.
0
0
(4) 6= ๏ฆ+
(4), and from (c), ๏ฆ is not differentiable at 0 or 5.
(d) From (a), ๏ฆ is not differentiable at 4 since ๏ฆโ
65. These graphs are idealizations conveying the spirit of the problem. In reality, changes in speed are not instantaneous, so the
graph in (a) would not have corners and the graph in (b) would be continuous.
(a)
(b)
66. (a)
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
CHAPTER 2 REVIEW
(b) The initial temperature of the water is close to room temperature because of
ยค
151
(c)
the water that was in the pipes. When the water from the hot water tank
starts coming out, ๏ค๏ ๏ฝ๏ค๏ด is large and positive as ๏ increases to the
temperature of the water in the tank. In the next phase, ๏ค๏ ๏ฝ๏ค๏ด = 0 as the
water comes out at a constant, high temperature. After some time, ๏ค๏ ๏ฝ๏ค๏ด
becomes small and negative as the contents of the hot water tank are
exhausted. Finally, when the hot water has run out, ๏ค๏ ๏ฝ๏ค๏ด is once again 0 as
the water maintains its (cold) temperature.
In the right triangle in the diagram, let โ๏น be the side opposite angle ๏ and โ๏ธ
67.
the side adjacent to angle ๏. Then the slope of the tangent line ๏
is ๏ญ = โ๏น๏ฝโ๏ธ = tan ๏. Note that 0 ๏ผ ๏ ๏ผ ๏ผ2 . We know (see Exercise 19)
that the derivative of ๏ฆ(๏ธ) = ๏ธ2 is ๏ฆ 0 (๏ธ) = 2๏ธ. So the slope of the tangent to
the curve at the point (1๏ป 1) is 2. Thus, ๏ is the angle between 0 and ๏ผ2 whose
tangent is 2; that is, ๏ = tanโ1 2 โ 63โฆ .
2 Review
1. False.
Limit Law 2 applies only if the individual limits exist (these donโt).
2. False.
Limit Law 5 cannot be applied if the limit of the denominator is 0 (it is).
3. True.
Limit Law 5 applies.
4. False.
๏ธ2 โ 9
is not de๏ฌned when ๏ธ = 3, but ๏ธ + 3 is.
๏ธโ3
5. True.
6. True.
lim
๏ธโ3
๏ธ2 โ 9
(๏ธ + 3)(๏ธ โ 3)
= lim
= lim (๏ธ + 3)
๏ธโ3
๏ธโ3
๏ธโ3
(๏ธ โ 3)
The limit doesnโt exist since ๏ฆ (๏ธ)๏ฝ๏ง(๏ธ) doesnโt approach any real number as ๏ธ approaches 5.
(The denominator approaches 0 and the numerator doesnโt.)
7. False.
Consider lim
๏ธโ5
๏ธ(๏ธ โ 5)
sin(๏ธ โ 5)
or lim
. The ๏ฌrst limit exists and is equal to 5. By Example 2.2.3, we know that
๏ธโ5
๏ธโ5
๏ธโ5
the latter limit exists (and it is equal to 1).
8. False.
If ๏ฆ (๏ธ) = 1๏ฝ๏ธ, ๏ง(๏ธ) = โ1๏ฝ๏ธ, and ๏ก = 0, then lim ๏ฆ(๏ธ) does not exist, lim ๏ง(๏ธ) does not exist, but
๏ธโ0
๏ธโ0
lim [๏ฆ(๏ธ) + ๏ง(๏ธ)] = lim 0 = 0 exists.
๏ธโ0
9. True.
๏ธโ0
Suppose that lim [๏ฆ (๏ธ) + ๏ง(๏ธ)] exists. Now lim ๏ฆ(๏ธ) exists and lim ๏ง(๏ธ) does not exist, but
๏ธโ๏ก
๏ธโ๏ก
๏ธโ๏ก
lim ๏ง(๏ธ) = lim {[๏ฆ (๏ธ) + ๏ง(๏ธ)] โ ๏ฆ (๏ธ)} = lim [๏ฆ (๏ธ) + ๏ง(๏ธ)] โ lim ๏ฆ(๏ธ) [by Limit Law 2], which exists, and
๏ธโ๏ก
๏ธโ๏ก
๏ธโ๏ก
๏ธโ๏ก
we have a contradiction. Thus, lim [๏ฆ (๏ธ) + ๏ง(๏ธ)] does not exist.
๏ธโ๏ก
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
152
ยค
10. False.
CHAPTER 2 LIMITS AND DERIVATIVES
๏ท
Consider lim [๏ฆ(๏ธ)๏ง(๏ธ)] = lim (๏ธ โ 6)
๏ธโ6
๏ธโ6
so ๏ฆ (6)๏ง(6) 6= 1.
11. True.
12. False.
๏ธ
1
. It exists (its value is 1) but ๏ฆ (6) = 0 and ๏ง(6) does not exist,
๏ธโ6
A polynomial is continuous everywhere, so lim ๏ฐ(๏ธ) exists and is equal to ๏ฐ(๏ข).
๏ธโ๏ข
Consider lim [๏ฆ(๏ธ) โ ๏ง(๏ธ)] = lim
๏ธโ0
๏ธโ0
approaches โ.
๏ต
๏ถ
1
1
. This limit is โโ (not 0), but each of the individual functions
โ
๏ธ2
๏ธ4
13. True.
See Figure 2.6.8.
14. False.
Consider ๏ฆ (๏ธ) = sin ๏ธ for ๏ธ โฅ 0. lim ๏ฆ (๏ธ) 6= ยฑโ and ๏ฆ has no horizontal asymptote.
๏ธโโ
๏จ
1๏ฝ(๏ธ โ 1) if ๏ธ 6= 1
15. False.
Consider ๏ฆ (๏ธ) =
16. False.
The function ๏ฆ must be continuous in order to use the Intermediate Value Theorem. For example, let
๏จ
1
if 0 โค ๏ธ ๏ผ 3
๏ฆ (๏ธ) =
There is no number ๏ฃ โ [0๏ป 3] with ๏ฆ (๏ฃ) = 0.
โ1 if ๏ธ = 3
17. True.
Use Theorem 2.5.8 with ๏ก = 2, ๏ข = 5, and ๏ง(๏ธ) = 4๏ธ2 โ 11. Note that ๏ฆ (4) = 3 is not needed.
18. True.
Use the Intermediate Value Theorem with ๏ก = โ1, ๏ข = 1, and ๏ = ๏ผ, since 3 ๏ผ ๏ผ ๏ผ 4.
if ๏ธ = 1
2
19. True, by the de๏ฌnition of a limit with ๏ข = 1.
20. False.
For example, let ๏ฆ (๏ธ) =
๏จ2
๏ธ + 1 if ๏ธ 6= 0
if ๏ธ = 0
2
๏ก
๏ข
Then ๏ฆ(๏ธ) ๏พ 1 for all ๏ธ, but lim ๏ฆ (๏ธ) = lim ๏ธ2 + 1 = 1.
๏ธโ0
21. False.
22. True.
23. False.
24. True.
๏ธโ0
See the note after Theorem 2.8.4.
๏ฆ 0(๏ฒ) exists โ ๏ฆ is differentiable at ๏ฒ
๏ค 2๏น
is the second derivative while
๏ค๏ธ2
๏ต ๏ถ2
๏ค 2๏น
๏ค๏น
=
0,
but
= 1.
then
๏ค๏ธ2
๏ค๏ธ
๏ต
๏ค๏น
๏ค๏ธ
โ ๏ฆ is continuous at ๏ฒ
๏ถ2
โ
lim ๏ฆ (๏ธ) = ๏ฆ (๏ฒ).
๏ธโ๏ฒ
is the ๏ฌrst derivative squared. For example, if ๏น = ๏ธ,
๏ฆ (๏ธ) = ๏ธ10 โ 10๏ธ2 + 5 is continuous on the interval [0๏ป 2], ๏ฆ (0) = 5, ๏ฆ (1) = โ4, and ๏ฆ (2) = 989. Since
โ4 ๏ผ 0 ๏ผ 5, there is a number ๏ฃ in (0๏ป 1) such that ๏ฆ (๏ฃ) = 0 by the Intermediate Value Theorem. Thus, there is a
root of the equation ๏ธ10 โ 10๏ธ2 + 5 = 0 in the interval (0๏ป 1). Similarly, there is a root in (1๏ป 2).
25. True.
See Exercise 2.5.72(b).
26. False
See Exercise 2.5.72(b).
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
CHAPTER 2 REVIEW
1. (a) (i) lim ๏ฆ (๏ธ) = 3
(ii)
๏ธโ2+
ยค
lim ๏ฆ (๏ธ) = 0
๏ธโโ3+
(iii) lim ๏ฆ (๏ธ) does not exist since the left and right limits are not equal. (The left limit is โ2.)
๏ธโโ3
(iv) lim ๏ฆ (๏ธ) = 2
๏ธโ4
(v) lim ๏ฆ (๏ธ) = โ
(vi) lim ๏ฆ (๏ธ) = โโ
(vii) lim ๏ฆ (๏ธ) = 4
(viii) lim ๏ฆ (๏ธ) = โ1
๏ธโ0
๏ธโ2โ
๏ธโโ
๏ธโโโ
(b) The equations of the horizontal asymptotes are ๏น = โ1 and ๏น = 4.
(c) The equations of the vertical asymptotes are ๏ธ = 0 and ๏ธ = 2.
(d) ๏ฆ is discontinuous at ๏ธ = โ3, 0, 2, and 4. The discontinuities are jump, in๏ฌnite, in๏ฌnite, and removable, respectively.
2.
๏ธโโโ
lim ๏ฆ(๏ธ) = โ2,
๏ธโโ
lim ๏ฆ (๏ธ) = โโ,
๏ธโ3+
๏ธโ3โ
lim ๏ฆ (๏ธ) = 0,
lim ๏ฆ (๏ธ) = โ,
๏ธโโ3
lim ๏ฆ (๏ธ) = 2,
๏ฆ is continuous from the right at 3
3
3. Since the exponential function is continuous, lim ๏ฅ๏ธ โ๏ธ = ๏ฅ1โ1 = ๏ฅ0 = 1.
๏ธโ1
4. Since rational functions are continuous, lim
๏ธ2 โ 9
๏ธโ3 ๏ธ2 + 2๏ธ โ 3
=
32 โ 9
32 + 2(3) โ 3
=
0
= 0.
12
โ3 โ 3
โ6
3
๏ธ2 โ 9
(๏ธ + 3)(๏ธ โ 3)
๏ธโ3
= lim
= lim
=
=
=
๏ธโโ3 ๏ธ2 + 2๏ธ โ 3
๏ธโโ3 (๏ธ + 3)(๏ธ โ 1)
๏ธโโ3 ๏ธ โ 1
โ3 โ 1
โ4
2
5. lim
๏ธ2 โ 9
๏ธ2 โ 9
2
+
+
=
โโ
since
๏ธ
๏ผ 0 for 1 ๏ผ ๏ธ ๏ผ 3.
+
2๏ธ
โ
3
โ
0
as
๏ธ
โ
1
and
๏ธ2 + 2๏ธ โ 3
๏ธโ1+ ๏ธ2 + 2๏ธ โ 3
6. lim
๏ข
๏ก 3
๏ก
๏ข
๏จ โ 3๏จ2 + 3๏จ โ 1 + 1
(๏จ โ 1)3 + 1
๏จ3 โ 3๏จ2 + 3๏จ
= lim
= lim
= lim ๏จ2 โ 3๏จ + 3 = 3
๏จโ0
๏จโ0
๏จโ0
๏จโ0
๏จ
๏จ
๏จ
7. lim
Another solution: Factor the numerator as a sum of two cubes and then simplify.
๏ค
๏ฃ
[(๏จ โ 1) + 1] (๏จ โ 1)2 โ 1(๏จ โ 1) + 12
(๏จ โ 1)3 + 1
(๏จ โ 1)3 + 13
= lim
= lim
lim
๏จโ0
๏จโ0
๏จโ0
๏จ
๏จ
๏จ
๏ฃ
๏ค
2
= lim (๏จ โ 1) โ ๏จ + 2 = 1 โ 0 + 2 = 3
๏จโ0
(๏ด + 2)(๏ด โ 2)
2+2
4
1
๏ด2 โ 4
๏ด+2
= lim
= lim 2
=
=
=
๏ดโ2 ๏ด3 โ 8
๏ดโ2 (๏ด โ 2)(๏ด2 + 2๏ด + 4)
๏ดโ2 ๏ด + 2๏ด + 4
4+4+4
12
3
8. lim
โ
โ
๏ฒ
๏ฒ
4
+
=
โ
since
(๏ฒ
โ
9)
โ
0
as
๏ฒ
โ
9
and
๏พ 0 for ๏ฒ 6= 9.
๏ฒโ9 (๏ฒ โ 9)4
(๏ฒ โ 9)4
9. lim
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
153
154
ยค
CHAPTER 2 LIMITS AND DERIVATIVES
4โ๏ถ
10. lim
๏ถโ4+ |4 โ ๏ถ|
๏ถโ4+ โ(4 โ ๏ถ)
๏ต4 โ 1
11. lim
4โ๏ถ
= lim
๏ตโ1 ๏ต3 + 5๏ต2 โ 6๏ต
= lim
๏ตโ1
= lim
1
๏ถโ4+ โ1
= โ1
2(2)
4
(๏ต2 + 1)(๏ต2 โ 1)
(๏ต2 + 1)(๏ต + 1)(๏ต โ 1)
(๏ต2 + 1)(๏ต + 1)
= lim
= lim
=
=
๏ตโ1
๏ตโ1
๏ต(๏ต2 + 5๏ต โ 6)
๏ต(๏ต + 6)(๏ต โ 1)
๏ต(๏ต + 6)
1(7)
7
โ
โ
โ
๏ธ
๏ทโ
๏ธ+6โ๏ธ
๏ธ+6โ๏ธ
๏ธ+6+๏ธ
( ๏ธ + 6 )2 โ ๏ธ2
๏กโ
๏ข
โ
=
lim
ยท
=
lim
๏ธโ3 ๏ธ3 โ 3๏ธ2
๏ธโ3
๏ธโ3 ๏ธ2 (๏ธ โ 3)
๏ธ2 (๏ธ โ 3)
๏ธ+6+๏ธ
๏ธ+6+๏ธ
12. lim
๏ธ + 6 โ ๏ธ2
โ(๏ธ2 โ ๏ธ โ 6)
โ(๏ธ โ 3)(๏ธ + 2)
๏กโ
๏ข = lim
๏กโ
๏ข = lim
๏กโ
๏ข
๏ธโ3 ๏ธ2 (๏ธ โ 3)
๏ธโ3 ๏ธ2 (๏ธ โ 3)
๏ธโ3 ๏ธ2 (๏ธ โ 3)
๏ธ+6+๏ธ
๏ธ+6+๏ธ
๏ธ+6+๏ธ
= lim
= lim
๏ธโ3 ๏ธ2
13. Since ๏ธ is positive,
5
โ(๏ธ + 2)
5
๏กโ
๏ข =โ
=โ
9(3 + 3)
54
๏ธ+6+๏ธ
โ
๏ธ2 = |๏ธ| = ๏ธ. Thus,
๏ฐ
โ
โ
โ
โ
1 โ 9๏ฝ๏ธ2
1
๏ธ2 โ 9
๏ธ2 โ 9๏ฝ ๏ธ2
1โ0
= lim
= lim
=
=
lim
๏ธโโ 2๏ธ โ 6
๏ธโโ (2๏ธ โ 6)๏ฝ๏ธ
๏ธโโ
2 โ 6๏ฝ๏ธ
2โ0
2
14. Since ๏ธ is negative,
โ
๏ธ2 = |๏ธ| = โ๏ธ. Thus,
๏ฐ
โ
โ
โ
โ
1 โ 9๏ฝ๏ธ2
1
๏ธ2 โ 9
๏ธ2 โ 9๏ฝ ๏ธ2
1โ0
= lim
= lim
=
=โ
๏ธโโโ 2๏ธ โ 6
๏ธโโโ (2๏ธ โ 6)๏ฝ(โ๏ธ)
๏ธโโโ โ2 + 6๏ฝ๏ธ
โ2 + 0
2
lim
15. Let ๏ด = sin ๏ธ. Then as ๏ธ โ ๏ผโ , sin ๏ธ โ 0+ , so ๏ด โ 0+ . Thus, lim ln(sin ๏ธ) = lim ln ๏ด = โโ.
๏ธโ๏ผ โ
16.
lim
๏ธโโโ
17. lim
๏ธโโ
๏ดโ0+
0โ0โ1
โ1
1
1 โ 2๏ธ2 โ ๏ธ4
(1 โ 2๏ธ2 โ ๏ธ4 )๏ฝ๏ธ4
1๏ฝ๏ธ4 โ 2๏ฝ๏ธ2 โ 1
=
=
=
= lim
= lim
4
4
4
๏ธโโโ
๏ธโโโ
5 + ๏ธ โ 3๏ธ
(5 + ๏ธ โ 3๏ธ )๏ฝ๏ธ
5๏ฝ๏ธ4 + 1๏ฝ๏ธ3 โ 3
0+0โ3
โ3
3
โ
๏ทโ 2
๏ธ
๏ธ + 4๏ธ + 1 โ ๏ธ
๏ธ2 + 4๏ธ + 1 + ๏ธ
(๏ธ2 + 4๏ธ + 1) โ ๏ธ2
ยทโ
= lim โ
๏ธโโ
๏ธโโ
1
๏ธ2 + 4๏ธ + 1 + ๏ธ
๏ธ2 + 4๏ธ + 1 + ๏ธ
๏จ
๏ฉ
โ
(4๏ธ + 1)๏ฝ๏ธ
divide by ๏ธ = ๏ธ2 for ๏ธ ๏พ 0
= lim โ
๏ธโโ (
๏ธ2 + 4๏ธ + 1 + ๏ธ)๏ฝ๏ธ
๏กโ
๏ข
๏ธ2 + 4๏ธ + 1 โ ๏ธ = lim
4 + 1๏ฝ๏ธ
4
4+0
= =2
= lim ๏ฐ
= โ
๏ธโโ
2
1+0+0+1
1 + 4๏ฝ๏ธ + 1๏ฝ๏ธ2 + 1
2
18. Let ๏ด = ๏ธ โ ๏ธ2 = ๏ธ(1 โ ๏ธ). Then as ๏ธ โ โ, ๏ด โ โโ, and lim ๏ฅ๏ธโ๏ธ = lim ๏ฅ๏ด = 0.
๏ธโโ
๏ดโโโ
19. Let ๏ด = 1๏ฝ๏ธ. Then as ๏ธ โ 0+ , ๏ด โ โ , and lim tanโ1 (1๏ฝ๏ธ) = lim tanโ1 ๏ด =
๏ธโ0+
20. lim
๏ธโ1
๏ต
1
1
+ 2
๏ธโ1
๏ธ โ 3๏ธ + 2
๏ถ
๏ดโโ
๏ผ
.
2
๏ท
๏ท
๏ธ
๏ธ
1
1
1
๏ธโ2
= lim
+
= lim
+
๏ธโ1 ๏ธ โ 1
๏ธโ1 (๏ธ โ 1)(๏ธ โ 2)
(๏ธ โ 1)(๏ธ โ 2)
(๏ธ โ 1)(๏ธ โ 2)
๏ท
๏ธ
1
1
๏ธโ1
= lim
=
= โ1
= lim
๏ธโ1 (๏ธ โ 1)(๏ธ โ 2)
๏ธโ1 ๏ธ โ 2
1โ2
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
CHAPTER 2 REVIEW
๏ก
ยค
๏ข
21. From the graph of ๏น = cos2 ๏ธ ๏ฝ๏ธ2 , it appears that ๏น = 0 is the horizontal
asymptote and ๏ธ = 0 is the vertical asymptote. Now 0 โค (cos ๏ธ)2 โค 1 โ
cos2 ๏ธ
1
0
โค
โค 2
2
๏ธ
๏ธ2
๏ธ
โ 0โค
cos2 ๏ธ
1
โค 2 . But lim 0 = 0 and
๏ธโยฑโ
๏ธ2
๏ธ
1
cos2 ๏ธ
= 0, so by the Squeeze Theorem, lim
= 0.
2
๏ธโยฑโ ๏ธ
๏ธโยฑโ
๏ธ2
lim
cos2 ๏ธ
= โ because cos2 ๏ธ โ 1 and ๏ธ2 โ 0+ as ๏ธ โ 0, so ๏ธ = 0 is the
๏ธโ0
๏ธ2
Thus, ๏น = 0 is the horizontal asymptote. lim
vertical asymptote.
22. From the graph of ๏น = ๏ฆ (๏ธ) =
โ
โ
๏ธ2 + ๏ธ + 1 โ ๏ธ2 โ ๏ธ, it appears that there are 2 horizontal asymptotes and possibly 2
vertical asymptotes. To obtain a different form for ๏ฆ , letโs multiply and divide it by its conjugate.
โ
โ
โ
๏กโ
๏ข ๏ธ2 + ๏ธ + 1 + ๏ธ2 โ ๏ธ
(๏ธ2 + ๏ธ + 1) โ (๏ธ2 โ ๏ธ)
2
2
โ
โ
= โ
๏ธ +๏ธ+1โ ๏ธ โ๏ธ โ
๏ฆ1 (๏ธ) =
๏ธ2 + ๏ธ + 1 + ๏ธ2 โ ๏ธ
๏ธ2 + ๏ธ + 1 + ๏ธ2 โ ๏ธ
2๏ธ + 1
โ
= โ
๏ธ2 + ๏ธ + 1 + ๏ธ2 โ ๏ธ
Now
2๏ธ + 1
โ
lim ๏ฆ1 (๏ธ) = lim โ
๏ธโโ
๏ธ2 + ๏ธ + 1 + ๏ธ2 โ ๏ธ
๏ธโโ
2 + (1๏ฝ๏ธ)
๏ฐ
= lim ๏ฐ
๏ธโโ
1 + (1๏ฝ๏ธ) + (1๏ฝ๏ธ2 ) + 1 โ (1๏ฝ๏ธ)
=
[since
โ
๏ธ2 = ๏ธ for ๏ธ ๏พ 0]
2
= 1,
1+1
so ๏น = 1 is a horizontal asymptote. For ๏ธ ๏ผ 0, we have
โ
๏ธ2 = |๏ธ| = โ๏ธ, so when we divide the denominator by ๏ธ,
with ๏ธ ๏ผ 0, we get
๏ฃ
๏ข๏ฒ
๏ฒ
โ
โ
โ
โ
1
1
1
๏ธ2 + ๏ธ + 1 + ๏ธ2 โ ๏ธ
๏ธ2 + ๏ธ + 1 + ๏ธ2 โ ๏ธ
โ
=โ
=โ
1+ + 2 + 1โ
๏ธ
๏ธ
๏ธ
๏ธ
๏ธ2
Therefore,
2๏ธ + 1
2 + (1๏ฝ๏ธ)
๏จ๏ฐ
๏ฉ
โ
lim ๏ฆ1 (๏ธ) = lim โ
= lim
๏ฐ
2
2
๏ธโโโ
๏ธโโ
๏ธ +๏ธ+1+ ๏ธ โ๏ธ
โ
1 + (1๏ฝ๏ธ) + (1๏ฝ๏ธ2 ) + 1 โ (1๏ฝ๏ธ)
๏ธโโโ
=
2
= โ1๏ป
โ(1 + 1)
so ๏น = โ1 is a horizontal asymptote.
The domain of ๏ฆ is (โโ๏ป 0] โช [1๏ป โ). As ๏ธ โ 0โ , ๏ฆ (๏ธ) โ 1, so
โ
๏ธ = 0 is not a vertical asymptote. As ๏ธ โ 1+ , ๏ฆ (๏ธ) โ 3, so ๏ธ = 1
is not a vertical asymptote and hence there are no vertical asymptotes.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
155
156
ยค
CHAPTER 2 LIMITS AND DERIVATIVES
23. Since 2๏ธ โ 1 โค ๏ฆ(๏ธ) โค ๏ธ2 for 0 ๏ผ ๏ธ ๏ผ 3 and lim (2๏ธ โ 1) = 1 = lim ๏ธ2 , we have lim ๏ฆ (๏ธ) = 1 by the Squeeze Theorem.
๏ธโ1
๏ธโ1
๏ฏ
๏ข
๏ก
๏ธโ1
๏ข๏ฏ
๏ก
24. Let ๏ฆ(๏ธ) = โ๏ธ2 , ๏ง(๏ธ) = ๏ธ2 cos 1๏ฝ๏ธ2 and ๏จ(๏ธ) = ๏ธ2 . Then since ๏ฏcos 1๏ฝ๏ธ2 ๏ฏ โค 1 for ๏ธ 6= 0, we have
๏ฆ (๏ธ) โค ๏ง(๏ธ) โค ๏จ(๏ธ) for ๏ธ 6= 0, and so lim ๏ฆ (๏ธ) = lim ๏จ(๏ธ) = 0 โ
๏ธโ0
๏ธโ0
lim ๏ง(๏ธ) = 0 by the Squeeze Theorem.
๏ธโ0
25. Given ๏ข ๏พ 0, we need ๏ฑ ๏พ 0 such that if 0 ๏ผ |๏ธ โ 2| ๏ผ ๏ฑ, then |(14 โ 5๏ธ) โ 4| ๏ผ ๏ข. But |(14 โ 5๏ธ) โ 4| ๏ผ ๏ข
|โ5๏ธ + 10| ๏ผ ๏ข
โ
โ
|โ5| |๏ธ โ 2| ๏ผ ๏ข โ |๏ธ โ 2| ๏ผ ๏ข๏ฝ5. So if we choose ๏ฑ = ๏ข๏ฝ5, then 0 ๏ผ |๏ธ โ 2| ๏ผ ๏ฑ
โ
|(14 โ 5๏ธ) โ 4| ๏ผ ๏ข. Thus, lim (14 โ 5๏ธ) = 4 by the de๏ฌnition of a limit.
๏ธโ2
โ
โ
โ
26. Given ๏ข ๏พ 0 we must ๏ฌnd ๏ฑ ๏พ 0 so that if 0 ๏ผ |๏ธ โ 0| ๏ผ ๏ฑ, then | 3 ๏ธ โ 0| ๏ผ ๏ข. Now | 3 ๏ธ โ 0| = | 3 ๏ธ| ๏ผ ๏ข
โ
โ
๏ฐ
โ
โ
3
โ | 3 ๏ธ โ 0| = | 3 ๏ธ| = 3 |๏ธ| ๏ผ ๏ข3 = ๏ข.
โ 3
|๏ธ| = | 3 ๏ธ| ๏ผ ๏ข3 . So take ๏ฑ = ๏ข3 . Then 0 ๏ผ |๏ธ โ 0| = |๏ธ| ๏ผ ๏ข3
โ
Therefore, by the de๏ฌnition of a limit, lim 3 ๏ธ = 0.
๏ธโ0
๏ฏ
๏ฏ
27. Given ๏ข ๏พ 0, we need ๏ฑ ๏พ 0 so that if 0 ๏ผ |๏ธ โ 2| ๏ผ ๏ฑ, then ๏ฏ๏ธ2 โ 3๏ธ โ (โ2)๏ฏ ๏ผ ๏ข. First, note that if |๏ธ โ 2| ๏ผ 1, then
โ1 ๏ผ ๏ธ โ 2 ๏ผ 1, so 0 ๏ผ ๏ธ โ 1 ๏ผ 2 โ |๏ธ โ 1| ๏ผ 2. Now let ๏ฑ = min {๏ข๏ฝ2๏ป 1}. Then 0 ๏ผ |๏ธ โ 2| ๏ผ ๏ฑ
๏ฏ 2
๏ฏ
๏ฏ๏ธ โ 3๏ธ โ (โ2)๏ฏ = |(๏ธ โ 2)(๏ธ โ 1)| = |๏ธ โ 2| |๏ธ โ 1| ๏ผ (๏ข๏ฝ2)(2) = ๏ข.
โ
Thus, lim (๏ธ2 โ 3๏ธ) = โ2 by the de๏ฌnition of a limit.
๏ธโ2
โ
28. Given ๏ ๏พ 0, we need ๏ฑ ๏พ 0 such that if 0 ๏ผ ๏ธ โ 4 ๏ผ ๏ฑ, then 2๏ฝ ๏ธ โ 4 ๏พ ๏. This is true
๏ธ โ 4 ๏ผ 4๏ฝ๏ 2 . So if we choose ๏ฑ = 4๏ฝ๏ 2 , then 0 ๏ผ ๏ธ โ 4 ๏ผ ๏ฑ
๏ก โ
๏ข
lim 2๏ฝ ๏ธ โ 4 = โ.
โ
โ
๏ธ โ 4 ๏ผ 2๏ฝ๏
โ
โ
โ 2๏ฝ ๏ธ โ 4 ๏พ ๏. So by the de๏ฌnition of a limit,
๏ธโ4+
29. (a) ๏ฆ (๏ธ) =
โ
โ๏ธ if ๏ธ ๏ผ 0, ๏ฆ (๏ธ) = 3 โ ๏ธ if 0 โค ๏ธ ๏ผ 3, ๏ฆ (๏ธ) = (๏ธ โ 3)2 if ๏ธ ๏พ 3.
โ
โ๏ธ = 0
(i) lim ๏ฆ (๏ธ) = lim (3 โ ๏ธ) = 3
(ii) lim ๏ฆ (๏ธ) = lim
(iii) Because of (i) and (ii), lim ๏ฆ (๏ธ) does not exist.
(iv) lim ๏ฆ (๏ธ) = lim (3 โ ๏ธ) = 0
๏ธโ0+
๏ธโ0โ
๏ธโ0+
๏ธโ0
๏ธโ3โ
2
(v) lim ๏ฆ (๏ธ) = lim (๏ธ โ 3) = 0
๏ธโ3+
๏ธโ0โ
๏ธโ3โ
(vi) Because of (iv) and (v), lim ๏ฆ (๏ธ) = 0.
๏ธโ3
๏ธโ3+
(b) ๏ฆ is discontinuous at 0 since lim ๏ฆ (๏ธ) does not exist.
๏ธโ0
(c)
๏ฆ is discontinuous at 3 since ๏ฆ (3) does not exist.
30. (a) ๏ง(๏ธ) = 2๏ธ โ ๏ธ2 if 0 โค ๏ธ โค 2, ๏ง(๏ธ) = 2 โ ๏ธ if 2 ๏ผ ๏ธ โค 3, ๏ง(๏ธ) = ๏ธ โ 4 if 3 ๏ผ ๏ธ ๏ผ 4, ๏ง(๏ธ) = ๏ผ if ๏ธ โฅ 4.
Therefore, lim ๏ง(๏ธ) = lim
๏ธโ2โ
๏ธโ2โ
๏ก
๏ข
2๏ธ โ ๏ธ2 = 0 and lim ๏ง(๏ธ) = lim (2 โ ๏ธ) = 0. Thus, lim ๏ง(๏ธ) = 0 = ๏ง (2),
๏ธโ2+
๏ธโ2
๏ธโ2+
so ๏ง is continuous at 2. lim ๏ง(๏ธ) = lim (2 โ ๏ธ) = โ1 and lim ๏ง(๏ธ) = lim (๏ธ โ 4) = โ1. Thus,
๏ธโ3โ
๏ธโ3โ
๏ธโ3+
๏ธโ3+
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
CHAPTER 2 REVIEW
ยค
157
(b)
lim ๏ง(๏ธ) = โ1 = ๏ง(3), so ๏ง is continuous at 3.
๏ธโ3
lim ๏ง(๏ธ) = lim (๏ธ โ 4) = 0 and lim ๏ง(๏ธ) = lim ๏ผ = ๏ผ.
๏ธโ4โ
๏ธโ4โ
๏ธโ4+
๏ธโ4+
Thus, lim ๏ง(๏ธ) does not exist, so ๏ง is discontinuous at 4. But
๏ธโ4
lim ๏ง(๏ธ) = ๏ผ = ๏ง(4), so ๏ง is continuous from the right at 4.
๏ธโ4+
31. sin ๏ธ and ๏ฅ๏ธ are continuous on R by Theorem 2.5.7. Since ๏ฅ๏ธ is continuous on R, ๏ฅsin ๏ธ is continuous on R by Theorem 2.5.9.
Lastly, ๏ธ is continuous on R since itโs a polynomial and the product ๏ธ๏ฅsin ๏ธ is continuous on its domain R by Theorem 2.5.4.
32. ๏ธ2 โ 9 is continuous on R since it is a polynomial and
โ
๏ธ is continuous on [0๏ป โ) by Theorem 2.5.7, so the composition
โ
๏ฉ
๏ช
๏ธ2 โ 9 is continuous on ๏ธ | ๏ธ2 โ 9 โฅ 0 = (โโ๏ป โ3] โช [3๏ป โ) by Theorem 2.5.9. Note that ๏ธ2 โ 2 6= 0 on this set and
โ
๏ธ2 โ 9
so the quotient function ๏ง(๏ธ) = 2
is continuous on its domain, (โโ๏ป โ3] โช [3๏ป โ) by Theorem 2.5.4.
๏ธ โ2
33. ๏ฆ (๏ธ) = ๏ธ5 โ ๏ธ3 + 3๏ธ โ 5 is continuous on the interval [1๏ป 2], ๏ฆ (1) = โ2, and ๏ฆ(2) = 25. Since โ2 ๏ผ 0 ๏ผ 25, there is a
number ๏ฃ in (1๏ป 2) such that ๏ฆ (๏ฃ) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation
๏ธ5 โ ๏ธ3 + 3๏ธ โ 5 = 0 in the interval (1๏ป 2).
34. ๏ฆ (๏ธ) = cos
โ
๏ธ โ ๏ฅ๏ธ + 2 is continuous on the interval [0๏ป 1], ๏ฆ(0) = 2, and ๏ฆ (1) โ โ0๏บ2. Since โ0๏บ2 ๏ผ 0 ๏ผ 2, there is a
number ๏ฃ in (0๏ป 1) such that ๏ฆ (๏ฃ) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation
โ
โ
cos ๏ธ โ ๏ฅ๏ธ + 2 = 0, or cos ๏ธ = ๏ฅ๏ธ โ 2, in the interval (0๏ป 1).
35. (a) The slope of the tangent line at (2๏ป 1) is
lim
๏ธโ2
๏ฆ (๏ธ) โ ๏ฆ (2)
9 โ 2๏ธ2 โ 1
8 โ 2๏ธ2
โ2(๏ธ2 โ 4)
โ2(๏ธ โ 2)(๏ธ + 2)
= lim
= lim
= lim
= lim
๏ธโ2
๏ธโ2
๏ธโ2
๏ธโ2
๏ธโ2
๏ธโ2
๏ธโ2
๏ธโ2
๏ธโ2
= lim [โ2(๏ธ + 2)] = โ2 ยท 4 = โ8
๏ธโ2
(b) An equation of this tangent line is ๏น โ 1 = โ8(๏ธ โ 2) or ๏น = โ8๏ธ + 17.
36. For a general point with ๏ธ-coordinate ๏ก, we have
๏ญ = lim
๏ธโ๏ก
2๏ฝ(1 โ 3๏ธ) โ 2๏ฝ(1 โ 3๏ก)
2(1 โ 3๏ก) โ 2(1 โ 3๏ธ)
6(๏ธ โ ๏ก)
= lim
= lim
๏ธโ๏ก (1 โ 3๏ก)(1 โ 3๏ธ)(๏ธ โ ๏ก)
๏ธโ๏ก (1 โ 3๏ก)(1 โ 3๏ธ)(๏ธ โ ๏ก)
๏ธโ๏ก
6
= lim
๏ธโ๏ก (1 โ 3๏ก)(1 โ 3๏ธ)
=
6
(1 โ 3๏ก)2
For ๏ก = 0, ๏ญ = 6 and ๏ฆ (0) = 2, so an equation of the tangent line is ๏น โ 2 = 6(๏ธ โ 0) or ๏น = 6๏ธ + 2๏บ For ๏ก = โ1, ๏ญ = 38
and ๏ฆ (โ1) = 12 , so an equation of the tangent line is ๏น โ 12 = 38 (๏ธ + 1) or ๏น = 38 ๏ธ + 78 .
37. (a) ๏ณ = ๏ณ(๏ด) = 1 + 2๏ด + ๏ด2 ๏ฝ4. The average velocity over the time interval [1๏ป 1 + ๏จ] is
๏ถave =
๏ฑ
1 + 2(1 + ๏จ) + (1 + ๏จ)2 4 โ 13๏ฝ4
10๏จ + ๏จ2
10 + ๏จ
๏ณ(1 + ๏จ) โ ๏ณ(1)
=
=
=
(1 + ๏จ) โ 1
๏จ
4๏จ
4
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
[continued]
158
ยค
CHAPTER 2 LIMITS AND DERIVATIVES
So for the following intervals the average velocities are:
(i) [1๏ป 3]: ๏จ = 2, ๏ถave = (10 + 2)๏ฝ4 = 3 m๏ฝs
(ii) [1๏ป 2]: ๏จ = 1, ๏ถave = (10 + 1)๏ฝ4 = 2๏บ75 m๏ฝs
(iii) [1๏ป 1๏บ5]: ๏จ = 0๏บ5, ๏ถave = (10 + 0๏บ5)๏ฝ4 = 2๏บ625 m๏ฝs
(iv) [1๏ป 1๏บ1]: ๏จ = 0๏บ1, ๏ถave = (10 + 0๏บ1)๏ฝ4 = 2๏บ525 m๏ฝs
(b) When ๏ด = 1, the instantaneous velocity is lim
๏จโ0
10
๏ณ(1 + ๏จ) โ ๏ณ(1)
10 + ๏จ
= lim
=
= 2๏บ5 m๏ฝs.
๏จโ0
๏จ
4
4
38. (a) When ๏ increases from 200 in3 to 250 in3 , we have โ๏ = 250 โ 200 = 50 in3 , and since ๏ = 800๏ฝ๏ ,
โ๏ = ๏ (250) โ ๏ (200) =
is
800
800
โ
= 3๏บ2 โ 4 = โ0๏บ8 lb๏ฝin2 . So the average rate of change
250
200
lb๏ฝin2
โ๏
โ0๏บ8
=
= โ0๏บ016
.
โ๏
50
in3
(b) Since ๏ = 800๏ฝ๏ , the instantaneous rate of change of ๏ with respect to ๏ is
lim
โ๏
๏จโ0 โ๏
= lim
๏จโ0
๏ (๏ + ๏จ) โ ๏ (๏ )
800๏ฝ(๏ + ๏จ) โ 800๏ฝ๏
800 [๏ โ (๏ + ๏จ)]
= lim
= lim
๏จโ0
๏จโ0
๏จ
๏จ
๏จ(๏ + ๏จ)๏
= lim
โ800
๏จโ0 (๏ + ๏จ)๏
=โ
800
๏2
which is inversely proportional to the square of ๏ .
๏ฆ(๏ธ) โ ๏ฆ (2)
๏ธ3 โ 2๏ธ โ 4
= lim
๏ธโ2
๏ธโ2
๏ธโ2
๏ธโ2
39. (a) ๏ฆ 0 (2) = lim
(c)
(๏ธ โ 2)(๏ธ2 + 2๏ธ + 2)
= lim (๏ธ2 + 2๏ธ + 2) = 10
๏ธโ2
๏ธโ2
๏ธโ2
= lim
(b) ๏น โ 4 = 10(๏ธ โ 2) or ๏น = 10๏ธ โ 16
40. 26 = 64, so ๏ฆ (๏ธ) = ๏ธ6 and ๏ก = 2.
41. (a) ๏ฆ 0 (๏ฒ) is the rate at which the total cost changes with respect to the interest rate. Its units are dollars๏ฝ(percent per year).
(b) The total cost of paying off the loan is increasing by $1200๏ฝ(percent per year) as the interest rate reaches 10%. So if the
interest rate goes up from 10% to 11%, the cost goes up approximately $1200.
(c) As ๏ฒ increases, ๏ increases. So ๏ฆ 0 (๏ฒ) will always be positive.
42.
43.
44.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
CHAPTER 2 REVIEW
ยค
159
๏ฐ
๏ฐ
โ
โ
3 โ 5(๏ธ + ๏จ) โ 3 โ 5๏ธ 3 โ 5(๏ธ + ๏จ) + 3 โ 5๏ธ
๏ฆ(๏ธ + ๏จ) โ ๏ฆ (๏ธ)
๏ฐ
= lim
45. (a) ๏ฆ 0 (๏ธ) = lim
โ
๏จโ0
๏จโ0
๏จ
๏จ
3 โ 5(๏ธ + ๏จ) + 3 โ 5๏ธ
= lim
๏จโ0
โ5
[3 โ 5(๏ธ + ๏จ)] โ (3 โ 5๏ธ)
โ5
๏ณ๏ฐ
๏ด = lim ๏ฐ
= โ
โ
โ
๏จโ0
2
3
โ 5๏ธ
3
โ
5(๏ธ
+
๏จ)
+
3
โ
5๏ธ
๏จ
3 โ 5(๏ธ + ๏จ) + 3 โ 5๏ธ
(b) Domain of ๏ฆ : (the radicand must be nonnegative) 3 โ 5๏ธ โฅ 0 โ
๏ค
๏ก
5๏ธ โค 3 โ ๏ธ โ โโ๏ป 35
Domain of ๏ฆ 0 : exclude 35 because it makes the denominator zero;
๏ข
๏ก
๏ธ โ โโ๏ป 35
(c) Our answer to part (a) is reasonable because ๏ฆ 0 (๏ธ) is always negative and
๏ฆ is always decreasing.
46. (a) As ๏ธ โ ยฑโ, ๏ฆ (๏ธ) = (4 โ ๏ธ)๏ฝ(3 + ๏ธ) โ โ1, so there is a horizontal
asymptote at ๏น = โ1. As ๏ธ โ โ3+ , ๏ฆ (๏ธ) โ โ, and as ๏ธ โ โ3โ ,
๏ฆ (๏ธ) โ โโ. Thus, there is a vertical asymptote at ๏ธ = โ3.
(b) Note that ๏ฆ is decreasing on (โโ๏ป โ3) and (โ3๏ป โ), so ๏ฆ 0 is negative on
those intervals. As ๏ธ โ ยฑโ, ๏ฆ 0 โ 0. As ๏ธ โ โ3โ and as ๏ธ โ โ3+ ,
๏ฆ 0 โ โโ.
4โ๏ธ
4 โ (๏ธ + ๏จ)
โ
๏ฆ(๏ธ
+
๏จ)
โ
๏ฆ
(๏ธ)
3
+
(๏ธ
+
๏จ)
3+๏ธ
(3 + ๏ธ) [4 โ (๏ธ + ๏จ)] โ (4 โ ๏ธ) [3 + (๏ธ + ๏จ)]
= lim
= lim
(c) ๏ฆ 0 (๏ธ) = lim
๏จโ0
๏จโ0
๏จโ0
๏จ
๏จ
๏จ [3 + (๏ธ + ๏จ)] (3 + ๏ธ)
(12 โ 3๏ธ โ 3๏จ + 4๏ธ โ ๏ธ2 โ ๏จ๏ธ) โ (12 + 4๏ธ + 4๏จ โ 3๏ธ โ ๏ธ2 โ ๏จ๏ธ)
๏จโ0
๏จ[3 + (๏ธ + ๏จ)](3 + ๏ธ)
= lim
= lim
โ7๏จ
๏จโ0 ๏จ [3 + (๏ธ + ๏จ)] (3 + ๏ธ)
= lim
โ7
๏จโ0 [3 + (๏ธ + ๏จ)] (3 + ๏ธ)
=โ
7
(3 + ๏ธ)2
(d) The graphing device con๏ฌrms our graph in part (b).
47. ๏ฆ is not differentiable: at ๏ธ = โ4 because ๏ฆ is not continuous, at ๏ธ = โ1 because ๏ฆ has a corner, at ๏ธ = 2 because ๏ฆ is not
continuous, and at ๏ธ = 5 because ๏ฆ has a vertical tangent.
48. The graph of ๏ก has tangent lines with positive slope for ๏ธ ๏ผ 0 and negative slope for ๏ธ ๏พ 0, and the values of ๏ฃ ๏ฌt this pattern,
so ๏ฃ must be the graph of the derivative of the function for ๏ก. The graph of ๏ฃ has horizontal tangent lines to the left and right of
the ๏ธ-axis and ๏ข has zeros at these points. Hence, ๏ข is the graph of the derivative of the function for ๏ฃ. Therefore, ๏ก is the graph
of ๏ฆ , ๏ฃ is the graph of ๏ฆ 0 , and ๏ข is the graph of ๏ฆ 00 .
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
160
ยค
CHAPTER 2 LIMITS AND DERIVATIVES
49. Domain: (โโ๏ป 0) โช (0๏ป โ); lim ๏ฆ(๏ธ) = 1; lim ๏ฆ (๏ธ) = 0;
๏ธโ0โ
๏ธโ0+
๏ฆ 0 (๏ธ) ๏พ 0 for all ๏ธ in the domain; lim ๏ฆ 0 (๏ธ) = 0; lim ๏ฆ 0 (๏ธ) = 1
๏ธโโโ
๏ธโโ
50. (a) ๏ 0 (๏ด) is the rate at which the percentage of Americans under the age of 18 is changing with respect to time. Its units are
percent per year (%๏ฝyr).
(b) To ๏ฌnd ๏ 0 (๏ด), we use lim
๏จโ0
For 1950: ๏ 0 (1950) โ
๏ (๏ด + ๏จ) โ ๏ (๏ด) ๏ (๏ด + ๏จ) โ ๏ (๏ด)
โ
for small values of ๏จ.
๏จ
๏จ
35๏บ7 โ 31๏บ1
๏ (1960) โ ๏ (1950)
=
= 0๏บ46
1960 โ 1950
10
For 1960: We estimate ๏ 0 (1960) by using ๏จ = โ10 and ๏จ = 10, and then average the two results to obtain a
๏ฌnal estimate.
๏จ = โ10 โ ๏ 0 (1960) โ
๏จ = 10 โ ๏ 0 (1960) โ
31๏บ1 โ 35๏บ7
๏ (1950) โ ๏ (1960)
=
= 0๏บ46
1950 โ 1960
โ10
34๏บ0 โ 35๏บ7
๏ (1970) โ ๏ (1960)
=
= โ0๏บ17
1970 โ 1960
10
So we estimate that ๏ 0 (1960) โ 12 [0๏บ46 + (โ0๏บ17)] = 0๏บ145.
๏ด
1950
1960
1970
1980
1990
2000
2010
0
0๏บ460
0๏บ145
โ0๏บ385
โ0๏บ415
โ0๏บ115
โ0๏บ085
โ0๏บ170
๏ (๏ด)
(c)
(d) We could get more accurate values for ๏ 0 (๏ด) by obtaining data for the mid-decade years 1955, 1965, 1975, 1985, 1995, and
2005.
51. ๏ 0 (๏ด) is the rate at which the number of US $20 bills in circulation is changing with respect to time. Its units are billions of
bills per year. We use a symmetric difference quotient to estimate ๏ 0 (2000).
๏ 0 (2000) โ
5๏บ77 โ 4๏บ21
๏(2005) โ ๏(1995)
=
= 0๏บ156 billions of bills per year (or 156 million bills per year).
2005 โ 1995
10
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
CHAPTER 2 REVIEW
ยค
0
โ1๏บ6
52. (a) Drawing slope triangles, we obtain the following estimates: ๏ 0 (1950) โ 1๏บ1
10 = 0๏บ11, ๏ (1965) โ 10 = โ0๏บ16,
and ๏ 0 (1987) โ 0๏บ2
= 0๏บ02.
10
(b) The rate of change of the average number of children born to each woman was increasing by 0๏บ11 in 1950, decreasing
by 0๏บ16 in 1965, and increasing by 0๏บ02 in 1987.
(c) There are many possible reasons:
โข In the baby-boom era (post-WWII), there was optimism about the economy and family size was rising.
โข In the baby-bust era, there was less economic optimism, and it was considered less socially responsible to have a
large family.
โข In the baby-boomlet era, there was increased economic optimism and a return to more conservative attitudes.
53. |๏ฆ (๏ธ)| โค ๏ง(๏ธ)
โ โ๏ง(๏ธ) โค ๏ฆ (๏ธ) โค ๏ง(๏ธ) and lim ๏ง(๏ธ) = 0 = lim โ๏ง(๏ธ).
๏ธโ๏ก
๏ธโ๏ก
Thus, by the Squeeze Theorem, lim ๏ฆ (๏ธ) = 0.
๏ธโ๏ก
54. (a) Note that ๏ฆ is an even function since ๏ฆ(๏ธ) = ๏ฆ (โ๏ธ). Now for any integer ๏ฎ,
[[๏ฎ]] + [[โ๏ฎ]] = ๏ฎ โ ๏ฎ = 0, and for any real number ๏ซ which is not an integer,
[[๏ซ]] + [[โ๏ซ]] = [[๏ซ]] + (โ [[๏ซ]] โ 1) = โ1. So lim ๏ฆ (๏ธ) exists (and is equal to โ1)
๏ธโ๏ก
for all values of ๏ก.
(b) ๏ฆ is discontinuous at all integers.
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
161
162
ยค
CHAPTER 2 LIMITS AND DERIVATIVES
c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
ยฐ
Document Preview (96 of 1118 Pages)
User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.
-37%
Solution Manual for Calculus, 8th Edition
$18.99 $29.99Save:$11.00(37%)
24/7 Live Chat
Instant Download
100% Confidential
Store
Charlotte Martinez
0 (0 Reviews)
Best Selling
The World Of Customer Service, 3rd Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Chemistry: Principles And Reactions, 7th Edition Test Bank
$18.99 $29.99Save:$11.00(37%)
Test Bank for Hospitality Facilities Management and Design, 4th Edition
$18.99 $29.99Save:$11.00(37%)
2023-2024 ATI Pediatrics Proctored Exam with Answers (139 Solved Questions)
$18.99 $29.99Save:$11.00(37%)
Data Structures and Other Objects Using C++ 4th Edition Solution Manual
$18.99 $29.99Save:$11.00(37%)
Test Bank for Strategies For Reading Assessment And Instruction: Helping Every Child Succeed, 6th Edition
$18.99 $29.99Save:$11.00(37%)