Solution Manual for Calculus, 8th Edition

Preview Extract
2 LIMITS AND DERIVATIVES 2.1 The Tangent and Velocity Problems 1. (a) Using ๏ (15๏€ป 250), we construct the following table: ๏ด ๏‘ slope = ๏ญ๏ ๏‘ 5 (5๏€ป 694) 694โˆ’250 = โˆ’ 444 = โˆ’44๏€บ4 5โˆ’15 10 10 (10๏€ป 444) 444โˆ’250 = โˆ’ 194 = โˆ’38๏€บ8 10โˆ’15 5 20 (20๏€ป 111) 111โˆ’250 = โˆ’ 139 = โˆ’27๏€บ8 20โˆ’15 5 25 (25๏€ป 28) 28โˆ’250 222 25โˆ’15 = โˆ’ 10 = โˆ’22๏€บ2 30 (30๏€ป 0) 0โˆ’250 250 30โˆ’15 = โˆ’ 15 = โˆ’16๏€บ6 (b) Using the values of ๏ด that correspond to the points closest to ๏ (๏ด = 10 and ๏ด = 20), we have โˆ’38๏€บ8 + (โˆ’27๏€บ8) = โˆ’33๏€บ3 2 (c) From the graph, we can estimate the slope of the tangent line at ๏ to be โˆ’300 = โˆ’33๏€บ3. 9 โˆ’ 2530 2. (a) Slope = 2948 = 418 42 โˆ’ 36 6 โ‰ˆ 69๏€บ67 โˆ’ 2661 (b) Slope = 2948 = 287 42 โˆ’ 38 4 = 71๏€บ75 โˆ’ 2948 = 132 (d) Slope = 3080 44 โˆ’ 42 2 = 66 โˆ’ 2806 = 142 = 71 (c) Slope = 2948 42 โˆ’ 40 2 From the data, we see that the patientโ€™s heart rate is decreasing from 71 to 66 heartbeats๏€ฝminute after 42 minutes. After being stable for a while, the patientโ€™s heart rate is dropping. 3. (a) ๏น = 1 , ๏ (2๏€ป โˆ’1) 1โˆ’๏ธ ๏ธ (i) 1๏€บ5 (ii) 1๏€บ9 (iii) 1๏€บ99 (iv) 1๏€บ999 (v) 2๏€บ5 (vi) 2๏€บ1 (vii) 2๏€บ01 (viii) 2๏€บ001 (b) The slope appears to be 1. (c) Using ๏ญ = 1, an equation of the tangent line to the ๏‘(๏ธ๏€ป 1๏€ฝ(1 โˆ’ ๏ธ)) ๏ญ๏ ๏‘ (1๏€บ5๏€ป โˆ’2) 2 (1๏€บ99๏€ป โˆ’1๏€บ010 101) 1๏€บ010 101 (2๏€บ5๏€ป โˆ’0๏€บ666 667) 0๏€บ666 667 (2๏€บ01๏€ป โˆ’0๏€บ990 099) 0๏€บ990 099 (1๏€บ9๏€ป โˆ’1๏€บ111 111) 1๏€บ111 111 (1๏€บ999๏€ป โˆ’1๏€บ001 001) 1๏€บ001 001 (2๏€บ1๏€ป โˆ’0๏€บ909 091) 0๏€บ909 091 (2๏€บ001๏€ป โˆ’0๏€บ999 001) 0๏€บ999 001 curve at ๏ (2๏€ป โˆ’1) is ๏น โˆ’ (โˆ’1) = 1(๏ธ โˆ’ 2), or ๏น = ๏ธ โˆ’ 3. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 67 68 ยค CHAPTER 2 LIMITS AND DERIVATIVES 4. (a) ๏น = cos ๏‚ผ๏ธ, ๏ (0๏€บ5๏€ป 0) ๏ธ (b) The slope appears to be โˆ’๏‚ผ. ๏‘ ๏ญ๏ ๏‘ (i) 0 (0๏€ป 1) (ii) 0๏€บ4 (0๏€บ4๏€ป 0๏€บ309017) (iii) 0๏€บ49 (0๏€บ49๏€ป 0๏€บ031411) (iv) 0๏€บ499 (0๏€บ499๏€ป 0๏€บ003142) (1๏€ป โˆ’1) (v) 1 (vi) 0๏€บ6 (vii) 0๏€บ51 (viii) 0๏€บ501 โˆ’2 (0๏€บ6๏€ป โˆ’0๏€บ309017) (0๏€บ51๏€ป โˆ’0๏€บ031411) (0๏€บ501๏€ป โˆ’0๏€บ003142) (c) ๏น โˆ’ 0 = โˆ’๏‚ผ(๏ธ โˆ’ 0๏€บ5) or ๏น = โˆ’๏‚ผ๏ธ + 12 ๏‚ผ. (d) โˆ’3๏€บ090170 โˆ’3๏€บ141076 โˆ’3๏€บ141587 โˆ’2 โˆ’3๏€บ090170 โˆ’3๏€บ141076 โˆ’3๏€บ141587 5. (a) ๏น = ๏น(๏ด) = 40๏ด โˆ’ 16๏ด2 . At ๏ด = 2, ๏น = 40(2) โˆ’ 16(2)2 = 16. The average velocity between times 2 and 2 + ๏จ is ๏ถave = ๏‚ค ๏‚ฃ 40(2 + ๏จ) โˆ’ 16(2 + ๏จ)2 โˆ’ 16 โˆ’24๏จ โˆ’ 16๏จ2 ๏น(2 + ๏จ) โˆ’ ๏น(2) = = = โˆ’24 โˆ’ 16๏จ, if ๏จ 6= 0. (2 + ๏จ) โˆ’ 2 ๏จ ๏จ (i) [2๏€ป 2๏€บ5]: ๏จ = 0๏€บ5, ๏ถave = โˆ’32 ft๏€ฝs (ii) [2๏€ป 2๏€บ1]: ๏จ = 0๏€บ1, ๏ถave = โˆ’25๏€บ6 ft๏€ฝs (iii) [2๏€ป 2๏€บ05]: ๏จ = 0๏€บ05, ๏ถave = โˆ’24๏€บ8 ft๏€ฝs (iv) [2๏€ป 2๏€บ01]: ๏จ = 0๏€บ01, ๏ถave = โˆ’24๏€บ16 ft๏€ฝs (b) The instantaneous velocity when ๏ด = 2 (๏จ approaches 0) is โˆ’24 ft๏€ฝs. 6. (a) ๏น = ๏น(๏ด) = 10๏ด โˆ’ 1๏€บ86๏ด2 . At ๏ด = 1, ๏น = 10(1) โˆ’ 1๏€บ86(1)2 = 8๏€บ14. The average velocity between times 1 and 1 + ๏จ is ๏ถave = ๏‚ค ๏‚ฃ 10(1 + ๏จ) โˆ’ 1๏€บ86(1 + ๏จ)2 โˆ’ 8๏€บ14 6๏€บ28๏จ โˆ’ 1๏€บ86๏จ2 ๏น(1 + ๏จ) โˆ’ ๏น(1) = = = 6๏€บ28 โˆ’ 1๏€บ86๏จ, if ๏จ 6= 0. (1 + ๏จ) โˆ’ 1 ๏จ ๏จ (i) [1๏€ป 2]: ๏จ = 1, ๏ถave = 4๏€บ42 m๏€ฝs (ii) [1๏€ป 1๏€บ5]: ๏จ = 0๏€บ5, ๏ถave = 5๏€บ35 m๏€ฝs (iii) [1๏€ป 1๏€บ1]: ๏จ = 0๏€บ1, ๏ถave = 6๏€บ094 m๏€ฝs (iv) [1๏€ป 1๏€บ01]: ๏จ = 0๏€บ01, ๏ถave = 6๏€บ2614 m๏€ฝs (v) [1๏€ป 1๏€บ001]: ๏จ = 0๏€บ001, ๏ถave = 6๏€บ27814 m๏€ฝs (b) The instantaneous velocity when ๏ด = 1 (๏จ approaches 0) is 6๏€บ28 m๏€ฝs. 7. (a) (i) On the interval [2๏€ป 4] , ๏ถave = ๏ณ(4) โˆ’ ๏ณ(2) 79๏€บ2 โˆ’ 20๏€บ6 = = 29๏€บ3 ft๏€ฝs. 4โˆ’2 2 (ii) On the interval [3๏€ป 4] , ๏ถave = 79๏€บ2 โˆ’ 46๏€บ5 ๏ณ(4) โˆ’ ๏ณ(3) = = 32๏€บ7 ft๏€ฝs. 4โˆ’3 1 (iii) On the interval [4๏€ป 5] , ๏ถave = 124๏€บ8 โˆ’ 79๏€บ2 ๏ณ(5) โˆ’ ๏ณ(4) = = 45๏€บ6 ft๏€ฝs. 5โˆ’4 1 (iv) On the interval [4๏€ป 6] , ๏ถave = 176๏€บ7 โˆ’ 79๏€บ2 ๏ณ(6) โˆ’ ๏ณ(4) = = 48๏€บ75 ft๏€ฝs. 6โˆ’4 2 c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.1 THE TANGENT AND VELOCITY PROBLEMS ยค (b) Using the points (2๏€ป 16) and (5๏€ป 105) from the approximate tangent line, the instantaneous velocity at ๏ด = 3 is about 89 105 โˆ’ 16 = โ‰ˆ 29๏€บ7 ft๏€ฝs. 5โˆ’2 3 8. (a) (i) ๏ณ = ๏ณ(๏ด) = 2 sin ๏‚ผ๏ด + 3 cos ๏‚ผ๏ด. On the interval [1๏€ป 2], ๏ถave = (ii) On the interval [1๏€ป 1๏€บ1], ๏ถave = 3 โˆ’ (โˆ’3) ๏ณ(2) โˆ’ ๏ณ(1) = = 6 cm๏€ฝs. 2โˆ’1 1 โˆ’3๏€บ471 โˆ’ (โˆ’3) ๏ณ(1๏€บ1) โˆ’ ๏ณ(1) โ‰ˆ = โˆ’4๏€บ71 cm๏€ฝs. 1๏€บ1 โˆ’ 1 0๏€บ1 (iii) On the interval [1๏€ป 1๏€บ01], ๏ถave = โˆ’3๏€บ0613 โˆ’ (โˆ’3) ๏ณ(1๏€บ01) โˆ’ ๏ณ(1) โ‰ˆ = โˆ’6๏€บ13 cm๏€ฝs. 1๏€บ01 โˆ’ 1 0๏€บ01 (iv) On the interval [1๏€ป 1๏€บ001], ๏ถave = โˆ’3๏€บ00627 โˆ’ (โˆ’3) ๏ณ(1๏€บ001) โˆ’ ๏ณ(1) โ‰ˆ = โˆ’6๏€บ27 cm๏€ฝs. 1๏€บ001 โˆ’ 1 0๏€บ001 (b) The instantaneous velocity of the particle when ๏ด = 1 appears to be about โˆ’6๏€บ3 cm๏€ฝs. 9. (a) For the curve ๏น = sin(10๏‚ผ๏€ฝ๏ธ) and the point ๏ (1๏€ป 0): ๏ญ๏ ๏‘ ๏ธ ๏‘ 2 ๏ธ (2๏€ป 0) 0 0๏€บ5 (0๏€บ5๏€ป 0) 1๏€บ5 (1๏€บ5๏€ป 0๏€บ8660) 1๏€บ7321 0๏€บ6 (0๏€บ6๏€ป 0๏€บ8660) 1๏€บ4 (1๏€บ4๏€ป โˆ’0๏€บ4339) โˆ’1๏€บ0847 0๏€บ7 (0๏€บ7๏€ป 0๏€บ7818) 0๏€บ8 (0๏€บ8๏€ป 1) (1๏€บ2๏€ป 0๏€บ8660) 4๏€บ3301 0๏€บ9 (0๏€บ9๏€ป โˆ’0๏€บ3420) 1๏€บ3 1๏€บ2 1๏€บ1 ๏‘ (1๏€บ3๏€ป โˆ’0๏€บ8230) (1๏€บ1๏€ป โˆ’0๏€บ2817) โˆ’2๏€บ7433 โˆ’2๏€บ8173 ๏ญ๏ ๏‘ 0 โˆ’2๏€บ1651 โˆ’2๏€บ6061 โˆ’5 3๏€บ4202 As ๏ธ approaches 1, the slopes do not appear to be approaching any particular value. We see that problems with estimation are caused by the frequent (b) oscillations of the graph. The tangent is so steep at ๏ that we need to take ๏ธ-values much closer to 1 in order to get accurate estimates of its slope. (c) If we choose ๏ธ = 1๏€บ001, then the point ๏‘ is (1๏€บ001๏€ป โˆ’0๏€บ0314) and ๏ญ๏ ๏‘ โ‰ˆ โˆ’31๏€บ3794. If ๏ธ = 0๏€บ999, then ๏‘ is (0๏€บ999๏€ป 0๏€บ0314) and ๏ญ๏ ๏‘ = โˆ’31๏€บ4422. The average of these slopes is โˆ’31๏€บ4108. So we estimate that the slope of the tangent line at ๏ is about โˆ’31๏€บ4. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 69 70 ยค CHAPTER 2 LIMITS AND DERIVATIVES 2.2 The Limit of a Function 1. As ๏ธ approaches 2, ๏ฆ (๏ธ) approaches 5. [Or, the values of ๏ฆ (๏ธ) can be made as close to 5 as we like by taking ๏ธ suf๏ฌciently close to 2 (but ๏ธ 6= 2).] Yes, the graph could have a hole at (2๏€ป 5) and be de๏ฌned such that ๏ฆ (2) = 3. 2. As ๏ธ approaches 1 from the left, ๏ฆ (๏ธ) approaches 3; and as ๏ธ approaches 1 from the right, ๏ฆ(๏ธ) approaches 7. No, the limit does not exist because the left- and right-hand limits are different. 3. (a) lim ๏ฆ (๏ธ) = โˆž means that the values of ๏ฆ (๏ธ) can be made arbitrarily large (as large as we please) by taking ๏ธ ๏ธโ†’โˆ’3 suf๏ฌciently close to โˆ’3 (but not equal to โˆ’3). (b) lim ๏ฆ(๏ธ) = โˆ’โˆž means that the values of ๏ฆ (๏ธ) can be made arbitrarily large negative by taking ๏ธ suf๏ฌciently close to 4 ๏ธโ†’4+ through values larger than 4. 4. (a) As ๏ธ approaches 2 from the left, the values of ๏ฆ (๏ธ) approach 3, so lim ๏ฆ (๏ธ) = 3. ๏ธโ†’2โˆ’ (b) As ๏ธ approaches 2 from the right, the values of ๏ฆ (๏ธ) approach 1, so lim ๏ฆ(๏ธ) = 1. ๏ธโ†’2+ (c) lim ๏ฆ (๏ธ) does not exist since the left-hand limit does not equal the right-hand limit. ๏ธโ†’2 (d) When ๏ธ = 2, ๏น = 3, so ๏ฆ (2) = 3. (e) As ๏ธ approaches 4, the values of ๏ฆ (๏ธ) approach 4, so lim ๏ฆ(๏ธ) = 4. ๏ธโ†’4 (f ) There is no value of ๏ฆ (๏ธ) when ๏ธ = 4, so ๏ฆ (4) does not exist. 5. (a) As ๏ธ approaches 1, the values of ๏ฆ (๏ธ) approach 2, so lim ๏ฆ(๏ธ) = 2. ๏ธโ†’1 (b) As ๏ธ approaches 3 from the left, the values of ๏ฆ (๏ธ) approach 1, so lim ๏ฆ (๏ธ) = 1. ๏ธโ†’3โˆ’ (c) As ๏ธ approaches 3 from the right, the values of ๏ฆ (๏ธ) approach 4, so lim ๏ฆ(๏ธ) = 4. ๏ธโ†’3+ (d) lim ๏ฆ (๏ธ) does not exist since the left-hand limit does not equal the right-hand limit. ๏ธโ†’3 (e) When ๏ธ = 3, ๏น = 3, so ๏ฆ (3) = 3. 6. (a) ๏จ(๏ธ) approaches 4 as ๏ธ approaches โˆ’3 from the left, so lim ๏จ(๏ธ) = 4. ๏ธโ†’โˆ’3โˆ’ (b) ๏จ(๏ธ) approaches 4 as ๏ธ approaches โˆ’3 from the right, so lim ๏จ(๏ธ) = 4. ๏ธโ†’โˆ’3+ (c) lim ๏จ(๏ธ) = 4 because the limits in part (a) and part (b) are equal. ๏ธโ†’โˆ’3 (d) ๏จ(โˆ’3) is not de๏ฌned, so it doesnโ€™t exist. (e) ๏จ(๏ธ) approaches 1 as ๏ธ approaches 0 from the left, so lim ๏จ(๏ธ) = 1. ๏ธโ†’0โˆ’ (f ) ๏จ(๏ธ) approaches โˆ’1 as ๏ธ approaches 0 from the right, so lim ๏จ(๏ธ) = โˆ’1. ๏ธโ†’0+ (g) lim ๏จ(๏ธ) does not exist because the limits in part (e) and part (f ) are not equal. ๏ธโ†’0 (h) ๏จ(0) = 1 since the point (0๏€ป 1) is on the graph of ๏จ. (i) Since lim ๏จ(๏ธ) = 2 and lim ๏จ(๏ธ) = 2, we have lim ๏จ(๏ธ) = 2. ๏ธโ†’2โˆ’ ๏ธโ†’2+ ๏ธโ†’2 (j) ๏จ(2) is not de๏ฌned, so it doesnโ€™t exist. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.2 THE LIMIT OF A FUNCTION ยค (k) ๏จ(๏ธ) approaches 3 as ๏ธ approaches 5 from the right, so lim ๏จ(๏ธ) = 3. ๏ธโ†’5+ (l) ๏จ(๏ธ) does not approach any one number as ๏ธ approaches 5 from the left, so lim ๏จ(๏ธ) does not exist. ๏ธโ†’5โˆ’ 7. (a) lim ๏ง(๏ด) = โˆ’1 (b) lim ๏ง(๏ด) = โˆ’2 ๏ดโ†’0โˆ’ ๏ดโ†’0+ (c) lim ๏ง(๏ด) does not exist because the limits in part (a) and part (b) are not equal. ๏ดโ†’0 (e) lim ๏ง(๏ด) = 0 (d) lim ๏ง(๏ด) = 2 ๏ดโ†’2โˆ’ ๏ดโ†’2+ (f ) lim ๏ง(๏ด) does not exist because the limits in part (d) and part (e) are not equal. ๏ดโ†’2 (g) ๏ง(2) = 1 (h) lim ๏ง(๏ด) = 3 ๏ดโ†’4 8. (a) lim ๏(๏ธ) = โˆž (b) lim ๏(๏ธ) = โˆ’โˆž (c) lim ๏(๏ธ) = โˆž (d) lim ๏(๏ธ) = โˆ’โˆž ๏ธโ†’โˆ’3 ๏ธโ†’2โˆ’ ๏ธโ†’โˆ’1 ๏ธโ†’2+ (e) The equations of the vertical asymptotes are ๏ธ = โˆ’3, ๏ธ = โˆ’1 and ๏ธ = 2. 9. (a) lim ๏ฆ (๏ธ) = โˆ’โˆž (b) lim ๏ฆ (๏ธ) = โˆž (d) lim ๏ฆ (๏ธ) = โˆ’โˆž (e) lim ๏ฆ (๏ธ) = โˆž ๏ธโ†’โˆ’7 ๏ธโ†’โˆ’3 ๏ธโ†’6โˆ’ (c) lim ๏ฆ (๏ธ) = โˆž ๏ธโ†’0 ๏ธโ†’6+ (f ) The equations of the vertical asymptotes are ๏ธ = โˆ’7, ๏ธ = โˆ’3, ๏ธ = 0, and ๏ธ = 6. 10. lim ๏ฆ (๏ด) = 150 mg and lim ๏ฆ (๏ด) = 300 mg. These limits show that there is an abrupt change in the amount of drug in ๏ดโ†’12โˆ’ + ๏ดโ†’12 the patientโ€™s bloodstream at ๏ด = 12 h. The left-hand limit represents the amount of the drug just before the fourth injection. The right-hand limit represents the amount of the drug just after the fourth injection. 11. From the graph of ๏€ธ 1 + ๏ธ if ๏ธ ๏€ผ โˆ’1 ๏€พ ๏€ผ ๏ฆ (๏ธ) = ๏ธ2 if โˆ’1 โ‰ค ๏ธ ๏€ผ 1 , ๏€พ ๏€บ 2 โˆ’ ๏ธ if ๏ธ โ‰ฅ 1 we see that lim ๏ฆ(๏ธ) exists for all ๏ก except ๏ก = โˆ’1. Notice that the ๏ธโ†’๏ก right and left limits are different at ๏ก = โˆ’1. 12. From the graph of ๏€ธ 1 + sin ๏ธ if ๏ธ ๏€ผ 0 ๏€พ ๏€ผ if 0 โ‰ค ๏ธ โ‰ค ๏‚ผ , ๏ฆ (๏ธ) = cos ๏ธ ๏€พ ๏€บ sin ๏ธ if ๏ธ ๏€พ ๏‚ผ we see that lim ๏ฆ(๏ธ) exists for all ๏ก except ๏ก = ๏‚ผ. Notice that the ๏ธโ†’๏ก right and left limits are different at ๏ก = ๏‚ผ. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 71 72 ยค CHAPTER 2 LIMITS AND DERIVATIVES 13. (a) lim ๏ฆ (๏ธ) = 1 ๏ธโ†’0โˆ’ (b) lim ๏ฆ(๏ธ) = 0 ๏ธโ†’0+ (c) lim ๏ฆ (๏ธ) does not exist because the limits ๏ธโ†’0 in part (a) and part (b) are not equal. 14. (a) lim ๏ฆ (๏ธ) = โˆ’1 ๏ธโ†’0โˆ’ (b) lim ๏ฆ(๏ธ) = 1 ๏ธโ†’0+ (c) lim ๏ฆ (๏ธ) does not exist because the limits ๏ธโ†’0 in part (a) and part (b) are not equal. 15. lim ๏ฆ (๏ธ) = โˆ’1, lim ๏ฆ(๏ธ) = 2, ๏ฆ (0) = 1 ๏ธโ†’0โˆ’ ๏ธโ†’0+ 16. lim ๏ฆ (๏ธ) = 1, lim ๏ฆ (๏ธ) = โˆ’2, lim ๏ฆ (๏ธ) = 2, ๏ธโ†’0 ๏ธโ†’3โˆ’ ๏ธโ†’3+ ๏ฆ (0) = โˆ’1, ๏ฆ (3) = 1 17. lim ๏ฆ (๏ธ) = 4, ๏ธโ†’3+ lim ๏ฆ (๏ธ) = 2, lim ๏ฆ(๏ธ) = 2, ๏ธโ†’โˆ’2 ๏ธโ†’3โˆ’ ๏ฆ (3) = 3, ๏ฆ(โˆ’2) = 1 19. For ๏ฆ (๏ธ) = ๏ธ2 โˆ’ 3๏ธ : ๏ธ2 โˆ’ 9 ๏ธ ๏ฆ (๏ธ) 18. lim ๏ฆ (๏ธ) = 2, lim ๏ฆ (๏ธ) = 0, lim ๏ฆ (๏ธ) = 3, ๏ธโ†’0โˆ’ ๏ธโ†’0+ ๏ธโ†’4โˆ’ lim ๏ฆ (๏ธ) = 0, ๏ฆ (0) = 2, ๏ฆ (4) = 1 ๏ธโ†’4+ ๏ธ ๏ฆ (๏ธ) 3๏€บ1 0๏€บ508 197 2๏€บ9 0๏€บ491 525 3๏€บ05 0๏€บ504 132 2๏€บ95 0๏€บ495 798 3๏€บ01 0๏€บ500 832 2๏€บ99 0๏€บ499 165 3๏€บ001 0๏€บ500 083 2๏€บ999 0๏€บ499 917 3๏€บ0001 0๏€บ500 008 2๏€บ9999 0๏€บ499 992 1 ๏ธ2 โˆ’ 3๏ธ = . ๏ธโ†’3 ๏ธ2 โˆ’ 9 2 It appears that lim c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.2 20. For ๏ฆ (๏ธ) = ๏ธ โˆ’2๏€บ5 ๏ธ ๏ฆ (๏ธ) โˆ’5 โˆ’3๏€บ5 7 โˆ’59 โˆ’3๏€บ05 โˆ’2๏€บ9 โˆ’29 โˆ’2๏€บ99 โˆ’299 โˆ’2๏€บ999 โˆ’2๏€บ9999 โˆ’2999 โˆ’29,999 21. For ๏ฆ (๏ด) = ๏ฅ5๏ด โˆ’ 1 : ๏ด ๏ด ๏ฆ (๏ด) 0๏€บ5 22๏€บ364 988 0๏€บ1 6๏€บ487 213 0๏€บ01 5๏€บ127 110 0๏€บ001 5๏€บ012 521 0๏€บ0001 5๏€บ001 250 It appears that lim ๏ดโ†’0 โˆ’3๏€บ1 31 โˆ’3๏€บ01 301 61 โˆ’3๏€บ001 3001 โˆ’3๏€บ0001 30,001 It appears that lim ๏ฆ (๏ธ) = โˆ’โˆž and that ๏ธโ†’โˆ’3+ lim ๏ฆ (๏ธ) = โˆž, so lim ln ๏ธ โˆ’ ln 4 : ๏ธโˆ’4 ๏ธ ๏ฆ (๏ธ) ๏ธโ†’โˆ’3 ๏ธโ†’โˆ’3โˆ’ 22. For ๏ฆ (๏จ) = ๏ด ๏ฆ (๏ด) ๏จ ๏ธ2 โˆ’ 3๏ธ does not exist. ๏ธ2 โˆ’ 9 (2 + ๏จ)5 โˆ’ 32 : ๏จ ๏ฆ (๏จ) โˆ’0๏€บ5 1๏€บ835 830 0๏€บ5 131๏€บ312 500 โˆ’0๏€บ1 3๏€บ934 693 0๏€บ1 88๏€บ410 100 โˆ’0๏€บ01 4๏€บ877 058 0๏€บ01 80๏€บ804 010 โˆ’0๏€บ001 4๏€บ987 521 0๏€บ001 80๏€บ080 040 โˆ’0๏€บ0001 4๏€บ998 750 0๏€บ0001 80๏€บ008 000 ๏ฅ5๏ด โˆ’ 1 = 5. ๏ด 23. For ๏ฆ (๏ธ) = It appears that lim ๏จโ†’0 ๏ธ ๏จ ๏ฆ (๏จ) โˆ’0๏€บ5 48๏€บ812 500 โˆ’0๏€บ01 79๏€บ203 990 โˆ’0๏€บ0001 79๏€บ992 000 โˆ’0๏€บ1 72๏€บ390 100 โˆ’0๏€บ001 79๏€บ920 040 (2 + ๏จ)5 โˆ’ 32 = 80. ๏จ ๏ฆ (๏ธ) 3๏€บ9 0๏€บ253 178 4๏€บ1 0๏€บ246 926 3๏€บ99 0๏€บ250 313 4๏€บ01 0๏€บ249 688 3๏€บ999 0๏€บ250 031 4๏€บ001 0๏€บ249 969 3๏€บ9999 0๏€บ250 003 4๏€บ0001 0๏€บ249 997 It appears that lim ๏ฆ (๏ธ) = 0๏€บ25. The graph con๏ฌrms that result. ๏ธโ†’4 24. For ๏ฆ (๏ฐ) = ๏ฐ ยค ๏ธ2 โˆ’ 3๏ธ : ๏ธ2 โˆ’ 9 ๏ฆ (๏ธ) โˆ’2๏€บ95 THE LIMIT OF A FUNCTION 1 + ๏ฐ9 : 1 + ๏ฐ15 ๏ฆ (๏ฐ) โˆ’1๏€บ1 0๏€บ427 397 โˆ’1๏€บ001 0๏€บ598 200 โˆ’1๏€บ01 0๏€บ582 008 โˆ’1๏€บ0001 0๏€บ599 820 ๏ฐ ๏ฆ (๏ฐ) โˆ’0๏€บ9 0๏€บ771 405 โˆ’0๏€บ999 0๏€บ601 800 โˆ’0๏€บ99 0๏€บ617 992 โˆ’0๏€บ9999 0๏€บ600 180 It appears that lim ๏ฆ (๏ฐ) = 0๏€บ6. The graph con๏ฌrms that result. ๏ฐโ†’โˆ’1 c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 73 74 ยค CHAPTER 2 25. For ๏ฆ (๏‚ต) = LIMITS AND DERIVATIVES sin 3๏‚ต : tan 2๏‚ต ๏‚ต ๏ฆ (๏‚ต) sin 3๏‚ต ยฑ0๏€บ1 1๏€บ457 847 It appears that lim ยฑ0๏€บ01 1๏€บ499 575 The graph con๏ฌrms that result. ยฑ0๏€บ001 1๏€บ499 996 ยฑ0๏€บ0001 1๏€บ500 000 26. For ๏ฆ (๏ด) = 5๏ด โˆ’ 1 : ๏ด ๏ด ๏ฆ(๏ด) 0๏€บ1 1๏€บ746 189 0๏€บ01 1๏€บ622 459 0๏€บ001 1๏€บ610 734 0๏€บ0001 1๏€บ609 567 ๏‚ตโ†’0 tan 2๏‚ต ๏ด = 1๏€บ5. ๏ฆ(๏ด) โˆ’0๏€บ1 1๏€บ486 601 โˆ’0๏€บ001 1๏€บ608 143 โˆ’0๏€บ01 1๏€บ596 556 โˆ’0๏€บ0001 1๏€บ609 308 It appears that lim ๏ฆ (๏ด) โ‰ˆ 1๏€บ6094. The graph con๏ฌrms that result. ๏ดโ†’0 27. For ๏ฆ (๏ธ) = ๏ธ๏ธ : ๏ธ ๏ฆ (๏ธ) 0๏€บ1 0๏€บ794 328 0๏€บ01 0๏€บ954 993 0๏€บ001 0๏€บ993 116 0๏€บ0001 0๏€บ999 079 It appears that lim ๏ฆ(๏ธ) = 1. ๏ธโ†’0+ The graph con๏ฌrms that result. 28. For ๏ฆ (๏ธ) = ๏ธ2 ln ๏ธ: ๏ธ 0๏€บ1 0๏€บ01 0๏€บ001 0๏€บ0001 ๏ฆ(๏ธ) It appears that lim ๏ฆ (๏ธ) = 0. โˆ’0๏€บ023 026 ๏ธโ†’0+ โˆ’0๏€บ000 461 The graph con๏ฌrms that result. โˆ’0๏€บ000 007 โˆ’0๏€บ000 000 29. (a) From the graphs, it seems that lim ๏ธโ†’0 cos 2๏ธ โˆ’ cos ๏ธ = โˆ’1๏€บ5. ๏ธ2 (b) ๏ธ ๏ฆ (๏ธ) ยฑ0๏€บ1 โˆ’1๏€บ493 759 ยฑ0๏€บ001 โˆ’1๏€บ499 999 ยฑ0๏€บ01 ยฑ0๏€บ0001 โˆ’1๏€บ499 938 โˆ’1๏€บ500 000 c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.2 30. (a) From the graphs, it seems that lim sin ๏ธ ๏ธโ†’0 sin ๏‚ผ๏ธ THE LIMIT OF A FUNCTION ยค 75 (b) = 0๏€บ32. ๏ธ ๏ฆ (๏ธ) ยฑ0๏€บ1 0๏€บ323 068 ยฑ0๏€บ001 ยฑ0๏€บ0001 0๏€บ318 310 0๏€บ318 310 ยฑ0๏€บ01 0๏€บ318 357 Later we will be able to show that the exact value is 31. lim ๏ธ+1 32. lim ๏ธ+1 33. lim 2โˆ’๏ธ ๏ธโ†’5+ ๏ธ โˆ’ 5 ๏ธโ†’5โˆ’ ๏ธ โˆ’ 5 1 . ๏‚ผ = โˆž since the numerator is positive and the denominator approaches 0 from the positive side as ๏ธ โ†’ 5+ . = โˆ’โˆž since the numerator is positive and the denominator approaches 0 from the negative side as ๏ธ โ†’ 5โˆ’ . ๏ธโ†’1 (๏ธ โˆ’ 1)2 = โˆž since the numerator is positive and the denominator approaches 0 through positive values as ๏ธ โ†’ 1. โˆš ๏ธ = โˆ’โˆž since the numerator is positive and the denominator approaches 0 from the negative side as ๏ธ โ†’ 3โˆ’ . ๏ธโ†’3โˆ’ (๏ธ โˆ’ 3)5 34. lim 35. Let ๏ด = ๏ธ2 โˆ’ 9. Then as ๏ธ โ†’ 3+ , ๏ด โ†’ 0+ , and lim ln(๏ธ2 โˆ’ 9) = lim ln ๏ด = โˆ’โˆž by (5). ๏ธโ†’3+ ๏ดโ†’0+ 36. lim ln(sin ๏ธ) = โˆ’โˆž since sin ๏ธ โ†’ 0+ as ๏ธ โ†’ 0+ . ๏ธโ†’0+ 37. lim 1 ๏ธโ†’(๏‚ผ๏€ฝ2)+ ๏ธ sec ๏ธ = โˆ’โˆž since 38. lim cot ๏ธ = lim cos ๏ธ ๏ธโ†’๏‚ผ โˆ’ sin ๏ธ ๏ธโ†’๏‚ผ โˆ’ 1 is positive and sec ๏ธ โ†’ โˆ’โˆž as ๏ธ โ†’ (๏‚ผ๏€ฝ2)+ . ๏ธ = โˆ’โˆž since the numerator is negative and the denominator approaches 0 through positive values as ๏ธ โ†’ ๏‚ผโˆ’ . 39. lim ๏ธ csc ๏ธ = lim ๏ธโ†’2๏‚ผ โˆ’ ๏ธ ๏ธโ†’2๏‚ผ โˆ’ sin ๏ธ = โˆ’โˆž since the numerator is positive and the denominator approaches 0 through negative values as ๏ธ โ†’ 2๏‚ผโˆ’ . ๏ธ2 โˆ’ 2๏ธ ๏ธ(๏ธ โˆ’ 2) ๏ธ = lim = โˆ’โˆž since the numerator is positive and the denominator = lim 2 2 ๏ธโ†’2โˆ’ ๏ธ โˆ’ 4๏ธ + 4 ๏ธโ†’2โˆ’ (๏ธ โˆ’ 2) ๏ธโ†’2โˆ’ ๏ธ โˆ’ 2 40. lim approaches 0 through negative values as ๏ธ โ†’ 2โˆ’ . 41. lim ๏ธโ†’2+ ๏ธ2 โˆ’ 2๏ธ โˆ’ 8 (๏ธ โˆ’ 4)(๏ธ + 2) = lim = โˆž since the numerator is negative and the denominator approaches 0 through ๏ธ2 โˆ’ 5๏ธ + 6 ๏ธโ†’2+ (๏ธ โˆ’ 3)(๏ธ โˆ’ 2) negative values as ๏ธ โ†’ 2+ . 42. lim ๏ธโ†’0+ ๏‚ต ๏‚ถ 1 1 โˆ’ ln ๏ธ = โˆž since โ†’ โˆž and ln ๏ธ โ†’ โˆ’โˆž as ๏ธ โ†’ 0+ . ๏ธ ๏ธ 43. lim (ln ๏ธ2 โˆ’ ๏ธโˆ’2 ) = โˆ’โˆž since ln ๏ธ2 โ†’ โˆ’โˆž and ๏ธโˆ’2 โ†’ โˆž as ๏ธ โ†’ 0. ๏ธโ†’0 c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 76 ยค CHAPTER 2 LIMITS AND DERIVATIVES 44. (a) The denominator of ๏น = ๏ธ2 + 1 ๏ธ2 + 1 is equal to zero when = 2 3๏ธ โˆ’ 2๏ธ ๏ธ(3 โˆ’ 2๏ธ) (b) ๏ธ = 0 and ๏ธ = 32 (and the numerator is not), so ๏ธ = 0 and ๏ธ = 1๏€บ5 are vertical asymptotes of the function. 45. (a) ๏ฆ (๏ธ) = 1 . ๏ธ3 โˆ’ 1 From these calculations, it seems that lim ๏ฆ (๏ธ) = โˆ’โˆž and lim ๏ฆ (๏ธ) = โˆž. ๏ธโ†’1โˆ’ ๏ธโ†’1+ ๏ธ 0๏€บ5 0๏€บ9 0๏€บ99 0๏€บ999 0๏€บ9999 0๏€บ99999 ๏ฆ (๏ธ) โˆ’1๏€บ14 โˆ’3๏€บ69 โˆ’33๏€บ7 โˆ’333๏€บ7 โˆ’3333๏€บ7 โˆ’33,333๏€บ7 ๏ธ 1๏€บ5 1๏€บ1 1๏€บ01 1๏€บ001 1๏€บ0001 1๏€บ00001 ๏ฆ (๏ธ) 0๏€บ42 3๏€บ02 33๏€บ0 333๏€บ0 3333๏€บ0 33,333๏€บ3 (b) If ๏ธ is slightly smaller than 1, then ๏ธ3 โˆ’ 1 will be a negative number close to 0, and the reciprocal of ๏ธ3 โˆ’ 1, that is, ๏ฆ (๏ธ), will be a negative number with large absolute value. So lim ๏ฆ(๏ธ) = โˆ’โˆž. ๏ธโ†’1โˆ’ If ๏ธ is slightly larger than 1, then ๏ธ โˆ’ 1 will be a small positive number, and its reciprocal, ๏ฆ (๏ธ), will be a large positive 3 number. So lim ๏ฆ (๏ธ) = โˆž. ๏ธโ†’1+ (c) It appears from the graph of ๏ฆ that lim ๏ฆ (๏ธ) = โˆ’โˆž and lim ๏ฆ (๏ธ) = โˆž. ๏ธโ†’1โˆ’ ๏ธโ†’1+ 46. (a) From the graphs, it seems that lim ๏ธโ†’0 1๏€ฝ๏ธ 47. (a) Let ๏จ(๏ธ) = (1 + ๏ธ) ๏ธ โˆ’0๏€บ001 โˆ’0๏€บ0001 โˆ’0๏€บ00001 โˆ’0๏€บ000001 0๏€บ000001 0๏€บ00001 0๏€บ0001 0๏€บ001 . ๏จ(๏ธ) 2๏€บ71964 2๏€บ71842 2๏€บ71830 2๏€บ71828 2๏€บ71828 2๏€บ71827 2๏€บ71815 2๏€บ71692 tan 4๏ธ = 4. ๏ธ (b) ๏ธ ยฑ0๏€บ1 ยฑ0๏€บ01 ยฑ0๏€บ001 ยฑ0๏€บ0001 ๏ฆ (๏ธ) 4๏€บ227 932 4๏€บ002 135 4๏€บ000 021 4๏€บ000 000 (b) It appears that lim (1 + ๏ธ)1๏€ฝ๏ธ โ‰ˆ 2๏€บ71828, which is approximately ๏ฅ. ๏ธโ†’0 In Section 3.6 we will see that the value of the limit is exactly ๏ฅ. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.2 THE LIMIT OF A FUNCTION ยค 77 48. (a) No, because the calculator-produced graph of ๏ฆ (๏ธ) = ๏ฅ๏ธ + ln |๏ธ โˆ’ 4| looks like an exponential function, but the graph of ๏ฆ has an in๏ฌnite discontinuity at ๏ธ = 4. A second graph, obtained by increasing the numpoints option in Maple, begins to reveal the discontinuity at ๏ธ = 4. (b) There isnโ€™t a single graph that shows all the features of ๏ฆ . Several graphs are needed since ๏ฆ looks like ln |๏ธ โˆ’ 4| for large negative values of ๏ธ and like ๏ฅ๏ธ for ๏ธ ๏€พ 5, but yet has the in๏ฌnite discontiuity at ๏ธ = 4. A hand-drawn graph, though distorted, might be better at revealing the main features of this function. 49. For ๏ฆ (๏ธ) = ๏ธ2 โˆ’ (2๏ธ๏€ฝ1000): (a) ๏ธ 1 0๏€บ8 ๏ฆ(๏ธ) 0๏€บ998 000 0๏€บ638 259 0๏€บ6 0๏€บ4 0๏€บ2 0๏€บ1 0๏€บ05 0๏€บ358 484 0๏€บ158 680 0๏€บ038 851 0๏€บ008 928 0๏€บ001 465 (b) ๏ธ 0๏€บ04 0๏€บ02 0๏€บ01 0๏€บ005 0๏€บ003 0๏€บ001 ๏ฆ (๏ธ) 0๏€บ000 572 โˆ’0๏€บ000 614 โˆ’0๏€บ000 907 โˆ’0๏€บ000 978 โˆ’0๏€บ000 993 โˆ’0๏€บ001 000 It appears that lim ๏ฆ(๏ธ) = โˆ’0๏€บ001. ๏ธโ†’0 It appears that lim ๏ฆ (๏ธ) = 0. ๏ธโ†’0 50. For ๏จ(๏ธ) = tan ๏ธ โˆ’ ๏ธ : ๏ธ3 (a) ๏ธ 1๏€บ0 0๏€บ5 0๏€บ1 0๏€บ05 0๏€บ01 0๏€บ005 ๏จ(๏ธ) 0๏€บ557 407 73 0๏€บ370 419 92 0๏€บ334 672 09 0๏€บ333 667 00 0๏€บ333 346 67 0๏€บ333 336 67 (b) It seems that lim ๏จ(๏ธ) = 13 . ๏ธโ†’0 c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 78 ยค CHAPTER 2 LIMITS AND DERIVATIVES (c) Here the values will vary from one ๏ธ ๏จ(๏ธ) 0๏€บ001 0๏€บ0005 0๏€บ0001 0๏€บ00005 0๏€บ00001 0๏€บ000001 0๏€บ333 333 50 0๏€บ333 333 44 0๏€บ333 330 00 0๏€บ333 336 00 0๏€บ333 000 00 0๏€บ000 000 00 calculator to another. Every calculator will eventually give false values. (d) As in part (c), when we take a small enough viewing rectangle we get incorrect output. 51. No matter how many times we zoom in toward the origin, the graphs of ๏ฆ (๏ธ) = sin(๏‚ผ๏€ฝ๏ธ) appear to consist of almost-vertical lines. This indicates more and more frequent oscillations as ๏ธ โ†’ 0. 52. (a) For any positive integer ๏ฎ, if ๏ธ = 1 1 , then ๏ฆ (๏ธ) = tan = tan(๏ฎ๏‚ผ) = 0. (Remember that the tangent function has ๏ฎ๏‚ผ ๏ธ period ๏‚ผ.) c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ (b) For any nonnegative number ๏ฎ, if ๏ธ = ๏ฆ (๏ธ) = tan SECTION 2.3 CALCULATING LIMITS USING THE LIMIT LAWS ๏‚ต ๏‚ณ ๏‚ผ ๏‚ผ๏‚ด = tan = 1 = tan ๏ฎ๏‚ผ + 4 4 ยค 79 4 , then (4๏ฎ + 1)๏‚ผ 1 (4๏ฎ + 1)๏‚ผ = tan = tan ๏ธ 4 4๏ฎ๏‚ผ ๏‚ผ + 4 4 ๏‚ถ (c) From part (a), ๏ฆ (๏ธ) = 0 in๏ฌnitely often as ๏ธ โ†’ 0. From part (b), ๏ฆ (๏ธ) = 1 in๏ฌnitely often as ๏ธ โ†’ 0. Thus, lim tan ๏ธโ†’0 1 ๏ธ does not exist since ๏ฆ (๏ธ) does not get close to a ๏ฌxed number as ๏ธ โ†’ 0. There appear to be vertical asymptotes of the curve ๏น = tan(2 sin ๏ธ) at ๏ธ โ‰ˆ ยฑ0๏€บ90 53. and ๏ธ โ‰ˆ ยฑ2๏€บ24. To ๏ฌnd the exact equations of these asymptotes, we note that the graph of the tangent function has vertical asymptotes at ๏ธ = ๏‚ผ2 + ๏‚ผ๏ฎ. Thus, we must have 2 sin ๏ธ = ๏‚ผ2 + ๏‚ผ๏ฎ, or equivalently, sin ๏ธ = ๏‚ผ4 + ๏‚ผ2 ๏ฎ. Since โˆ’1 โ‰ค sin ๏ธ โ‰ค 1, we must have sin ๏ธ = ยฑ ๏‚ผ4 and so ๏ธ = ยฑ sinโˆ’1 ๏‚ผ4 (corresponding to ๏ธ โ‰ˆ ยฑ0๏€บ90). Just as 150โ—ฆ is the reference angle for 30โ—ฆ , ๏‚ผ โˆ’ sinโˆ’1 ๏‚ผ4 is the ๏‚ข ๏‚ก reference angle for sinโˆ’1 ๏‚ผ4 . So ๏ธ = ยฑ ๏‚ผ โˆ’ sinโˆ’1 ๏‚ผ4 are also equations of vertical asymptotes (corresponding to ๏ธ โ‰ˆ ยฑ2๏€บ24). ๏ฐ ๏ญ0 . As ๏ถ โ†’ ๏ฃโˆ’ , 1 โˆ’ ๏ถ 2๏€ฝ๏ฃ2 โ†’ 0+ , and ๏ญ โ†’ โˆž. 1 โˆ’ ๏ถ2๏€ฝ๏ฃ2 54. lim ๏ญ = lim ๏ฐ ๏ถโ†’๏ฃโˆ’ ๏ถโ†’๏ฃโˆ’ ๏ธ3 โˆ’ 1 . ๏ธโˆ’1 55. (a) Let ๏น = โˆš From the table and the graph, we guess that the limit of ๏น as ๏ธ approaches 1 is 6. ๏ธ ๏น 0๏€บ99 0๏€บ999 0๏€บ9999 1๏€บ01 1๏€บ001 1๏€บ0001 5๏€บ925 31 5๏€บ992 50 5๏€บ999 25 6๏€บ075 31 6๏€บ007 50 6๏€บ000 75 ๏ธ3 โˆ’ 1 ๏€ผ 6๏€บ5. From the graph we obtain the approximate points of intersection ๏ (0๏€บ9314๏€ป 5๏€บ5) (b) We need to have 5๏€บ5 ๏€ผ โˆš ๏ธโˆ’1 and ๏‘(1๏€บ0649๏€ป 6๏€บ5). Now 1 โˆ’ 0๏€บ9314 = 0๏€บ0686 and 1๏€บ0649 โˆ’ 1 = 0๏€บ0649, so by requiring that ๏ธ be within 0๏€บ0649 of 1, we ensure that ๏น is within 0๏€บ5 of 6. 2.3 Calculating Limits Using the Limit Laws 1. (a) lim [๏ฆ (๏ธ) + 5๏ง(๏ธ)] = lim ๏ฆ (๏ธ) + lim [5๏ง(๏ธ)] [Limit Law 1] = lim ๏ฆ (๏ธ) + 5 lim ๏ง(๏ธ) [Limit Law 3] ๏ธโ†’2 ๏ธโ†’2 ๏ธโ†’2 ๏ธโ†’2 ๏ธโ†’2 (b) lim [๏ง(๏ธ)]3 = ๏ธโ†’2 ๏จ ๏ฉ3 lim ๏ง(๏ธ) ๏ธโ†’2 [Limit Law 6] = ( โˆ’2)3 = โˆ’8 = 4 + 5(โˆ’2) = โˆ’6 c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 80 ยค CHAPTER 2 (c) lim ๏ธโ†’2 LIMITS AND DERIVATIVES ๏ฑ ๏ฐ ๏ฆ (๏ธ) = lim ๏ฆ (๏ธ) ๏ธโ†’2 = lim [3๏ฆ (๏ธ)] 3๏ฆ (๏ธ) ๏ธโ†’2 = ๏ธโ†’2 ๏ง(๏ธ) lim ๏ง(๏ธ) (d) lim [Limit Law 11] [Limit Law 5] ๏ธโ†’2 โˆš 4=2 3 lim ๏ฆ (๏ธ) ๏ธโ†’2 = [Limit Law 3] lim ๏ง(๏ธ) ๏ธโ†’2 = 3(4) = โˆ’6 โˆ’2 (e) Because the limit of the denominator is 0, we canโ€™t use Limit Law 5. The given limit, lim ๏ง(๏ธ) ๏ธโ†’2 ๏จ(๏ธ) , does not exist because the denominator approaches 0 while the numerator approaches a nonzero number. lim [๏ง(๏ธ) ๏จ(๏ธ)] ๏ง(๏ธ) ๏จ(๏ธ) ๏ธโ†’2 = ๏ธโ†’2 ๏ฆ (๏ธ) lim ๏ฆ (๏ธ) (f) lim [Limit Law 5] ๏ธโ†’2 = lim ๏ง(๏ธ) ยท lim ๏จ(๏ธ) ๏ธโ†’2 ๏ธโ†’2 lim ๏ฆ (๏ธ) [Limit Law 4] ๏ธโ†’2 = โˆ’2 ยท 0 =0 4 2. (a) lim [๏ฆ (๏ธ) + ๏ง(๏ธ)] = lim ๏ฆ (๏ธ) + lim ๏ง(๏ธ) ๏ธโ†’2 ๏ธโ†’2 ๏ธโ†’2 [Limit Law 1] = โˆ’1 + 2 =1 (b) lim ๏ฆ (๏ธ) exists, but lim ๏ง(๏ธ) does not exist, so we cannot apply Limit Law 2 to lim [๏ฆ (๏ธ) โˆ’ ๏ง(๏ธ)]. ๏ธโ†’0 ๏ธโ†’0 ๏ธโ†’0 The limit does not exist. (c) lim [๏ฆ(๏ธ) ๏ง(๏ธ)] = lim ๏ฆ (๏ธ) ยท lim ๏ง(๏ธ) ๏ธโ†’โˆ’1 ๏ธโ†’โˆ’1 ๏ธโ†’โˆ’1 [Limit Law 4] =1ยท2 =2 (d) lim ๏ฆ (๏ธ) = 1, but lim ๏ง(๏ธ) = 0, so we cannot apply Limit Law 5 to lim ๏ธโ†’3 Note: lim ๏ฆ(๏ธ) ๏ธโ†’3โˆ’ ๏ง(๏ธ) ๏ฆ (๏ธ) = โˆž since ๏ง(๏ธ) โ†’ 0+ as ๏ธ โ†’ 3โˆ’ and lim ๏ธโ†’3+ ๏ง(๏ธ) Therefore, the limit does not exist, even as an in๏ฌnite limit. ๏‚ฃ ๏‚ค (e) lim ๏ธ2 ๏ฆ (๏ธ) = lim ๏ธ2 ยท lim ๏ฆ (๏ธ) [Limit Law 4] ๏ธโ†’2 ๏ธโ†’2 ๏ฆ (๏ธ) ๏ธโ†’3 ๏ง(๏ธ) ๏ธโ†’3 . The limit does not exist. = โˆ’โˆž since ๏ง(๏ธ) โ†’ 0โˆ’ as ๏ธ โ†’ 3+ . (f) ๏ฆ (โˆ’1) + lim ๏ง(๏ธ) is unde๏ฌned since ๏ฆ (โˆ’1) is ๏ธโ†’2 ๏ธโ†’โˆ’1 = 22 ยท (โˆ’1) not de๏ฌned. = โˆ’4 3. lim (5๏ธ3 โˆ’ 3๏ธ2 + ๏ธ โˆ’ 6) = lim (5๏ธ3 ) โˆ’ lim (3๏ธ2 ) + lim ๏ธ โˆ’ lim 6 ๏ธโ†’3 ๏ธโ†’3 ๏ธโ†’3 ๏ธโ†’3 ๏ธโ†’3 [Limit Laws 2 and 1] = 5 lim ๏ธ3 โˆ’ 3 lim ๏ธ2 + lim ๏ธ โˆ’ lim 6 [3] = 5(33 ) โˆ’ 3(32 ) + 3 โˆ’ 6 [9, 8, and 7] ๏ธโ†’3 ๏ธโ†’3 ๏ธโ†’3 ๏ธโ†’3 = 105 c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.3 4. CALCULATING LIMITS USING THE LIMIT LAWS [Limit Law 4] lim (๏ธ4 โˆ’ 3๏ธ)(๏ธ2 + 5๏ธ + 3) = lim (๏ธ4 โˆ’ 3๏ธ) lim (๏ธ2 + 5๏ธ + 3) ๏ธโ†’โˆ’1 ๏ธโ†’โˆ’1 = = ๏ธโ†’โˆ’1 ๏‚ถ๏‚ต ๏‚ถ lim ๏ธ2 + lim 5๏ธ + lim 3 lim ๏ธ4 โˆ’ lim 3๏ธ ๏‚ต ๏ธโ†’โˆ’1 ๏ธโ†’โˆ’1 ๏ธโ†’โˆ’1 ๏ธโ†’โˆ’1 ๏ธโ†’โˆ’1 ๏‚ถ๏‚ต ๏‚ถ lim ๏ธ2 + 5 lim ๏ธ + lim 3 lim ๏ธ4 โˆ’ 3 lim ๏ธ ๏‚ต ๏ธโ†’โˆ’1 ๏ธโ†’โˆ’1 ๏ธโ†’โˆ’1 ๏ธโ†’โˆ’1 ๏ธโ†’โˆ’1 [2, 1] [3] [9, 8, and 7] = (1 + 3)(1 โˆ’ 5 + 3) = 4(โˆ’1) = โˆ’4 lim (๏ด4 โˆ’ 2) ๏ด4 โˆ’ 2 ๏ดโ†’โˆ’2 = ๏ดโ†’โˆ’2 2๏ด2 โˆ’ 3๏ด + 2 lim (2๏ด2 โˆ’ 3๏ด + 2) [Limit Law 5] 5. lim ๏ดโ†’โˆ’2 = = lim ๏ด4 โˆ’ lim 2 ๏ดโ†’โˆ’2 ๏ดโ†’โˆ’2 2 lim ๏ด2 โˆ’ 3 lim ๏ด + lim 2 ๏ดโ†’โˆ’2 ๏ดโ†’โˆ’2 ๏ดโ†’โˆ’2 [1, 2, and 3] 16 โˆ’ 2 2(4) โˆ’ 3(โˆ’2) + 2 [9, 7, and 8] 7 14 = 16 8 ๏ฑ โˆš 6. lim ๏ต4 + 3๏ต + 6 = lim (๏ต4 + 3๏ต + 6) = ๏ตโ†’โˆ’2 [11] ๏ตโ†’โˆ’2 = ๏ฑ [1, 2, and 3] lim ๏ต4 + 3 lim ๏ต + lim 6 ๏ตโ†’โˆ’2 ๏ตโ†’โˆ’2 ๏ตโ†’โˆ’2 ๏ฑ (โˆ’2)4 + 3 (โˆ’2) + 6 โˆš โˆš = 16 โˆ’ 6 + 6 = 16 = 4 [9, 8, and 7] = โˆš โˆš [Limit Law 4] 7. lim (1 + 3 ๏ธ ) (2 โˆ’ 6๏ธ2 + ๏ธ3 ) = lim (1 + 3 ๏ธ ) ยท lim (2 โˆ’ 6๏ธ2 + ๏ธ3 ) ๏ธโ†’8 ๏ธโ†’8 = ๏‚ณ ๏ธโ†’8 ๏‚ด โˆš ๏‚ด ๏‚ณ lim 1 + lim 3 ๏ธ ยท lim 2 โˆ’ 6 lim ๏ธ2 + lim ๏ธ3 ๏ธโ†’8 ๏ธโ†’8 ๏ธโ†’8 ๏ธโ†’8 โˆš ๏‚ข ๏‚ก ๏‚ข ๏‚ก = 1 + 3 8 ยท 2 โˆ’ 6 ยท 82 + 83 ๏ธโ†’8 [1, 2, and 3] [7, 10, 9] = (3)(130) = 390 8. lim ๏‚ต ๏ดโ†’2 ๏ด2 โˆ’ 2 3 ๏ด โˆ’ 3๏ด + 5 ๏‚ถ2 ๏‚ถ2 ๏ด2 โˆ’ 2 ๏ดโ†’2 ๏ด3 โˆ’ 3๏ด + 5 ๏€ฐ ๏€ฑ2 lim (๏ด2 โˆ’ 2) ๏ดโ†’2 ๏ =๏€ lim (๏ด3 โˆ’ 3๏ด + 5) = ๏‚ต [Limit Law 6] lim [5] ๏ดโ†’2 ๏€ฐ lim ๏ด2 โˆ’ lim 2 ๏€ฑ2 ๏ดโ†’2 ๏ดโ†’2 ๏ =๏€ lim ๏ด3 โˆ’ 3 lim ๏ด + lim 5 ๏ดโ†’2 ๏ดโ†’2 ๏ดโ†’2 ๏‚ต 4โˆ’2 = 8 โˆ’ 3(2) + 5 ๏‚ต ๏‚ถ2 4 2 = = 7 49 ๏‚ถ2 [1, 2, and 3] [9, 7, and 8] c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยค 81 82 ยค 9. lim ๏ธโ†’2 CHAPTER 2 LIMITS AND DERIVATIVES ๏ฒ ๏ฒ 2๏ธ2 + 1 = 3๏ธ โˆ’ 2 2๏ธ2 + 1 ๏ธโ†’2 3๏ธ โˆ’ 2 ๏ถ ๏ต lim (2๏ธ2 + 1) ๏ต ๏ธโ†’2 =๏ด lim (3๏ธ โˆ’ 2) [Limit Law 11] lim [5] ๏ธโ†’2 ๏ถ ๏ต 2 lim ๏ธ2 + lim 1 ๏ต ๏ธโ†’2 ๏ธโ†’2 =๏ด 3 lim ๏ธ โˆ’ lim 2 [1, 2, and 3] 2(2)2 + 1 = 3(2) โˆ’ 2 [9, 8, and 7] ๏ธโ†’2 = ๏ณ ๏ธโ†’2 ๏ฒ 3 9 = 4 2 10. (a) The left-hand side of the equation is not de๏ฌned for ๏ธ = 2, but the right-hand side is. (b) Since the equation holds for all ๏ธ 6= 2, it follows that both sides of the equation approach the same limit as ๏ธ โ†’ 2, just as in Example 3. Remember that in ๏ฌnding lim ๏ฆ (๏ธ), we never consider ๏ธ = ๏ก. ๏ธโ†’๏ก 11. lim ๏ธโ†’5 ๏ธ2 โˆ’ 6๏ธ + 5 (๏ธ โˆ’ 5)(๏ธ โˆ’ 1) = lim = lim (๏ธ โˆ’ 1) = 5 โˆ’ 1 = 4 ๏ธโ†’5 ๏ธโ†’5 ๏ธโˆ’5 ๏ธโˆ’5 โˆ’3 3 ๏ธ2 + 3๏ธ ๏ธ(๏ธ + 3) ๏ธ = lim = lim = = ๏ธโ†’โˆ’3 ๏ธ2 โˆ’ ๏ธ โˆ’ 12 ๏ธโ†’โˆ’3 (๏ธ โˆ’ 4)(๏ธ + 3) ๏ธโ†’โˆ’3 ๏ธ โˆ’ 4 โˆ’3 โˆ’ 4 7 12. lim 13. lim ๏ธโ†’5 ๏ธ2 โˆ’ 5๏ธ + 6 does not exist since ๏ธ โˆ’ 5 โ†’ 0, but ๏ธ2 โˆ’ 5๏ธ + 6 โ†’ 6 as ๏ธ โ†’ 5. ๏ธโˆ’5 ๏ธ2 + 3๏ธ ๏ธ(๏ธ + 3) ๏ธ ๏ธ = lim = lim . The last limit does not exist since lim = โˆ’โˆž and ๏ธโ†’4 ๏ธ2 โˆ’ ๏ธ โˆ’ 12 ๏ธโ†’4 (๏ธ โˆ’ 4)(๏ธ + 3) ๏ธโ†’4 ๏ธ โˆ’ 4 ๏ธโ†’4โˆ’ ๏ธ โˆ’ 4 14. lim lim ๏ธ ๏ธโ†’4+ ๏ธ โˆ’ 4 = โˆž. (๏ด + 3)(๏ด โˆ’ 3) โˆ’3 โˆ’ 3 โˆ’6 6 ๏ด2 โˆ’ 9 ๏ดโˆ’3 = lim = lim = = = ๏ดโ†’โˆ’3 2๏ด2 + 7๏ด + 3 ๏ดโ†’โˆ’3 (2๏ด + 1)(๏ด + 3) ๏ดโ†’โˆ’3 2๏ด + 1 2(โˆ’3) + 1 โˆ’5 5 15. lim 16. lim ๏ธโ†’โˆ’1 2(โˆ’1) + 1 โˆ’1 1 2๏ธ2 + 3๏ธ + 1 (2๏ธ + 1)(๏ธ + 1) 2๏ธ + 1 = lim = lim = = = ๏ธโ†’โˆ’1 (๏ธ โˆ’ 3)(๏ธ + 1) ๏ธโ†’โˆ’1 ๏ธ โˆ’ 3 ๏ธ2 โˆ’ 2๏ธ โˆ’ 3 โˆ’1 โˆ’ 3 โˆ’4 4 (โˆ’5 + ๏จ)2 โˆ’ 25 (25 โˆ’ 10๏จ + ๏จ2 ) โˆ’ 25 โˆ’10๏จ + ๏จ2 ๏จ(โˆ’10 + ๏จ) = lim = lim = lim = lim (โˆ’10 + ๏จ) = โˆ’10 ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ ๏จ 17. lim ๏‚ก ๏‚ข 8 + 12๏จ + 6๏จ2 + ๏จ3 โˆ’ 8 (2 + ๏จ)3 โˆ’ 8 12๏จ + 6๏จ2 + ๏จ3 = lim = lim ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ ๏‚ก ๏‚ข 2 = lim 12 + 6๏จ + ๏จ = 12 + 0 + 0 = 12 18. lim ๏จโ†’0 19. By the formula for the sum of cubes, we have lim ๏ธ+2 ๏ธโ†’โˆ’2 ๏ธ3 + 8 = lim ๏ธ+2 ๏ธโ†’โˆ’2 (๏ธ + 2)(๏ธ2 โˆ’ 2๏ธ + 4) = lim 1 ๏ธโ†’โˆ’2 ๏ธ2 โˆ’ 2๏ธ + 4 = 1 1 = . 4+4+4 12 c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.3 CALCULATING LIMITS USING THE LIMIT LAWS 20. We use the difference of squares in the numerator and the difference of cubes in the denominator. lim ๏ด4 โˆ’ 1 ๏ดโ†’1 ๏ด3 โˆ’ 1 (๏ด2 โˆ’ 1)(๏ด2 + 1) = lim ๏ดโ†’1 (๏ด โˆ’ 1)(๏ด2 + ๏ด + 1) = lim ๏ดโ†’1 2(2) 4 (๏ด โˆ’ 1)(๏ด + 1)(๏ด2 + 1) (๏ด + 1)(๏ด2 + 1) = lim = = 2 ๏ดโ†’1 (๏ด โˆ’ 1)(๏ด + ๏ด + 1) ๏ด2 + ๏ด + 1 3 3 ๏‚กโˆš ๏‚ข2 โˆš โˆš โˆš 9 + ๏จ โˆ’ 32 9+๏จโˆ’3 9+๏จโˆ’3 9+๏จ+3 (9 + ๏จ) โˆ’ 9 ๏‚ข = lim ๏‚กโˆš ๏‚ข = lim ๏‚กโˆš = lim ยทโˆš 21. lim ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ 9 + ๏จ + 3 ๏จโ†’0 ๏จ 9 + ๏จ + 3 9+๏จ+3 = lim ๏จโ†’0 ๏จ 1 1 ๏จ 1 ๏‚กโˆš ๏‚ข = lim โˆš = = ๏จโ†’0 3+3 6 9+๏จ+3 9+๏จ+3 ๏‚กโˆš ๏‚ข2 โˆš โˆš โˆš 4๏ต + 1 โˆ’ 32 4๏ต + 1 โˆ’ 3 4๏ต + 1 โˆ’ 3 4๏ต + 1 + 3 ๏‚กโˆš ๏‚ข = lim = lim ยทโˆš 22. lim ๏ตโ†’2 ๏ตโ†’2 ๏ตโˆ’2 ๏ตโˆ’2 4๏ต + 1 + 3 ๏ตโ†’2 (๏ต โˆ’ 2) 4๏ต + 1 + 3 4๏ต + 1 โˆ’ 9 4(๏ต โˆ’ 2) ๏‚กโˆš ๏‚ข = lim ๏‚กโˆš ๏‚ข ๏ตโ†’2 (๏ต โˆ’ 2) 4๏ต + 1 + 3 4๏ต + 1 + 3 = lim ๏ตโ†’2 (๏ต โˆ’ 2) 4 4 2 = lim โˆš = โˆš = ๏ตโ†’2 3 4๏ต + 1 + 3 9+3 1 1 1 1 โˆ’ โˆ’ 3๏ธ 1 3โˆ’๏ธ โˆ’1 ๏ธ 3 ๏ธ 3 = lim ยท = lim = lim =โˆ’ 23. lim ๏ธโ†’3 ๏ธ โˆ’ 3 ๏ธโ†’3 ๏ธ โˆ’ 3 3๏ธ ๏ธโ†’3 3๏ธ(๏ธ โˆ’ 3) ๏ธโ†’3 3๏ธ 9 1 1 โˆ’ (3 + ๏จ)โˆ’1 โˆ’ 3โˆ’1 3 โˆ’ (3 + ๏จ) โˆ’๏จ 3 + ๏จ 3 = lim = lim = lim 24. lim ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ(3 + ๏จ)3 ๏จโ†’0 ๏จ(3 + ๏จ)3 ๏จ ๏จ ๏‚ท ๏‚ธ 1 1 1 1 =โˆ’ =โˆ’ =โˆ’ = lim โˆ’ ๏จโ†’0 3(3 + ๏จ) lim [3(3 + ๏จ)] 3(3 + 0) 9 ๏จโ†’0 ๏‚กโˆš ๏‚ข2 ๏‚กโˆš ๏‚ข2 โˆš โˆš โˆš โˆš โˆš โˆš 1+๏ด โˆ’ 1โˆ’๏ด 1+๏ดโˆ’ 1โˆ’๏ด 1+๏ดโˆ’ 1โˆ’๏ด 1+๏ด+ 1โˆ’๏ด ๏‚ข โˆš โˆš = lim ๏‚กโˆš = lim ยทโˆš 25. lim ๏ดโ†’0 ๏ดโ†’0 ๏ด ๏ด 1 + ๏ด + 1 โˆ’ ๏ด ๏ดโ†’0 ๏ด 1 + ๏ด + 1 โˆ’ ๏ด (1 + ๏ด) โˆ’ (1 โˆ’ ๏ด) 2๏ด 2 ๏‚ข = lim ๏‚กโˆš ๏‚ข = lim โˆš โˆš โˆš โˆš = lim ๏‚กโˆš ๏ดโ†’0 ๏ด ๏ดโ†’0 ๏ด ๏ดโ†’0 1+๏ด+ 1โˆ’๏ด 1+๏ด+ 1โˆ’๏ด 1+๏ด+ 1โˆ’๏ด 2 2 โˆš = =1 = โˆš 2 1+ 1 26. lim ๏ดโ†’0 ๏‚ต 1 1 โˆ’ 2 ๏ด ๏ด +๏ด ๏‚ถ = lim ๏ดโ†’0 ๏‚ต 1 1 โˆ’ ๏ด ๏ด(๏ด + 1) ๏‚ถ = lim ๏ดโ†’0 1 ๏ด+1โˆ’1 1 = lim = =1 ๏ดโ†’0 ๏ด + 1 ๏ด(๏ด + 1) 0+1 โˆš โˆš โˆš 4โˆ’ ๏ธ (4 โˆ’ ๏ธ )(4 + ๏ธ ) 16 โˆ’ ๏ธ โˆš โˆš = lim = lim ๏ธโ†’16 16๏ธ โˆ’ ๏ธ2 ๏ธโ†’16 (16๏ธ โˆ’ ๏ธ2 )(4 + ๏ธ ) ๏ธโ†’16 ๏ธ(16 โˆ’ ๏ธ)(4 + ๏ธ ) 27. lim = lim 1 ๏ธโ†’16 ๏ธ(4 + 1 1 1 โˆš ๏‚ข = โˆš = = ๏‚ก 16(8) 128 ๏ธ) 16 4 + 16 ๏ธ2 โˆ’ 4๏ธ + 4 (๏ธ โˆ’ 2)2 (๏ธ โˆ’ 2)2 = lim = lim ๏ธโ†’2 ๏ธ4 โˆ’ 3๏ธ2 โˆ’ 4 ๏ธโ†’2 (๏ธ2 โˆ’ 4)(๏ธ2 + 1) ๏ธโ†’2 (๏ธ + 2)(๏ธ โˆ’ 2)(๏ธ2 + 1) 28. lim = lim ๏ธโˆ’2 ๏ธโ†’2 (๏ธ + 2)(๏ธ2 + 1) = 0 =0 4ยท5 c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยค 83 84 ยค CHAPTER 2 29. lim ๏ดโ†’0 ๏‚ต LIMITS AND DERIVATIVES 1 1 โˆš โˆ’ ๏ด ๏ด 1+๏ด ๏‚ถ ๏‚ก ๏‚ข๏‚ก ๏‚ข โˆš โˆš โˆš 1โˆ’ 1+๏ด 1+ 1+๏ด 1โˆ’ 1+๏ด โˆ’๏ด ๏‚ก ๏‚ข = lim โˆš ๏‚ก ๏‚ข โˆš โˆš โˆš โˆš = lim ๏ดโ†’0 ๏ด ๏ดโ†’0 ๏ดโ†’0 ๏ด 1+๏ด ๏ด ๏ด+1 1+ 1+๏ด 1+๏ด 1+ 1+๏ด = lim โˆ’1 โˆ’1 1 ๏‚ก ๏‚ข = โˆš ๏‚ก ๏‚ข =โˆ’ โˆš โˆš = lim โˆš ๏ดโ†’0 2 1+๏ด 1+ 1+๏ด 1+0 1+ 1+0 30. ๏‚กโˆš ๏‚ข๏‚กโˆš ๏‚ข โˆš ๏ธ2 + 9 โˆ’ 5 ๏ธ2 + 9 + 5 ๏ธ2 + 9 โˆ’ 5 (๏ธ2 + 9) โˆ’ 25 ๏‚กโˆš ๏‚ข ๏‚กโˆš ๏‚ข = lim = lim 2 ๏ธโ†’โˆ’4 ๏ธโ†’โˆ’4 ๏ธโ†’โˆ’4 (๏ธ + 4) ๏ธ+4 (๏ธ + 4) ๏ธ + 9 + 5 ๏ธ2 + 9 + 5 lim ๏ธ2 โˆ’ 16 (๏ธ + 4)(๏ธ โˆ’ 4) ๏‚กโˆš ๏‚ข = lim ๏‚กโˆš ๏‚ข ๏ธโ†’โˆ’4 (๏ธ + 4) ๏ธโ†’โˆ’4 (๏ธ + 4) ๏ธ2 + 9 + 5 ๏ธ2 + 9 + 5 = lim โˆ’8 4 โˆ’4 โˆ’ 4 ๏ธโˆ’4 = =โˆ’ = โˆš = lim โˆš ๏ธโ†’โˆ’4 5+5 5 16 + 9 + 5 ๏ธ2 + 9 + 5 (๏ธ + ๏จ)3 โˆ’ ๏ธ3 (๏ธ3 + 3๏ธ2 ๏จ + 3๏ธ๏จ2 + ๏จ3 ) โˆ’ ๏ธ3 3๏ธ2 ๏จ + 3๏ธ๏จ2 + ๏จ3 = lim = lim ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ 31. lim = lim ๏จโ†’0 ๏จ(3๏ธ2 + 3๏ธ๏จ + ๏จ2 ) = lim (3๏ธ2 + 3๏ธ๏จ + ๏จ2 ) = 3๏ธ2 ๏จโ†’0 ๏จ ๏ธ2 โˆ’ (๏ธ + ๏จ)2 1 1 โˆ’ 2 2 (๏ธ + ๏จ) ๏ธ (๏ธ + ๏จ)2 ๏ธ2 ๏ธ2 โˆ’ (๏ธ2 + 2๏ธ๏จ + ๏จ2 ) โˆ’๏จ(2๏ธ + ๏จ) = lim = lim 32. lim = lim ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ๏ธ2 (๏ธ + ๏จ)2 ๏จ ๏จ ๏จ๏ธ2 (๏ธ + ๏จ)2 = lim โˆ’(2๏ธ + ๏จ) ๏จโ†’0 ๏ธ2 (๏ธ + ๏จ)2 = 33. (a) โˆ’2๏ธ 2 =โˆ’ 3 ๏ธ2 ยท ๏ธ2 ๏ธ (b) 2 ๏ธ โ‰ˆ lim โˆš 3 1 + 3๏ธ โˆ’ 1 ๏ธโ†’0 (c) lim ๏ธโ†’0 ๏‚ต ๏ธ ๏ฆ (๏ธ) โˆ’0๏€บ001 โˆ’0๏€บ000 1 โˆ’0๏€บ000 01 โˆ’0๏€บ000 001 0๏€บ000 001 0๏€บ000 01 0๏€บ000 1 0๏€บ001 0๏€บ666 166 3 0๏€บ666 616 7 0๏€บ666 661 7 0๏€บ666 666 2 0๏€บ666 667 2 0๏€บ666 671 7 0๏€บ666 716 7 0๏€บ667 166 3 The limit appears to be ๏‚กโˆš ๏‚ข ๏‚กโˆš ๏‚ข โˆš ๏‚ถ ๏ธ 1 + 3๏ธ + 1 ๏ธ 1 + 3๏ธ + 1 ๏ธ 1 + 3๏ธ + 1 โˆš ยทโˆš = lim = lim ๏ธโ†’0 ๏ธโ†’0 (1 + 3๏ธ) โˆ’ 1 3๏ธ 1 + 3๏ธ โˆ’ 1 1 + 3๏ธ + 1 ๏‚กโˆš ๏‚ข 1 1 + 3๏ธ + 1 lim 3 ๏ธโ†’0 ๏‚ธ ๏‚ท 1 ๏ฑ lim (1 + 3๏ธ) + lim 1 = ๏ธโ†’0 ๏ธโ†’0 3 ๏‚ถ ๏‚ต 1 ๏ฑ = lim 1 + 3 lim ๏ธ + 1 ๏ธโ†’0 ๏ธโ†’0 3 = = = ๏‚ข 1 ๏‚กโˆš 1+3ยท0+1 3 [Limit Law 3] [1 and 11] [1, 3, and 7] [7 and 8] 2 1 (1 + 1) = 3 3 c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 2 . 3 SECTION 2.3 CALCULATING LIMITS USING THE LIMIT LAWS ยค 85 (b) 34. (a) โˆš โˆš 3+๏ธโˆ’ 3 โ‰ˆ 0๏€บ29 ๏ธโ†’0 ๏ธ lim ๏ธ ๏ฆ (๏ธ) โˆ’0๏€บ001 โˆ’0๏€บ000 1 โˆ’0๏€บ000 01 โˆ’0๏€บ000 001 0๏€บ000 001 0๏€บ000 01 0๏€บ000 1 0๏€บ001 0๏€บ288 699 2 0๏€บ288 677 5 0๏€บ288 675 4 0๏€บ288 675 2 0๏€บ288 675 1 0๏€บ288 674 9 0๏€บ288 672 7 0๏€บ288 651 1 The limit appears to be approximately 0๏€บ2887. โˆš โˆš โˆš ๏‚ถ ๏‚ตโˆš (3 + ๏ธ) โˆ’ 3 3+๏ธโˆ’ 3 3+๏ธ+ 3 1 โˆš โˆš ๏‚ข = lim โˆš โˆš = lim ๏‚กโˆš (c) lim ยทโˆš ๏ธโ†’0 ๏ธโ†’0 ๏ธ ๏ธโ†’0 ๏ธ 3+๏ธ+ 3 3+๏ธ+ 3 3+๏ธ+ 3 = lim 1 ๏ธโ†’0 โˆš โˆš lim 3 + ๏ธ + lim 3 ๏ธโ†’0 = ๏ฑ [Limit Laws 5 and 1] ๏ธโ†’0 1 lim (3 + ๏ธ) + ๏ธโ†’0 โˆš 3 1 โˆš = โˆš 3+0+ 3 1 = โˆš 2 3 [7 and 11] [1, 7, and 8] 35. Let ๏ฆ(๏ธ) = โˆ’๏ธ2 , ๏ง(๏ธ) = ๏ธ2 cos 20๏‚ผ๏ธ and ๏จ(๏ธ) = ๏ธ2 . Then โˆ’1 โ‰ค cos 20๏‚ผ๏ธ โ‰ค 1 โ‡’ โˆ’๏ธ2 โ‰ค ๏ธ2 cos 20๏‚ผ๏ธ โ‰ค ๏ธ2 โ‡’ ๏ฆ (๏ธ) โ‰ค ๏ง(๏ธ) โ‰ค ๏จ(๏ธ). So since lim ๏ฆ (๏ธ) = lim ๏จ(๏ธ) = 0, by the Squeeze Theorem we have ๏ธโ†’0 ๏ธโ†’0 lim ๏ง(๏ธ) = 0. ๏ธโ†’0 โˆš โˆš โˆš ๏ธ3 + ๏ธ2 sin(๏‚ผ๏€ฝ๏ธ), and ๏จ(๏ธ) = ๏ธ3 + ๏ธ2 . Then โˆš โˆš โˆš โˆ’1 โ‰ค sin(๏‚ผ๏€ฝ๏ธ) โ‰ค 1 โ‡’ โˆ’ ๏ธ3 + ๏ธ2 โ‰ค ๏ธ3 + ๏ธ2 sin(๏‚ผ๏€ฝ๏ธ) โ‰ค ๏ธ3 + ๏ธ2 โ‡’ 36. Let ๏ฆ(๏ธ) = โˆ’ ๏ธ3 + ๏ธ2 , ๏ง(๏ธ) = ๏ฆ (๏ธ) โ‰ค ๏ง(๏ธ) โ‰ค ๏จ(๏ธ). So since lim ๏ฆ (๏ธ) = lim ๏จ(๏ธ) = 0, by the Squeeze Theorem ๏ธโ†’0 ๏ธโ†’0 we have lim ๏ง(๏ธ) = 0. ๏ธโ†’0 ๏‚ก ๏‚ข 37. We have lim (4๏ธ โˆ’ 9) = 4(4) โˆ’ 9 = 7 and lim ๏ธ2 โˆ’ 4๏ธ + 7 = 42 โˆ’ 4(4) + 7 = 7. Since 4๏ธ โˆ’ 9 โ‰ค ๏ฆ (๏ธ) โ‰ค ๏ธ2 โˆ’ 4๏ธ + 7 ๏ธโ†’4 ๏ธโ†’4 for ๏ธ โ‰ฅ 0, lim ๏ฆ (๏ธ) = 7 by the Squeeze Theorem. ๏ธโ†’4 38. We have lim (2๏ธ) = 2(1) = 2 and lim (๏ธ4 โˆ’ ๏ธ2 + 2) = 14 โˆ’ 12 + 2 = 2. Since 2๏ธ โ‰ค ๏ง(๏ธ) โ‰ค ๏ธ4 โˆ’ ๏ธ2 + 2 for all ๏ธ, ๏ธโ†’1 ๏ธโ†’1 lim ๏ง(๏ธ) = 2 by the Squeeze Theorem. ๏ธโ†’1 39. โˆ’1 โ‰ค cos(2๏€ฝ๏ธ) โ‰ค 1 ๏‚ก ๏‚ข โ‡’ โˆ’๏ธ4 โ‰ค ๏ธ4 cos(2๏€ฝ๏ธ) โ‰ค ๏ธ4 . Since lim โˆ’๏ธ4 = 0 and lim ๏ธ4 = 0, we have ๏ธโ†’0 ๏ธโ†’0 ๏‚ฃ ๏‚ค lim ๏ธ4 cos(2๏€ฝ๏ธ) = 0 by the Squeeze Theorem. ๏ธโ†’0 c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 86 ยค CHAPTER 2 LIMITS AND DERIVATIVES 40. โˆ’1 โ‰ค sin(๏‚ผ๏€ฝ๏ธ) โ‰ค 1 โ‡’ ๏ฅโˆ’1 โ‰ค ๏ฅsin(๏‚ผ๏€ฝ๏ธ) โ‰ค ๏ฅ1 โˆš โˆš โˆš โˆš ๏ธ/๏ฅ โ‰ค ๏ธ ๏ฅsin(๏‚ผ๏€ฝ๏ธ) โ‰ค ๏ธ ๏ฅ. Since lim ( ๏ธ/๏ฅ) = 0 and โ‡’ ๏ธโ†’0+ ๏จโˆš ๏ฉ โˆš ๏ธ ๏ฅsin(๏‚ผ๏€ฝ๏ธ) = 0 by the Squeeze Theorem. lim ( ๏ธ ๏ฅ) = 0, we have lim ๏ธโ†’0+ ๏ธโ†’0+ 41. |๏ธ โˆ’ 3| = ๏€จ if ๏ธ โˆ’ 3 โ‰ฅ 0 ๏ธโˆ’3 if ๏ธ โˆ’ 3 ๏€ผ 0 โˆ’(๏ธ โˆ’ 3) ๏€จ = if ๏ธ โ‰ฅ 3 ๏ธโˆ’3 if ๏ธ ๏€ผ 3 3โˆ’๏ธ Thus, lim (2๏ธ + |๏ธ โˆ’ 3|) = lim (2๏ธ + ๏ธ โˆ’ 3) = lim (3๏ธ โˆ’ 3) = 3(3) โˆ’ 3 = 6 and ๏ธโ†’3+ ๏ธโ†’3+ ๏ธโ†’3+ lim (2๏ธ + |๏ธ โˆ’ 3|) = lim (2๏ธ + 3 โˆ’ ๏ธ) = lim (๏ธ + 3) = 3 + 3 = 6. Since the left and right limits are equal, ๏ธโ†’3โˆ’ ๏ธโ†’3โˆ’ ๏ธโ†’3โˆ’ lim (2๏ธ + |๏ธ โˆ’ 3|) = 6. ๏ธโ†’3 42. |๏ธ + 6| = ๏€จ ๏ธ+6 โˆ’(๏ธ + 6) if ๏ธ + 6 โ‰ฅ 0 if ๏ธ + 6 ๏€ผ 0 ๏€จ = if ๏ธ โ‰ฅ โˆ’6 ๏ธ+6 if ๏ธ ๏€ผ โˆ’6 โˆ’(๏ธ + 6) Weโ€™ll look at the one-sided limits. lim ๏ธโ†’โˆ’6+ 2๏ธ + 12 2(๏ธ + 6) = lim = 2 and |๏ธ + 6| ๏ธ+6 ๏ธโ†’โˆ’6+ The left and right limits are different, so lim ๏ธโ†’โˆ’6 ๏‚ฏ ๏‚ฏ ๏‚ฏ ๏‚ฏ ๏‚ฏ ๏‚ฏ lim ๏ธโ†’โˆ’6โˆ’ 2๏ธ + 12 2(๏ธ + 6) = lim = โˆ’2 |๏ธ + 6| ๏ธโ†’โˆ’6โˆ’ โˆ’(๏ธ + 6) 2๏ธ + 12 does not exist. |๏ธ + 6| 43. ๏‚ฏ2๏ธ3 โˆ’ ๏ธ2 ๏‚ฏ = ๏‚ฏ๏ธ2 (2๏ธ โˆ’ 1)๏‚ฏ = ๏‚ฏ๏ธ2 ๏‚ฏ ยท |2๏ธ โˆ’ 1| = ๏ธ2 |2๏ธ โˆ’ 1| |2๏ธ โˆ’ 1| = ๏€จ 2๏ธ โˆ’ 1 โˆ’(2๏ธ โˆ’ 1) if 2๏ธ โˆ’ 1 โ‰ฅ 0 if 2๏ธ โˆ’ 1 ๏€ผ 0 = ๏€จ ๏‚ฏ ๏‚ฏ So ๏‚ฏ2๏ธ3 โˆ’ ๏ธ2 ๏‚ฏ = ๏ธ2 [โˆ’(2๏ธ โˆ’ 1)] for ๏ธ ๏€ผ 0๏€บ5. Thus, lim 2๏ธ โˆ’ 1 3 2 ๏ธโ†’0๏€บ5โˆ’ |2๏ธ โˆ’ ๏ธ | = 2๏ธ โˆ’ 1 lim if ๏ธ โ‰ฅ 0๏€บ5 2๏ธ โˆ’ 1 if ๏ธ ๏€ผ 0๏€บ5 โˆ’(2๏ธ โˆ’ 1) 2 ๏ธโ†’0๏€บ5โˆ’ ๏ธ [โˆ’(2๏ธ โˆ’ 1)] = lim ๏ธโ†’0๏€บ5โˆ’ โˆ’1 โˆ’1 โˆ’1 = โˆ’4. = = ๏ธ2 (0๏€บ5)2 0๏€บ25 44. Since |๏ธ| = โˆ’๏ธ for ๏ธ ๏€ผ 0, we have lim 2 โˆ’ |๏ธ| 2 โˆ’ (โˆ’๏ธ) 2+๏ธ = lim = lim = lim 1 = 1. ๏ธโ†’โˆ’2 ๏ธโ†’โˆ’2 2 + ๏ธ ๏ธโ†’โˆ’2 2+๏ธ 2+๏ธ 45. Since |๏ธ| = โˆ’๏ธ for ๏ธ ๏€ผ 0, we have lim ๏‚ต ๏ธโ†’โˆ’2 ๏ธโ†’0โˆ’ 1 1 โˆ’ ๏ธ |๏ธ| ๏‚ถ = lim ๏ธโ†’0โˆ’ ๏‚ต 1 1 โˆ’ ๏ธ โˆ’๏ธ ๏‚ถ = lim 2 ๏ธโ†’0โˆ’ ๏ธ , which does not exist since the denominator approaches 0 and the numerator does not. 46. Since |๏ธ| = ๏ธ for ๏ธ ๏€พ 0, we have lim ๏ธโ†’0+ 47. (a) ๏‚ต 1 1 โˆ’ ๏ธ |๏ธ| ๏‚ถ = lim ๏ธโ†’0+ ๏‚ต 1 1 โˆ’ ๏ธ ๏ธ ๏‚ถ = lim 0 = 0. ๏ธโ†’0+ (b) (i) Since sgn ๏ธ = 1 for ๏ธ ๏€พ 0, lim sgn ๏ธ = lim 1 = 1. ๏ธโ†’0+ ๏ธโ†’0+ (ii) Since sgn ๏ธ = โˆ’1 for ๏ธ ๏€ผ 0, lim sgn ๏ธ = lim โˆ’1 = โˆ’1. ๏ธโ†’0โˆ’ ๏ธโ†’0โˆ’ (iii) Since lim sgn ๏ธ 6= lim sgn ๏ธ, lim sgn ๏ธ does not exist. ๏ธโ†’0โˆ’ ๏ธโ†’0 ๏ธโ†’0+ (iv) Since |sgn ๏ธ| = 1 for ๏ธ 6= 0, lim |sgn ๏ธ| = lim 1 = 1. ๏ธโ†’0 ๏ธโ†’0 c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.3 CALCULATING LIMITS USING THE LIMIT LAWS ๏€ธ โˆ’1 if sin ๏ธ ๏€ผ 0 ๏€พ ๏€ผ 48. (a) ๏ง(๏ธ) = sgn(sin ๏ธ) = 0 if sin ๏ธ = 0 ๏€พ ๏€บ 1 if sin ๏ธ ๏€พ 0 (i) lim ๏ง(๏ธ) = lim sgn(sin ๏ธ) = 1 since sin ๏ธ is positive for small positive values of ๏ธ. ๏ธโ†’0+ ๏ธโ†’0+ (ii) lim ๏ง(๏ธ) = lim sgn(sin ๏ธ) = โˆ’1 since sin ๏ธ is negative for small negative values of ๏ธ. ๏ธโ†’0โˆ’ ๏ธโ†’0โˆ’ (iii) lim ๏ง(๏ธ) does not exist since lim ๏ง(๏ธ) 6= lim ๏ง(๏ธ). ๏ธโ†’0 ๏ธโ†’0โˆ’ ๏ธโ†’0+ (iv) lim ๏ง(๏ธ) = lim sgn(sin ๏ธ) = โˆ’1 since sin ๏ธ is negative for values of ๏ธ slightly greater than ๏‚ผ. ๏ธโ†’๏‚ผ + ๏ธโ†’๏‚ผ + (v) lim ๏ง(๏ธ) = lim sgn(sin ๏ธ) = 1 since sin ๏ธ is positive for values of ๏ธ slightly less than ๏‚ผ. ๏ธโ†’๏‚ผ โˆ’ ๏ธโ†’๏‚ผ โˆ’ (vi) lim ๏ง(๏ธ) does not exist since lim ๏ง(๏ธ) 6= lim ๏ง(๏ธ). ๏ธโ†’๏‚ผ ๏ธโ†’๏‚ผ โˆ’ ๏ธโ†’๏‚ผ + (b) The sine function changes sign at every integer multiple of ๏‚ผ, so the (c) signum function equals 1 on one side and โˆ’1 on the other side of ๏ฎ๏‚ผ, ๏ฎ an integer. Thus, lim ๏ง(๏ธ) does not exist for ๏ก = ๏ฎ๏‚ผ, ๏ฎ an integer. ๏ธโ†’๏ก ๏ธ2 + ๏ธ โˆ’ 6 (๏ธ + 3)(๏ธ โˆ’ 2) = lim |๏ธ โˆ’ 2| |๏ธ โˆ’ 2| ๏ธโ†’2+ ๏ธโ†’2+ 49. (a) (i) lim ๏ง(๏ธ) = lim ๏ธโ†’2+ = lim ๏ธโ†’2+ (๏ธ + 3)(๏ธ โˆ’ 2) ๏ธโˆ’2 [since ๏ธ โˆ’ 2 ๏€พ 0 if ๏ธ โ†’ 2+ ] = lim (๏ธ + 3) = 5 ๏ธโ†’2+ (ii) The solution is similar to the solution in part (i), but now |๏ธ โˆ’ 2| = 2 โˆ’ ๏ธ since ๏ธ โˆ’ 2 ๏€ผ 0 if ๏ธ โ†’ 2โˆ’ . Thus, lim ๏ง(๏ธ) = lim โˆ’(๏ธ + 3) = โˆ’5. ๏ธโ†’2โˆ’ ๏ธโ†’2โˆ’ (b) Since the right-hand and left-hand limits of ๏ง at ๏ธ = 2 (c) are not equal, lim ๏ง(๏ธ) does not exist. ๏ธโ†’2 ๏€จ 2 ๏ธ +1 50. (a) ๏ฆ (๏ธ) = (๏ธ โˆ’ 2)2 if ๏ธ ๏€ผ 1 if ๏ธ โ‰ฅ 1 lim ๏ฆ (๏ธ) = lim (๏ธ2 + 1) = 12 + 1 = 2, ๏ธโ†’1โˆ’ ๏ธโ†’1โˆ’ lim ๏ฆ (๏ธ) = lim (๏ธ โˆ’ 2)2 = (โˆ’1)2 = 1 ๏ธโ†’1+ (b) Since the right-hand and left-hand limits of ๏ฆ at ๏ธ = 1 ๏ธโ†’1+ (c) are not equal, lim ๏ฆ(๏ธ) does not exist. ๏ธโ†’1 c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยค 87 88 ยค CHAPTER 2 LIMITS AND DERIVATIVES 51. For the lim ๏‚(๏ด) to exist, the one-sided limits at ๏ด = 2 must be equal. lim ๏‚(๏ด) = lim ๏ดโ†’2 ๏ดโ†’2โˆ’ lim ๏‚(๏ด) = lim ๏ดโ†’2+ ๏ดโ†’2+ ๏ดโ†’2โˆ’ ๏‚ก ๏‚ข 4 โˆ’ 12 ๏ด = 4 โˆ’ 1 = 3 and โˆš โˆš โˆš ๏ด + ๏ฃ = 2 + ๏ฃ. Now 3 = 2 + ๏ฃ โ‡’ 9 = 2 + ๏ฃ โ‡” ๏ฃ = 7. 52. (a) (i) lim ๏ง(๏ธ) = lim ๏ธ = 1 ๏ธโ†’1โˆ’ ๏ธโ†’1โˆ’ (ii) lim ๏ง(๏ธ) = lim (2 โˆ’ ๏ธ2 ) = 2 โˆ’ 12 = 1. Since lim ๏ง(๏ธ) = 1 and lim ๏ง(๏ธ) = 1, we have lim ๏ง(๏ธ) = 1. ๏ธโ†’1+ ๏ธโ†’1โˆ’ ๏ธโ†’1+ ๏ธโ†’1+ ๏ธโ†’1 Note that the fact ๏ง(1) = 3 does not affect the value of the limit. (iii) When ๏ธ = 1, ๏ง(๏ธ) = 3, so ๏ง(1) = 3. (iv) lim ๏ง(๏ธ) = lim (2 โˆ’ ๏ธ2 ) = 2 โˆ’ 22 = 2 โˆ’ 4 = โˆ’2 ๏ธโ†’2โˆ’ ๏ธโ†’2โˆ’ (v) lim ๏ง(๏ธ) = lim (๏ธ โˆ’ 3) = 2 โˆ’ 3 = โˆ’1 ๏ธโ†’2+ ๏ธโ†’2+ (vi) lim ๏ง(๏ธ) does not exist since lim ๏ง(๏ธ) 6= lim ๏ง(๏ธ). ๏ธโ†’2 (b) ๏€ธ ๏ธ ๏€พ ๏€พ ๏€พ ๏€พ ๏€ผ3 ๏ง(๏ธ) = 2 ๏€พ ๏€พ ๏€พ2 โˆ’ ๏ธ ๏€พ ๏€บ ๏ธโˆ’3 ๏ธโ†’2โˆ’ ๏ธโ†’2+ if ๏ธ ๏€ผ 1 if ๏ธ = 1 if 1 ๏€ผ ๏ธ โ‰ค 2 if ๏ธ ๏€พ 2 53. (a) (i) [[๏ธ]] = โˆ’2 for โˆ’2 โ‰ค ๏ธ ๏€ผ โˆ’1, so ๏ธโ†’โˆ’2+ (ii) [[๏ธ]] = โˆ’3 for โˆ’3 โ‰ค ๏ธ ๏€ผ โˆ’2, so ๏ธโ†’โˆ’2โˆ’ lim [[๏ธ]] = lim [[๏ธ]] = lim (โˆ’2) = โˆ’2 ๏ธโ†’โˆ’2+ lim (โˆ’3) = โˆ’3. ๏ธโ†’โˆ’2โˆ’ The right and left limits are different, so lim [[๏ธ]] does not exist. ๏ธโ†’โˆ’2 (iii) [[๏ธ]] = โˆ’3 for โˆ’3 โ‰ค ๏ธ ๏€ผ โˆ’2, so lim [[๏ธ]] = ๏ธโ†’โˆ’2๏€บ4 lim (โˆ’3) = โˆ’3. ๏ธโ†’โˆ’2๏€บ4 (b) (i) [[๏ธ]] = ๏ฎ โˆ’ 1 for ๏ฎ โˆ’ 1 โ‰ค ๏ธ ๏€ผ ๏ฎ, so lim [[๏ธ]] = lim (๏ฎ โˆ’ 1) = ๏ฎ โˆ’ 1. ๏ธโ†’๏ฎโˆ’ ๏ธโ†’๏ฎโˆ’ (ii) [[๏ธ]] = ๏ฎ for ๏ฎ โ‰ค ๏ธ ๏€ผ ๏ฎ + 1, so lim [[๏ธ]] = lim ๏ฎ = ๏ฎ. ๏ธโ†’๏ฎ+ ๏ธโ†’๏ฎ+ (c) lim [[๏ธ]] exists โ‡” ๏ก is not an integer. ๏ธโ†’๏ก 54. (a) See the graph of ๏น = cos ๏ธ. Since โˆ’1 โ‰ค cos ๏ธ ๏€ผ 0 on [โˆ’๏‚ผ๏€ป โˆ’๏‚ผ๏€ฝ2), we have ๏น = ๏ฆ(๏ธ) = [[cos ๏ธ]] = โˆ’1 on [โˆ’๏‚ผ๏€ป โˆ’๏‚ผ๏€ฝ2). Since 0 โ‰ค cos ๏ธ ๏€ผ 1 on [โˆ’๏‚ผ๏€ฝ2๏€ป 0) โˆช (0๏€ป ๏‚ผ๏€ฝ2], we have ๏ฆ(๏ธ) = 0 on [โˆ’๏‚ผ๏€ฝ2๏€ป 0) โˆช (0๏€ป ๏‚ผ๏€ฝ2]. Since โˆ’1 โ‰ค cos ๏ธ ๏€ผ 0 on (๏‚ผ๏€ฝ2๏€ป ๏‚ผ], we have ๏ฆ (๏ธ) = โˆ’1 on (๏‚ผ๏€ฝ2๏€ป ๏‚ผ]. Note that ๏ฆ(0) = 1. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.3 CALCULATING LIMITS USING THE LIMIT LAWS ยค (b) (i) lim ๏ฆ (๏ธ) = 0 and lim ๏ฆ (๏ธ) = 0, so lim ๏ฆ (๏ธ) = 0. ๏ธโ†’0โˆ’ ๏ธโ†’0 ๏ธโ†’0+ (ii) As ๏ธ โ†’ (๏‚ผ๏€ฝ2)โˆ’ , ๏ฆ (๏ธ) โ†’ 0, so lim ๏ธโ†’(๏‚ผ๏€ฝ2)โˆ’ (iii) As ๏ธ โ†’ (๏‚ผ๏€ฝ2)+ , ๏ฆ (๏ธ) โ†’ โˆ’1, so lim ๏ฆ (๏ธ) = 0. ๏ธโ†’(๏‚ผ๏€ฝ2)+ ๏ฆ (๏ธ) = โˆ’1. (iv) Since the answers in parts (ii) and (iii) are not equal, lim ๏ฆ (๏ธ) does not exist. ๏ธโ†’๏‚ผ๏€ฝ2 (c) lim ๏ฆ (๏ธ) exists for all ๏ก in the open interval (โˆ’๏‚ผ๏€ป ๏‚ผ) except ๏ก = โˆ’๏‚ผ๏€ฝ2 and ๏ก = ๏‚ผ๏€ฝ2. ๏ธโ†’๏ก 55. The graph of ๏ฆ (๏ธ) = [[๏ธ]] + [[โˆ’๏ธ]] is the same as the graph of ๏ง(๏ธ) = โˆ’1 with holes at each integer, since ๏ฆ (๏ก) = 0 for any integer ๏ก. Thus, lim ๏ฆ (๏ธ) = โˆ’1 and lim ๏ฆ (๏ธ) = โˆ’1, so lim ๏ฆ (๏ธ) = โˆ’1. However, ๏ธโ†’2โˆ’ ๏ธโ†’2 ๏ธโ†’2+ ๏ฆ (2) = [[2]] + [[โˆ’2]] = 2 + (โˆ’2) = 0, so lim ๏ฆ (๏ธ) 6= ๏ฆ (2). ๏ธโ†’2 56. lim ๏ถโ†’๏ฃโˆ’ ๏ƒƒ ๏Œ0 ๏ฒ 1โˆ’ ๏€ก ๏ถ2 ๏ฃ2 โˆš = ๏Œ0 1 โˆ’ 1 = 0. As the velocity approaches the speed of light, the length approaches 0. A left-hand limit is necessary since ๏Œ is not de๏ฌned for ๏ถ ๏€พ ๏ฃ. 57. Since ๏ฐ(๏ธ) is a polynomial, ๏ฐ(๏ธ) = ๏ก0 + ๏ก1 ๏ธ + ๏ก2 ๏ธ2 + ยท ยท ยท + ๏ก๏ฎ ๏ธ๏ฎ . Thus, by the Limit Laws, ๏‚ก ๏‚ข lim ๏ฐ(๏ธ) = lim ๏ก0 + ๏ก1 ๏ธ + ๏ก2 ๏ธ2 + ยท ยท ยท + ๏ก๏ฎ ๏ธ๏ฎ = ๏ก0 + ๏ก1 lim ๏ธ + ๏ก2 lim ๏ธ2 + ยท ยท ยท + ๏ก๏ฎ lim ๏ธ๏ฎ ๏ธโ†’๏ก ๏ธโ†’๏ก ๏ธโ†’๏ก 2 ๏ธโ†’๏ก ๏ธโ†’๏ก ๏ฎ = ๏ก0 + ๏ก1 ๏ก + ๏ก2 ๏ก + ยท ยท ยท + ๏ก๏ฎ ๏ก = ๏ฐ(๏ก) Thus, for any polynomial ๏ฐ, lim ๏ฐ(๏ธ) = ๏ฐ(๏ก). ๏ธโ†’๏ก 58. Let ๏ฒ(๏ธ) = ๏ฐ(๏ธ) where ๏ฐ(๏ธ) and ๏ฑ(๏ธ) are any polynomials, and suppose that ๏ฑ(๏ก) 6= 0. Then ๏ฑ(๏ธ) lim ๏ฐ(๏ธ) ๏ฐ(๏ธ) ๏ธโ†’๏ก = ๏ธโ†’๏ก ๏ฑ(๏ธ) lim ๏ฑ (๏ธ) lim ๏ฒ(๏ธ) = lim ๏ธโ†’๏ก [Limit Law 5] = ๏ธโ†’๏ก ๏‚ท 59. lim [๏ฆ(๏ธ) โˆ’ 8] = lim ๏ธโ†’1 ๏ธโ†’1 ๏ฐ(๏ก) ๏ฑ(๏ก) [Exercise 57] = ๏ฒ(๏ก). ๏‚ธ ๏ฆ(๏ธ) โˆ’ 8 ๏ฆ (๏ธ) โˆ’ 8 ยท (๏ธ โˆ’ 1) = lim ยท lim (๏ธ โˆ’ 1) = 10 ยท 0 = 0. ๏ธโ†’1 ๏ธโ†’1 ๏ธโˆ’1 ๏ธโˆ’1 Thus, lim ๏ฆ (๏ธ) = lim {[๏ฆ (๏ธ) โˆ’ 8] + 8} = lim [๏ฆ (๏ธ) โˆ’ 8] + lim 8 = 0 + 8 = 8. ๏ธโ†’1 ๏ธโ†’1 Note: The value of lim ๏ธโ†’1 lim ๏ธโ†’1 ๏ฆ (๏ธ) โˆ’ 8 exists. ๏ธโˆ’1 60. (a) lim ๏ฆ (๏ธ) = lim ๏ธโ†’0 ๏ธโ†’0 ๏‚ท ๏ธโ†’1 ๏ธโ†’1 ๏ฆ (๏ธ) โˆ’ 8 does not affect the answer since itโ€™s multiplied by 0. Whatโ€™s important is that ๏ธโˆ’1 ๏‚ธ ๏ฆ (๏ธ) 2 ๏ฆ (๏ธ) = lim 2 ยท lim ๏ธ2 = 5 ยท 0 = 0 ยท ๏ธ ๏ธโ†’0 ๏ธ ๏ธโ†’0 ๏ธ2 ๏‚ธ ๏‚ท ๏ฆ (๏ธ) ๏ฆ (๏ธ) ๏ฆ (๏ธ) = lim ยท ๏ธ = lim 2 ยท lim ๏ธ = 5 ยท 0 = 0 ๏ธโ†’0 ๏ธ ๏ธโ†’0 ๏ธโ†’0 ๏ธ ๏ธโ†’0 ๏ธ2 (b) lim 61. Observe that 0 โ‰ค ๏ฆ (๏ธ) โ‰ค ๏ธ2 for all ๏ธ, and lim 0 = 0 = lim ๏ธ2 . So, by the Squeeze Theorem, lim ๏ฆ (๏ธ) = 0. ๏ธโ†’0 ๏ธโ†’0 ๏ธโ†’0 c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 89 90 ยค CHAPTER 2 LIMITS AND DERIVATIVES 62. Let ๏ฆ(๏ธ) = [[๏ธ]] and ๏ง(๏ธ) = โˆ’[[๏ธ]]. Then lim ๏ฆ(๏ธ) and lim ๏ง(๏ธ) do not exist ๏ธโ†’3 ๏ธโ†’3 [Example 10] but lim [๏ฆ (๏ธ) + ๏ง(๏ธ)] = lim ([[๏ธ]] โˆ’ [[๏ธ]]) = lim 0 = 0. ๏ธโ†’3 ๏ธโ†’3 ๏ธโ†’3 63. Let ๏ฆ(๏ธ) = ๏ˆ(๏ธ) and ๏ง(๏ธ) = 1 โˆ’ ๏ˆ(๏ธ), where ๏ˆ is the Heaviside function de๏ฌned in Exercise 1.3.59. Thus, either ๏ฆ or ๏ง is 0 for any value of ๏ธ. Then lim ๏ฆ (๏ธ) and lim ๏ง(๏ธ) do not exist, but lim [๏ฆ (๏ธ)๏ง(๏ธ)] = lim 0 = 0. ๏ธโ†’0 ๏ธโ†’0 ๏ธโ†’0 ๏ธโ†’0 โˆš โˆš โˆš ๏‚ถ ๏‚ตโˆš 6โˆ’๏ธโˆ’2 6โˆ’๏ธโˆ’2 6โˆ’๏ธ+2 3โˆ’๏ธ+1 โˆš โˆš โˆš โˆš = lim ยท ยท 64. lim ๏ธโ†’2 ๏ธโ†’2 3โˆ’๏ธโˆ’1 3โˆ’๏ธโˆ’1 6โˆ’๏ธ+2 3โˆ’๏ธ+1 ๏€ฃ ๏€ข ๏‚กโˆš ๏‚ข2 โˆš โˆš ๏‚ถ ๏‚ต 6 โˆ’ ๏ธ โˆ’ 22 6โˆ’๏ธโˆ’4 3โˆ’๏ธ+1 3โˆ’๏ธ+1 โˆš โˆš = lim ยท = lim ๏‚กโˆš ยท ๏‚ข 2 ๏ธโ†’2 ๏ธโ†’2 3โˆ’๏ธโˆ’1 6โˆ’๏ธ+2 6โˆ’๏ธ+2 3 โˆ’ ๏ธ โˆ’ 12 ๏‚กโˆš ๏‚ข โˆš (2 โˆ’ ๏ธ) 3 โˆ’ ๏ธ + 1 1 3โˆ’๏ธ+1 ๏‚กโˆš ๏‚ข = lim โˆš = ๏ธโ†’2 (2 โˆ’ ๏ธ) ๏ธโ†’2 2 6โˆ’๏ธ+2 6โˆ’๏ธ+2 = lim 65. Since the denominator approaches 0 as ๏ธ โ†’ โˆ’2, the limit will exist only if the numerator also approaches 0 as ๏ธ โ†’ โˆ’2. In order for this to happen, we need lim ๏ธโ†’โˆ’2 ๏‚ก 2 ๏‚ข 3๏ธ + ๏ก๏ธ + ๏ก + 3 = 0 โ‡” 3(โˆ’2)2 + ๏ก(โˆ’2) + ๏ก + 3 = 0 โ‡” 12 โˆ’ 2๏ก + ๏ก + 3 = 0 โ‡” ๏ก = 15. With ๏ก = 15, the limit becomes 3(โˆ’2 + 3) 3(๏ธ + 2)(๏ธ + 3) 3(๏ธ + 3) 3 3๏ธ2 + 15๏ธ + 18 = lim = lim = = = โˆ’1. ๏ธโ†’โˆ’2 ๏ธโ†’โˆ’2 (๏ธ โˆ’ 1)(๏ธ + 2) ๏ธโ†’โˆ’2 ๏ธ โˆ’ 1 ๏ธ2 + ๏ธ โˆ’ 2 โˆ’2 โˆ’ 1 โˆ’3 lim 66. Solution 1: First, we ๏ฌnd the coordinates of ๏ and ๏‘ as functions of ๏ฒ. Then we can ๏ฌnd the equation of the line determined by these two points, and thus ๏ฌnd the ๏ธ-intercept (the point ๏’), and take the limit as ๏ฒ โ†’ 0. The coordinates of ๏ are (0๏€ป ๏ฒ). The point ๏‘ is the point of intersection of the two circles ๏ธ2 + ๏น 2 = ๏ฒ2 and (๏ธ โˆ’ 1)2 + ๏น 2 = 1. Eliminating ๏น from these equations, we get ๏ฒ2 โˆ’ ๏ธ2 = 1 โˆ’ (๏ธ โˆ’ 1)2 ๏ฒ2 = 1 + 2๏ธ โˆ’ 1 โ‡” ๏ธ = 12 ๏ฒ2 . Substituting back into the equation of the โ‡” shrinking circle to ๏ฌnd the ๏น-coordinate, we get ๏‚ก 1 2 ๏‚ข2 ๏ฒ + ๏น 2 = ๏ฒ2 2 (the positive ๏น-value). So the coordinates of ๏‘ are ๏ฒ ๏นโˆ’๏ฒ = ๏ฑ 1 โˆ’ 14 ๏ฒ2 โˆ’ ๏ฒ 1 2 ๏ฒ โˆ’0 2 ๏‚ณ 1 2 ๏ฒ ๏€ป๏ฒ 2 ๏ฑ ๏‚ก ๏‚ข โ‡” ๏น = ๏ฒ 1 โˆ’ 14 ๏ฒ2 โ‡” ๏น 2 = ๏ฒ2 1 โˆ’ 14 ๏ฒ2 ๏ฑ ๏‚ด 1 โˆ’ 14 ๏ฒ2 . The equation of the line joining ๏ and ๏‘ is thus (๏ธ โˆ’ 0). We set ๏น = 0 in order to ๏ฌnd the ๏ธ-intercept, and get 1 2 ๏ฒ 2 ๏ธ = โˆ’๏ฒ ๏‚ณ๏ฑ ๏‚ด = ๏ฒ 1 โˆ’ 14 ๏ฒ2 โˆ’ 1 โˆ’ 12 ๏ฒ2 ๏‚ณ๏ฑ ๏‚ด 1 โˆ’ 14 ๏ฒ2 + 1 1 โˆ’ 14 ๏ฒ2 โˆ’ 1 =2 ๏‚ณ๏ฑ ๏‚ด 1 โˆ’ 14 ๏ฒ2 + 1 ๏‚ณ๏ฑ ๏‚ด ๏‚กโˆš ๏‚ข 1 โˆ’ 14 ๏ฒ2 + 1 = lim 2 1 + 1 = 4. Now we take the limit as ๏ฒ โ†’ 0+ : lim ๏ธ = lim 2 ๏ฒโ†’0+ ๏ฒโ†’0+ ๏ฒโ†’0+ So the limiting position of ๏’ is the point (4๏€ป 0). c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.4 THE PRECISE DEFINITION OF A LIMIT ยค 91 Solution 2: We add a few lines to the diagram, as shown. Note that โˆ ๏ ๏‘๏“ = 90โ—ฆ (subtended by diameter ๏ ๏“). So โˆ ๏“๏‘๏’ = 90โ—ฆ = โˆ ๏๏‘๏” (subtended by diameter ๏๏” ). It follows that โˆ ๏๏‘๏“ = โˆ ๏” ๏‘๏’. Also โˆ ๏ ๏“๏‘ = 90โ—ฆ โˆ’ โˆ ๏“๏ ๏‘ = โˆ ๏๏’๏ . Since 4๏‘๏๏“ is isosceles, so is 4๏‘๏” ๏’, implying that ๏‘๏” = ๏” ๏’. As the circle ๏ƒ2 shrinks, the point ๏‘ plainly approaches the origin, so the point ๏’ must approach a point twice as far from the origin as ๏” , that is, the point (4๏€ป 0), as above. 2.4 The Precise Definition of a Limit 1. If |๏ฆ(๏ธ) โˆ’ 1| ๏€ผ 0๏€บ2, then โˆ’0๏€บ2 ๏€ผ ๏ฆ (๏ธ) โˆ’ 1 ๏€ผ 0๏€บ2 โ‡’ 0๏€บ8 ๏€ผ ๏ฆ (๏ธ) ๏€ผ 1๏€บ2. From the graph, we see that the last inequality is true if 0๏€บ7 ๏€ผ ๏ธ ๏€ผ 1๏€บ1, so we can choose ๏‚ฑ = min {1 โˆ’ 0๏€บ7๏€ป 1๏€บ1 โˆ’ 1} = min {0๏€บ3๏€ป 0๏€บ1} = 0๏€บ1 (or any smaller positive number). 2. If |๏ฆ(๏ธ) โˆ’ 2| ๏€ผ 0๏€บ5, then โˆ’0๏€บ5 ๏€ผ ๏ฆ (๏ธ) โˆ’ 2 ๏€ผ 0๏€บ5 โ‡’ 1๏€บ5 ๏€ผ ๏ฆ (๏ธ) ๏€ผ 2๏€บ5. From the graph, we see that the last inequality is true if 2๏€บ6 ๏€ผ ๏ธ ๏€ผ 3๏€บ8, so we can take ๏‚ฑ = min {3 โˆ’ 2๏€บ6๏€ป 3๏€บ8 โˆ’ 3} = min {0๏€บ4๏€ป 0๏€บ8} = 0๏€บ4 (or any smaller positive number). Note that ๏ธ 6= 3. 3. The leftmost question mark is the solution of โˆš โˆš ๏ธ = 1๏€บ6 and the rightmost, ๏ธ = 2๏€บ4. So the values are 1๏€บ62 = 2๏€บ56 and 2๏€บ42 = 5๏€บ76. On the left side, we need |๏ธ โˆ’ 4| ๏€ผ |2๏€บ56 โˆ’ 4| = 1๏€บ44. On the right side, we need |๏ธ โˆ’ 4| ๏€ผ |5๏€บ76 โˆ’ 4| = 1๏€บ76. To satisfy both conditions, we need the more restrictive condition to hold โ€” namely, |๏ธ โˆ’ 4| ๏€ผ 1๏€บ44. Thus, we can choose ๏‚ฑ = 1๏€บ44, or any smaller positive number. 4. The leftmost question mark is the positive solution of ๏ธ2 = 12 , that is, ๏ธ = โˆš12 , and the rightmost question mark is the positive solution of ๏ธ2 = 32 , that is, ๏ธ = ๏ฑ ๏‚ฏ ๏‚ฏ ๏‚ฏ ๏‚ฏ 3 . On the left side, we need |๏ธ โˆ’ 1| ๏€ผ ๏‚ฏ โˆš12 โˆ’ 1๏‚ฏ โ‰ˆ 0๏€บ292 (rounding down to be safe). On 2 ๏‚ฏ๏ฑ ๏‚ฏ ๏‚ฏ ๏‚ฏ the right side, we need |๏ธ โˆ’ 1| ๏€ผ ๏‚ฏ 32 โˆ’ 1๏‚ฏ โ‰ˆ 0๏€บ224. The more restrictive of these two conditions must apply, so we choose ๏‚ฑ = 0๏€บ224 (or any smaller positive number). 5. From the graph, we ๏ฌnd that ๏น = tan ๏ธ = 0๏€บ8 when ๏ธ โ‰ˆ 0๏€บ675, so ๏‚ผ โˆ’ ๏‚ฑ 1 โ‰ˆ 0๏€บ675 4 โ‡’ ๏‚ฑ 1 โ‰ˆ ๏‚ผ4 โˆ’ 0๏€บ675 โ‰ˆ 0๏€บ1106. Also, ๏น = tan ๏ธ = 1๏€บ2 when ๏ธ โ‰ˆ 0๏€บ876, so ๏‚ผ4 + ๏‚ฑ2 โ‰ˆ 0๏€บ876 โ‡’ ๏‚ฑ2 = 0๏€บ876 โˆ’ ๏‚ผ4 โ‰ˆ 0๏€บ0906. Thus, we choose ๏‚ฑ = 0๏€บ0906 (or any smaller positive number) since this is the smaller of ๏‚ฑ1 and ๏‚ฑ 2 . 6. From the graph, we ๏ฌnd that ๏น = 2๏ธ๏€ฝ(๏ธ2 + 4) = 0๏€บ3 when ๏ธ = 23 , so 1 โˆ’ ๏‚ฑ 1 = 23 โ‡’ ๏‚ฑ 1 = 13 . Also, ๏น = 2๏ธ๏€ฝ(๏ธ2 + 4) = 0๏€บ5 when ๏ธ = 2, so 1 + ๏‚ฑ 2 = 2 โ‡’ ๏‚ฑ 2 = 1. Thus, we choose ๏‚ฑ = 13 (or any smaller positive number) since this is the smaller of ๏‚ฑ 1 and ๏‚ฑ 2 . c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 92 ยค CHAPTER 2 LIMITS AND DERIVATIVES From the graph with ๏€ข = 0๏€บ2, we ๏ฌnd that ๏น = ๏ธ3 โˆ’ 3๏ธ + 4 = 5๏€บ8 when 7. ๏ธ โ‰ˆ 1๏€บ9774, so 2 โˆ’ ๏‚ฑ1 โ‰ˆ 1๏€บ9774 โ‡’ ๏‚ฑ1 โ‰ˆ 0๏€บ0226. Also, ๏น = ๏ธ3 โˆ’ 3๏ธ + 4 = 6๏€บ2 when ๏ธ โ‰ˆ 2๏€บ022, so 2 + ๏‚ฑ 2 โ‰ˆ 2๏€บ0219 โ‡’ ๏‚ฑ 2 โ‰ˆ 0๏€บ0219. Thus, we choose ๏‚ฑ = 0๏€บ0219 (or any smaller positive number) since this is the smaller of ๏‚ฑ 1 and ๏‚ฑ 2 . For ๏€ข = 0๏€บ1, we get ๏‚ฑ 1 โ‰ˆ 0๏€บ0112 and ๏‚ฑ 2 โ‰ˆ 0๏€บ0110, so we choose ๏‚ฑ = 0๏€บ011 (or any smaller positive number). From the graph with ๏€ข = 0๏€บ5, we ๏ฌnd that ๏น = (๏ฅ2๏ธ โˆ’ 1)๏€ฝ๏ธ = 1๏€บ5 when 8. ๏ธ โ‰ˆ โˆ’0๏€บ303, so ๏‚ฑ 1 โ‰ˆ 0๏€บ303. Also, ๏น = (๏ฅ2๏ธ โˆ’ 1)๏€ฝ๏ธ = 2๏€บ5 when ๏ธ โ‰ˆ 0๏€บ215, so ๏‚ฑ 2 โ‰ˆ 0๏€บ215. Thus, we choose ๏‚ฑ = 0๏€บ215 (or any smaller positive number) since this is the smaller of ๏‚ฑ 1 and ๏‚ฑ 2 . For ๏€ข = 0๏€บ1, we get ๏‚ฑ 1 โ‰ˆ 0๏€บ052 and ๏‚ฑ 2 โ‰ˆ 0๏€บ048, so we choose ๏‚ฑ = 0๏€บ048 (or any smaller positive number). 9. (a) The ๏ฌrst graph of ๏น = 1 shows a vertical asymptote at ๏ธ = 2. The second graph shows that ๏น = 100 when ln(๏ธ โˆ’ 1) ๏ธ โ‰ˆ 2๏€บ01 (more accurately, 2๏€บ01005). Thus, we choose ๏‚ฑ = 0๏€บ01 (or any smaller positive number). (b) From part (a), we see that as ๏ธ gets closer to 2 from the right, ๏น increases without bound. In symbols, lim 1 ๏ธโ†’2+ ln(๏ธ โˆ’ 1) = โˆž. 10. We graph ๏น = csc2 ๏ธ and ๏น = 500. The graphs intersect at ๏ธ โ‰ˆ 3๏€บ186, so we choose ๏‚ฑ = 3๏€บ186 โˆ’ ๏‚ผ โ‰ˆ 0๏€บ044. Thus, if 0 ๏€ผ |๏ธ โˆ’ ๏‚ผ| ๏€ผ 0๏€บ044, then csc2 ๏ธ ๏€พ 500. Similarly, for ๏ = 1000, we get ๏‚ฑ = 3๏€บ173 โˆ’ ๏‚ผ โ‰ˆ 0๏€บ031. 11. (a) ๏ = ๏‚ผ๏ฒ2 and ๏ = 1000 cm2 โ‡’ ๏‚ผ๏ฒ2 = 1000 โ‡’ ๏ฒ2 = 1000 ๏‚ผ โ‡’ ๏ฒ= ๏ฑ 1000 ๏‚ผ (๏ฒ ๏€พ 0) โ‰ˆ 17๏€บ8412 cm. (b) |๏ โˆ’ 1000| โ‰ค 5 โ‡’ โˆ’5 โ‰ค ๏‚ผ๏ฒ2 โˆ’ 1000 โ‰ค 5 โ‡’ 1000 โˆ’ 5 โ‰ค ๏‚ผ๏ฒ2 โ‰ค 1000 + 5 โ‡’ ๏ฑ ๏ฑ ๏ฑ ๏ฑ ๏ฑ ๏ฑ 995 1005 1000 995 1005 1000 โ‰ค ๏ฒ โ‰ค โ‡’ 17๏€บ7966 โ‰ค ๏ฒ โ‰ค 17๏€บ8858. โˆ’ โ‰ˆ 0๏€บ04466 and โˆ’ โ‰ˆ 0๏€บ04455. So ๏‚ผ ๏‚ผ ๏‚ผ ๏‚ผ ๏‚ผ ๏‚ผ if the machinist gets the radius within 0๏€บ0445 cm of 17๏€บ8412, the area will be within 5 cm2 of 1000. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.4 ยค THE PRECISE DEFINITION OF A LIMIT 93 (c) ๏ธ is the radius, ๏ฆ (๏ธ) is the area, ๏ก is the target radius given in part (a), ๏Œ is the target area (1000 cm2 ), ๏€ข is the magnitude of the error tolerance in the area (5 cm2 ), and ๏‚ฑ is the tolerance in the radius given in part (b). 12. (a) ๏” = 0๏€บ1๏ท2 + 2๏€บ155๏ท + 20 and ๏” = 200 โ‡’ 0๏€บ1๏ท2 + 2๏€บ155๏ท + 20 = 200 โ‡’ [by the quadratic formula or from the graph] ๏ท โ‰ˆ 33๏€บ0 watts (๏ท ๏€พ 0) (b) From the graph, 199 โ‰ค ๏” โ‰ค 201 โ‡’ 32๏€บ89 ๏€ผ ๏ท ๏€ผ 33๏€บ11. (c) ๏ธ is the input power, ๏ฆ (๏ธ) is the temperature, ๏ก is the target input power given in part (a), ๏Œ is the target temperature (200), ๏€ข is the tolerance in the temperature (1), and ๏‚ฑ is the tolerance in the power input in watts indicated in part (b) (0๏€บ11 watts). 13. (a) |4๏ธ โˆ’ 8| = 4 |๏ธ โˆ’ 2| ๏€ผ 0๏€บ1 โ‡” |๏ธ โˆ’ 2| ๏€ผ 0๏€บ1 0๏€บ1 , so ๏‚ฑ = = 0๏€บ025. 4 4 (b) |4๏ธ โˆ’ 8| = 4 |๏ธ โˆ’ 2| ๏€ผ 0๏€บ01 โ‡” |๏ธ โˆ’ 2| ๏€ผ 0๏€บ01 0๏€บ01 , so ๏‚ฑ = = 0๏€บ0025. 4 4 14. |(5๏ธ โˆ’ 7) โˆ’ 3| = |5๏ธ โˆ’ 10| = |5(๏ธ โˆ’ 2)| = 5 |๏ธ โˆ’ 2|. We must have |๏ฆ(๏ธ) โˆ’ ๏Œ| ๏€ผ ๏€ข, so 5 |๏ธ โˆ’ 2| ๏€ผ ๏€ข โ‡” |๏ธ โˆ’ 2| ๏€ผ ๏€ข๏€ฝ5. Thus, choose ๏‚ฑ = ๏€ข๏€ฝ5. For ๏€ข = 0๏€บ1, ๏‚ฑ = 0๏€บ02; for ๏€ข = 0๏€บ05, ๏‚ฑ = 0๏€บ01; for ๏€ข = 0๏€บ01, ๏‚ฑ = 0๏€บ002. 15. Given ๏€ข ๏€พ 0, we need ๏‚ฑ ๏€พ 0 such that if 0 ๏€ผ |๏ธ โˆ’ 3| ๏€ผ ๏‚ฑ, then ๏‚ฏ ๏‚ฏ ๏‚ฏ ๏‚ฏ ๏‚ฏ ๏‚ฏ ๏‚ฏ(1 + 1 ๏ธ) โˆ’ 2๏‚ฏ ๏€ผ ๏€ข. But ๏‚ฏ(1 + 1 ๏ธ) โˆ’ 2๏‚ฏ ๏€ผ ๏€ข โ‡” ๏‚ฏ 1 ๏ธ โˆ’ 1๏‚ฏ ๏€ผ ๏€ข โ‡” 3 3 3 ๏‚ฏ1๏‚ฏ ๏‚ฏ ๏‚ฏ |๏ธ โˆ’ 3| ๏€ผ ๏€ข โ‡” |๏ธ โˆ’ 3| ๏€ผ 3๏€ข. So if we choose ๏‚ฑ = 3๏€ข, then 3 ๏‚ฏ ๏‚ฏ 0 ๏€ผ |๏ธ โˆ’ 3| ๏€ผ ๏‚ฑ โ‡’ ๏‚ฏ(1 + 13 ๏ธ) โˆ’ 2๏‚ฏ ๏€ผ ๏€ข. Thus, lim (1 + 13 ๏ธ) = 2 by ๏ธโ†’3 the de๏ฌnition of a limit. 16. Given ๏€ข ๏€พ 0, we need ๏‚ฑ ๏€พ 0 such that if 0 ๏€ผ |๏ธ โˆ’ 4| ๏€ผ ๏‚ฑ, then |(2๏ธ โˆ’ 5) โˆ’ 3| ๏€ผ ๏€ข. But |(2๏ธ โˆ’ 5) โˆ’ 3| ๏€ผ ๏€ข โ‡” |2๏ธ โˆ’ 8| ๏€ผ ๏€ข โ‡” |2| |๏ธ โˆ’ 4| ๏€ผ ๏€ข โ‡” |๏ธ โˆ’ 4| ๏€ผ ๏€ข๏€ฝ2. So if we choose ๏‚ฑ = ๏€ข๏€ฝ2, then 0 ๏€ผ |๏ธ โˆ’ 4| ๏€ผ ๏‚ฑ โ‡’ |(2๏ธ โˆ’ 5) โˆ’ 3| ๏€ผ ๏€ข. Thus, lim (2๏ธ โˆ’ 5) = 3 by the ๏ธโ†’4 de๏ฌnition of a limit. 17. Given ๏€ข ๏€พ 0, we need ๏‚ฑ ๏€พ 0 such that if 0 ๏€ผ |๏ธ โˆ’ (โˆ’3)| ๏€ผ ๏‚ฑ, then |(1 โˆ’ 4๏ธ) โˆ’ 13| ๏€ผ ๏€ข. But |(1 โˆ’ 4๏ธ) โˆ’ 13| ๏€ผ ๏€ข โ‡” |โˆ’4๏ธ โˆ’ 12| ๏€ผ ๏€ข โ‡” |โˆ’4| |๏ธ + 3| ๏€ผ ๏€ข โ‡” |๏ธ โˆ’ (โˆ’3)| ๏€ผ ๏€ข๏€ฝ4. So if we choose ๏‚ฑ = ๏€ข๏€ฝ4, then 0 ๏€ผ |๏ธ โˆ’ (โˆ’3)| ๏€ผ ๏‚ฑ โ‡’ |(1 โˆ’ 4๏ธ) โˆ’ 13| ๏€ผ ๏€ข. Thus, lim (1 โˆ’ 4๏ธ) = 13 by the de๏ฌnition of a limit. ๏ธโ†’โˆ’3 x c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 94 ยค CHAPTER 2 LIMITS AND DERIVATIVES 18. Given ๏€ข ๏€พ 0, we need ๏‚ฑ ๏€พ 0 such that if 0 ๏€ผ |๏ธ โˆ’ (โˆ’2)| ๏€ผ ๏‚ฑ, then |(3๏ธ + 5) โˆ’ (โˆ’1)| ๏€ผ ๏€ข. But |(3๏ธ + 5) โˆ’ (โˆ’1)| ๏€ผ ๏€ข โ‡” |3๏ธ + 6| ๏€ผ ๏€ข โ‡” |3| |๏ธ + 2| ๏€ผ ๏€ข โ‡” |๏ธ + 2| ๏€ผ ๏€ข๏€ฝ3. So if we choose ๏‚ฑ = ๏€ข๏€ฝ3, then 0 ๏€ผ |๏ธ + 2| ๏€ผ ๏‚ฑ โ‡’ |(3๏ธ + 5) โˆ’ (โˆ’1)| ๏€ผ ๏€ข. Thus, lim (3๏ธ + 5) = โˆ’1 by the de๏ฌnition of a limit. ๏ธโ†’โˆ’2 ๏‚ฏ ๏‚ฏ 2 + 4๏ธ 19. Given ๏€ข ๏€พ 0, we need ๏‚ฑ ๏€พ 0 such that if 0 ๏€ผ |๏ธ โˆ’ 1| ๏€ผ ๏‚ฑ, then ๏‚ฏ๏‚ฏ ๏‚ฏ ๏‚ฏ ๏‚ฏ ๏‚ฏ 2 + 4๏ธ ๏‚ฏ ๏‚ฏ โˆ’ 2๏‚ฏ๏‚ฏ ๏€ผ ๏€ข. But ๏‚ฏ๏‚ฏ โˆ’ 2๏‚ฏ๏‚ฏ ๏€ผ ๏€ข โ‡” 3 3 ๏‚ฏ ๏‚ฏ ๏‚ฏ4๏‚ฏ ๏‚ฏ 4๏ธ โˆ’ 4 ๏‚ฏ 3 3 ๏‚ฏ ๏‚ฏ ๏‚ฏ ๏‚ฏ ๏‚ฏ 3 ๏‚ฏ ๏€ผ ๏€ข โ‡” 3 |๏ธ โˆ’ 1| ๏€ผ ๏€ข โ‡” |๏ธ โˆ’ 1| ๏€ผ 4 ๏€ข. So if we choose ๏‚ฑ = 4 ๏€ข, then 0 ๏€ผ |๏ธ โˆ’ 1| ๏€ผ ๏‚ฑ ๏‚ฏ ๏‚ฏ ๏‚ฏ ๏‚ฏ 2 + 4๏ธ ๏‚ฏ ๏€ผ ๏€ข. Thus, lim 2 + 4๏ธ = 2 by the de๏ฌnition of a limit. ๏‚ฏ โˆ’ 2 ๏‚ฏ ๏‚ฏ 3 ๏ธโ†’1 3 ๏‚ฏ ๏‚ฏ ๏‚ฏ โ‡’ ๏‚ฏ 20. Given ๏€ข ๏€พ 0, we need ๏‚ฑ ๏€พ 0 such that if 0 ๏€ผ |๏ธ โˆ’ 10| ๏€ผ ๏‚ฑ, then ๏‚ฏ3 โˆ’ 45 ๏ธ โˆ’ (โˆ’5)๏‚ฏ ๏€ผ ๏€ข. But ๏‚ฏ3 โˆ’ 45 ๏ธ โˆ’ (โˆ’5)๏‚ฏ ๏€ผ ๏€ข ๏‚ฏ ๏‚ฏ ๏‚ฏ ๏‚ฏ ๏‚ฏ8 โˆ’ 4 ๏ธ๏‚ฏ ๏€ผ ๏€ข โ‡” ๏‚ฏโˆ’ 4 ๏‚ฏ |๏ธ โˆ’ 10| ๏€ผ ๏€ข โ‡” |๏ธ โˆ’ 10| ๏€ผ 5 ๏€ข. So if we choose ๏‚ฑ = 5 ๏€ข, then 0 ๏€ผ |๏ธ โˆ’ 10| ๏€ผ ๏‚ฑ 5 5 4 4 ๏‚ฏ ๏‚ฏ ๏‚ฏ3 โˆ’ 4 ๏ธ โˆ’ (โˆ’5)๏‚ฏ ๏€ผ ๏€ข. Thus, lim (3 โˆ’ 4 ๏ธ) = โˆ’5 by the de๏ฌnition of a limit. 5 5 โ‡” โ‡’ ๏ธโ†’10 ๏‚ฏ 2 ๏‚ฏ ๏ธ โˆ’ 2๏ธ โˆ’ 8 21. Given ๏€ข ๏€พ 0, we need ๏‚ฑ ๏€พ 0 such that if 0 ๏€ผ |๏ธ โˆ’ 4| ๏€ผ ๏‚ฑ, then ๏‚ฏ๏‚ฏ ๏‚ฏ ๏‚ฏ โˆ’ 6๏‚ฏ๏‚ฏ ๏€ผ ๏€ข โ‡” ๏ธโˆ’4 ๏‚ฏ ๏‚ฏ ๏‚ฏ (๏ธ โˆ’ 4)(๏ธ + 2) ๏‚ฏ ๏‚ฏ โˆ’ 6๏‚ฏ๏‚ฏ ๏€ผ ๏€ข โ‡” |๏ธ + 2 โˆ’ 6| ๏€ผ ๏€ข [๏ธ 6= 4] โ‡” |๏ธ โˆ’ 4| ๏€ผ ๏€ข. So choose ๏‚ฑ = ๏€ข. Then ๏‚ฏ ๏ธโˆ’4 ๏‚ฏ ๏‚ฏ ๏‚ฏ (๏ธ โˆ’ 4)(๏ธ + 2) ๏‚ฏ 0 ๏€ผ |๏ธ โˆ’ 4| ๏€ผ ๏‚ฑ โ‡’ |๏ธ โˆ’ 4| ๏€ผ ๏€ข โ‡’ |๏ธ + 2 โˆ’ 6| ๏€ผ ๏€ข โ‡’ ๏‚ฏ๏‚ฏ โˆ’ 6๏‚ฏ๏‚ฏ ๏€ผ ๏€ข [๏ธ 6= 4] โ‡’ ๏ธโˆ’4 ๏‚ฏ 2 ๏‚ฏ ๏‚ฏ ๏ธ โˆ’ 2๏ธ โˆ’ 8 ๏‚ฏ ๏ธ2 โˆ’ 2๏ธ โˆ’ 8 ๏‚ฏ โˆ’ 6๏‚ฏ๏‚ฏ ๏€ผ ๏€ข. By the de๏ฌnition of a limit, lim = 6. ๏‚ฏ ๏ธโ†’4 ๏ธโˆ’4 ๏ธโˆ’4 ๏‚ฏ ๏‚ฏ 9 โˆ’ 4๏ธ2 22. Given ๏€ข ๏€พ 0, we need ๏‚ฑ ๏€พ 0 such that if 0 ๏€ผ |๏ธ + 1๏€บ5| ๏€ผ ๏‚ฑ, then ๏‚ฏ๏‚ฏ ๏‚ฏ ๏‚ฏ โˆ’ 6๏‚ฏ๏‚ฏ ๏€ผ ๏€ข โ‡” 3 + 2๏ธ ๏‚ฏ ๏‚ฏ ๏‚ฏ (3 + 2๏ธ)(3 โˆ’ 2๏ธ) ๏‚ฏ ๏‚ฏ โˆ’ 6๏‚ฏ๏‚ฏ ๏€ผ ๏€ข โ‡” |3 โˆ’ 2๏ธ โˆ’ 6| ๏€ผ ๏€ข [๏ธ 6= โˆ’1๏€บ5] โ‡” |โˆ’2๏ธ โˆ’ 3| ๏€ผ ๏€ข โ‡” |โˆ’2| |๏ธ + 1๏€บ5| ๏€ผ ๏€ข โ‡” ๏‚ฏ 3 + 2๏ธ |๏ธ + 1๏€บ5| ๏€ผ ๏€ข๏€ฝ2. So choose ๏‚ฑ = ๏€ข๏€ฝ2. Then 0 ๏€ผ |๏ธ + 1๏€บ5| ๏€ผ ๏‚ฑ โ‡’ |๏ธ + 1๏€บ5| ๏€ผ ๏€ข๏€ฝ2 โ‡’ |โˆ’2| |๏ธ + 1๏€บ5| ๏€ผ ๏€ข โ‡’ ๏‚ฏ ๏‚ฏ ๏‚ฏ ๏‚ฏ ๏‚ฏ 9 โˆ’ 4๏ธ2 ๏‚ฏ ๏‚ฏ ๏‚ฏ (3 + 2๏ธ)(3 โˆ’ 2๏ธ) |โˆ’2๏ธ โˆ’ 3| ๏€ผ ๏€ข โ‡’ |3 โˆ’ 2๏ธ โˆ’ 6| ๏€ผ ๏€ข โ‡’ ๏‚ฏ๏‚ฏ โˆ’ 6๏‚ฏ๏‚ฏ ๏€ผ ๏€ข [๏ธ 6= โˆ’1๏€บ5] โ‡’ ๏‚ฏ๏‚ฏ โˆ’ 6๏‚ฏ๏‚ฏ ๏€ผ ๏€ข. 3 + 2๏ธ 3 + 2๏ธ By the de๏ฌnition of a limit, 9 โˆ’ 4๏ธ2 = 6. ๏ธโ†’โˆ’1๏€บ5 3 + 2๏ธ lim 23. Given ๏€ข ๏€พ 0, we need ๏‚ฑ ๏€พ 0 such that if 0 ๏€ผ |๏ธ โˆ’ ๏ก| ๏€ผ ๏‚ฑ, then |๏ธ โˆ’ ๏ก| ๏€ผ ๏€ข. So ๏‚ฑ = ๏€ข will work. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.4 THE PRECISE DEFINITION OF A LIMIT ยค 95 24. Given ๏€ข ๏€พ 0, we need ๏‚ฑ ๏€พ 0 such that if 0 ๏€ผ |๏ธ โˆ’ ๏ก| ๏€ผ ๏‚ฑ, then |๏ฃ โˆ’ ๏ฃ| ๏€ผ ๏€ข. But |๏ฃ โˆ’ ๏ฃ| = 0, so this will be true no matter what ๏‚ฑ we pick. ๏‚ฏ ๏‚ฏ โ‡” ๏ธ2 ๏€ผ ๏€ข ๏‚ฏ ๏‚ฏ โˆš โˆš โ‡” |๏ธ|3 ๏€ผ ๏€ข โ‡” |๏ธ| ๏€ผ 3 ๏€ข. Take ๏‚ฑ = 3 ๏€ข. ๏‚ฏ ๏‚ฏ 25. Given ๏€ข ๏€พ 0, we need ๏‚ฑ ๏€พ 0 such that if 0 ๏€ผ |๏ธ โˆ’ 0| ๏€ผ ๏‚ฑ, then ๏‚ฏ๏ธ2 โˆ’ 0๏‚ฏ ๏€ผ ๏€ข Then 0 ๏€ผ |๏ธ โˆ’ 0| ๏€ผ ๏‚ฑ ๏‚ฏ ๏‚ฏ โ‡’ ๏‚ฏ๏ธ2 โˆ’ 0๏‚ฏ ๏€ผ ๏€ข. Thus, lim ๏ธ2 = 0 by the de๏ฌnition of a limit. โˆš โˆš ๏€ข. Take ๏‚ฑ = ๏€ข. ๏ธโ†’0 26. Given ๏€ข ๏€พ 0, we need ๏‚ฑ ๏€พ 0 such that if 0 ๏€ผ |๏ธ โˆ’ 0| ๏€ผ ๏‚ฑ, then ๏‚ฏ๏ธ3 โˆ’ 0๏‚ฏ ๏€ผ ๏€ข Then 0 ๏€ผ |๏ธ โˆ’ 0| ๏€ผ ๏‚ฑ โ‡” |๏ธ| ๏€ผ ๏‚ฏ ๏‚ฏ โ‡’ ๏‚ฏ๏ธ3 โˆ’ 0๏‚ฏ ๏€ผ ๏‚ฑ 3 = ๏€ข. Thus, lim ๏ธ3 = 0 by the de๏ฌnition of a limit. ๏ธโ†’0 ๏‚ฏ ๏‚ฏ 27. Given ๏€ข ๏€พ 0, we need ๏‚ฑ ๏€พ 0 such that if 0 ๏€ผ |๏ธ โˆ’ 0| ๏€ผ ๏‚ฑ, then ๏‚ฏ|๏ธ| โˆ’ 0๏‚ฏ ๏€ผ ๏€ข. But ๏‚ฏ|๏ธ|๏‚ฏ = |๏ธ|. So this is true if we pick ๏‚ฑ = ๏€ข. Thus, lim |๏ธ| = 0 by the de๏ฌnition of a limit. ๏ธโ†’0 ๏‚ฏโˆš ๏‚ฏโˆš ๏‚ฏ ๏‚ฏ 28. Given ๏€ข ๏€พ 0, we need ๏‚ฑ ๏€พ 0 such that if 0 ๏€ผ ๏ธ โˆ’ (โˆ’6) ๏€ผ ๏‚ฑ, then ๏‚ฏ 8 6 + ๏ธ โˆ’ 0๏‚ฏ ๏€ผ ๏€ข. But ๏‚ฏ 8 6 + ๏ธ โˆ’ 0๏‚ฏ ๏€ผ ๏€ข โˆš 8 6 + ๏ธ ๏€ผ ๏€ข โ‡” 6 + ๏ธ ๏€ผ ๏€ข8 โ‡” ๏ธ โˆ’ (โˆ’6) ๏€ผ ๏€ข8 . So if we choose ๏‚ฑ = ๏€ข8 , then 0 ๏€ผ ๏ธ โˆ’ (โˆ’6) ๏€ผ ๏‚ฑ ๏‚ฏ ๏‚ฏโˆš โˆš ๏‚ฏ 8 6 + ๏ธ โˆ’ 0๏‚ฏ ๏€ผ ๏€ข. Thus, lim 8 6 + ๏ธ = 0 by the de๏ฌnition of a right-hand limit. โ‡” โ‡’ ๏ธโ†’โˆ’6+ ๏‚ฏ๏‚ก ๏‚ฏ ๏‚ฏ ๏‚ฏ โ‡” ๏‚ฏ๏ธ2 โˆ’ 4๏ธ + 4๏‚ฏ ๏€ผ ๏€ข โ‡” ๏‚ฏ ๏‚ฏ โˆš โ‡” |๏ธ โˆ’ 2| ๏€ผ ๏€ข โ‡” ๏‚ฏ(๏ธ โˆ’ 2)2 ๏‚ฏ ๏€ผ ๏€ข. Thus, ๏‚ข 29. Given ๏€ข ๏€พ 0, we need ๏‚ฑ ๏€พ 0 such that if 0 ๏€ผ |๏ธ โˆ’ 2| ๏€ผ ๏‚ฑ, then ๏‚ฏ ๏ธ2 โˆ’ 4๏ธ + 5 โˆ’ 1๏‚ฏ ๏€ผ ๏€ข ๏‚ฏ ๏‚ฏ ๏‚ฏ(๏ธ โˆ’ 2)2 ๏‚ฏ ๏€ผ ๏€ข. So take ๏‚ฑ = โˆš๏€ข. Then 0 ๏€ผ |๏ธ โˆ’ 2| ๏€ผ ๏‚ฑ ๏‚ก ๏‚ข lim ๏ธ2 โˆ’ 4๏ธ + 5 = 1 by the de๏ฌnition of a limit. ๏ธโ†’2 ๏‚ฏ ๏‚ฏ ๏‚ฏ ๏‚ฏ 30. Given ๏€ข ๏€พ 0, we need ๏‚ฑ ๏€พ 0 such that if 0 ๏€ผ |๏ธ โˆ’ 2| ๏€ผ ๏‚ฑ, then ๏‚ฏ(๏ธ2 + 2๏ธ โˆ’ 7) โˆ’ 1๏‚ฏ ๏€ผ ๏€ข. But ๏‚ฏ(๏ธ2 + 2๏ธ โˆ’ 7) โˆ’ 1๏‚ฏ ๏€ผ ๏€ข โ‡” ๏‚ฏ ๏‚ฏ 2 ๏‚ฏ๏ธ + 2๏ธ โˆ’ 8๏‚ฏ ๏€ผ ๏€ข โ‡” |๏ธ + 4| |๏ธ โˆ’ 2| ๏€ผ ๏€ข. Thus our goal is to make |๏ธ โˆ’ 2| small enough so that its product with |๏ธ + 4| is less than ๏€ข. Suppose we ๏ฌrst require that |๏ธ โˆ’ 2| ๏€ผ 1. Then โˆ’1 ๏€ผ ๏ธ โˆ’ 2 ๏€ผ 1 โ‡’ 1 ๏€ผ ๏ธ ๏€ผ 3 โ‡’ 5 ๏€ผ ๏ธ + 4 ๏€ผ 7 โ‡’ |๏ธ + 4| ๏€ผ 7, and this gives us 7 |๏ธ โˆ’ 2| ๏€ผ ๏€ข โ‡’ |๏ธ โˆ’ 2| ๏€ผ ๏€ข๏€ฝ7. Choose ๏‚ฑ = min {1๏€ป ๏€ข๏€ฝ7}. Then if 0 ๏€ผ |๏ธ โˆ’ 2| ๏€ผ ๏‚ฑ, we ๏‚ฏ ๏‚ฏ have |๏ธ โˆ’ 2| ๏€ผ ๏€ข๏€ฝ7 and |๏ธ + 4| ๏€ผ 7, so ๏‚ฏ(๏ธ2 + 2๏ธ โˆ’ 7) โˆ’ 1๏‚ฏ = |(๏ธ + 4)(๏ธ โˆ’ 2)| = |๏ธ + 4| |๏ธ โˆ’ 2| ๏€ผ 7(๏€ข๏€ฝ7) = ๏€ข, as desired. Thus, lim (๏ธ2 + 2๏ธ โˆ’ 7) = 1 by the de๏ฌnition of a limit. ๏ธโ†’2 ๏‚ฏ๏‚ก ๏‚ข ๏‚ฏ 31. Given ๏€ข ๏€พ 0, we need ๏‚ฑ ๏€พ 0 such that if 0 ๏€ผ |๏ธ โˆ’ (โˆ’2)| ๏€ผ ๏‚ฑ, then ๏‚ฏ ๏ธ2 โˆ’ 1 โˆ’ 3๏‚ฏ ๏€ผ ๏€ข or upon simplifying we need ๏‚ฏ 2 ๏‚ฏ ๏‚ฏ๏ธ โˆ’ 4๏‚ฏ ๏€ผ ๏€ข whenever 0 ๏€ผ |๏ธ + 2| ๏€ผ ๏‚ฑ. Notice that if |๏ธ + 2| ๏€ผ 1, then โˆ’1 ๏€ผ ๏ธ + 2 ๏€ผ 1 โ‡’ โˆ’5 ๏€ผ ๏ธ โˆ’ 2 ๏€ผ โˆ’3 โ‡’ |๏ธ โˆ’ 2| ๏€ผ 5. So take ๏‚ฑ = min {๏€ข๏€ฝ5๏€ป 1}. Then 0 ๏€ผ |๏ธ + 2| ๏€ผ ๏‚ฑ โ‡’ |๏ธ โˆ’ 2| ๏€ผ 5 and |๏ธ + 2| ๏€ผ ๏€ข๏€ฝ5, so ๏‚ฏ ๏‚ฏ๏‚ก 2 ๏‚ข ๏‚ฏ ๏ธ โˆ’ 1 โˆ’ 3๏‚ฏ = |(๏ธ + 2)(๏ธ โˆ’ 2)| = |๏ธ + 2| |๏ธ โˆ’ 2| ๏€ผ (๏€ข๏€ฝ5)(5) = ๏€ข. Thus, by the de๏ฌnition of a limit, lim (๏ธ2 โˆ’ 1) = 3. ๏ธโ†’โˆ’2 ๏‚ฏ ๏‚ฏ ๏‚ฏ ๏‚ฏ ๏‚ฏ ๏‚ก ๏‚ข๏‚ฏ 32. Given ๏€ข ๏€พ 0, we need ๏‚ฑ ๏€พ 0 such that if 0 ๏€ผ |๏ธ โˆ’ 2| ๏€ผ ๏‚ฑ, then ๏‚ฏ๏ธ3 โˆ’ 8๏‚ฏ ๏€ผ ๏€ข. Now ๏‚ฏ๏ธ3 โˆ’ 8๏‚ฏ = ๏‚ฏ(๏ธ โˆ’ 2) ๏ธ2 + 2๏ธ + 4 ๏‚ฏ. If |๏ธ โˆ’ 2| ๏€ผ 1, that is, 1 ๏€ผ ๏ธ ๏€ผ 3, then ๏ธ2 + 2๏ธ + 4 ๏€ผ 32 + 2(3) + 4 = 19 and so ๏‚ฏ ๏‚ฏ 3 ๏‚ช ๏‚ก ๏‚ข ๏‚ฉ ๏‚ฏ๏ธ โˆ’ 8๏‚ฏ = |๏ธ โˆ’ 2| ๏ธ2 + 2๏ธ + 4 ๏€ผ 19 |๏ธ โˆ’ 2|. So if we take ๏‚ฑ = min 1๏€ป ๏€ข , then 0 ๏€ผ |๏ธ โˆ’ 2| ๏€ผ ๏‚ฑ 19 ๏‚ฏ 3 ๏‚ฏ ๏‚ก ๏‚ข ๏‚ฏ๏ธ โˆ’ 8๏‚ฏ = |๏ธ โˆ’ 2| ๏ธ2 + 2๏ธ + 4 ๏€ผ ๏€ข ยท 19 = ๏€ข. Thus, by the de๏ฌnition of a limit, lim ๏ธ3 = 8. 19 โ‡’ ๏ธโ†’2 c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 96 ยค CHAPTER 2 LIMITS AND DERIVATIVES ๏‚ฉ ๏‚ช 33. Given ๏€ข ๏€พ 0, we let ๏‚ฑ = min 2๏€ป 8๏€ข . If 0 ๏€ผ |๏ธ โˆ’ 3| ๏€ผ ๏‚ฑ, then |๏ธ โˆ’ 3| ๏€ผ 2 โ‡’ โˆ’2 ๏€ผ ๏ธ โˆ’ 3 ๏€ผ 2 โ‡’ ๏‚ฏ ๏‚ฏ 4 ๏€ผ ๏ธ + 3 ๏€ผ 8 โ‡’ |๏ธ + 3| ๏€ผ 8. Also |๏ธ โˆ’ 3| ๏€ผ 8๏€ข , so ๏‚ฏ๏ธ2 โˆ’ 9๏‚ฏ = |๏ธ + 3| |๏ธ โˆ’ 3| ๏€ผ 8 ยท 8๏€ข = ๏€ข. Thus, lim ๏ธ2 = 9. ๏ธโ†’3 34. From the ๏ฌgure, our choices for ๏‚ฑ are ๏‚ฑ 1 = 3 โˆ’ ๏‚ฑ2 = โˆš 9 โˆ’ ๏€ข and โˆš 9 + ๏€ข โˆ’ 3. The largest possible choice for ๏‚ฑ is the minimum value of {๏‚ฑ 1 ๏€ป ๏‚ฑ 2 }; that is, ๏‚ฑ = min{๏‚ฑ 1 ๏€ป ๏‚ฑ 2 } = ๏‚ฑ 2 = โˆš 9 + ๏€ข โˆ’ 3. 35. (a) The points of intersection in the graph are (๏ธ1 ๏€ป 2๏€บ6) and (๏ธ2 ๏€ป 3๏€บ4) with ๏ธ1 โ‰ˆ 0๏€บ891 and ๏ธ2 โ‰ˆ 1๏€บ093. Thus, we can take ๏‚ฑ to be the smaller of 1 โˆ’ ๏ธ1 and ๏ธ2 โˆ’ 1. So ๏‚ฑ = ๏ธ2 โˆ’ 1 โ‰ˆ 0๏€บ093. (b) Solving ๏ธ3 + ๏ธ + 1 = 3 + ๏€ข gives us two nonreal complex roots and one real root, which is โˆš ๏‚ข2๏€ฝ3 ๏‚ก 216 + 108๏€ข + 12 336 + 324๏€ข + 81๏€ข2 โˆ’ 12 ๏ธ(๏€ข) = โˆš ๏‚ข1๏€ฝ3 . Thus, ๏‚ฑ = ๏ธ(๏€ข) โˆ’ 1. ๏‚ก 2 6 216 + 108๏€ข + 12 336 + 324๏€ข + 81๏€ข (c) If ๏€ข = 0๏€บ4, then ๏ธ(๏€ข) โ‰ˆ 1๏€บ093 272 342 and ๏‚ฑ = ๏ธ(๏€ข) โˆ’ 1 โ‰ˆ 0๏€บ093, which agrees with our answer in part (a). ๏‚ฏ ๏‚ฏ ๏‚ฏ1 1 ๏‚ฏ๏‚ฏ ๏‚ฏ 36. 1. Guessing a value for ๏‚ฑ Let ๏€ข ๏€พ 0 be given. We have to ๏ฌnd a number ๏‚ฑ ๏€พ 0 such that ๏‚ฏ โˆ’ ๏‚ฏ ๏€ผ ๏€ข whenever ๏ธ 2 ๏‚ฏ ๏‚ฏ ๏‚ฏ ๏‚ฏ ๏‚ฏ1 |๏ธ โˆ’ 2| 1 ๏‚ฏ ๏‚ฏ 2 โˆ’ ๏ธ ๏‚ฏ๏‚ฏ 1 0 ๏€ผ |๏ธ โˆ’ 2| ๏€ผ ๏‚ฑ. But ๏‚ฏ๏‚ฏ โˆ’ ๏‚ฏ๏‚ฏ = ๏‚ฏ๏‚ฏ = ๏€ผ ๏€ข. We ๏ฌnd a positive constant ๏ƒ such that ๏€ผ๏ƒ โ‡’ ๏ธ 2 2๏ธ ๏‚ฏ |2๏ธ| |2๏ธ| |๏ธ โˆ’ 2| ๏€ข ๏€ผ ๏ƒ |๏ธ โˆ’ 2| and we can make ๏ƒ |๏ธ โˆ’ 2| ๏€ผ ๏€ข by taking |๏ธ โˆ’ 2| ๏€ผ = ๏‚ฑ. We restrict ๏ธ to lie in the interval |2๏ธ| ๏ƒ |๏ธ โˆ’ 2| ๏€ผ 1 โ‡’ 1 ๏€ผ ๏ธ ๏€ผ 3 so 1 ๏€พ 1 1 ๏€พ ๏ธ 3 โ‡’ 1 1 1 ๏€ผ ๏€ผ 6 2๏ธ 2 โ‡’ 1 1 1 ๏€ผ . So ๏ƒ = is suitable. Thus, we should |2๏ธ| 2 2 choose ๏‚ฑ = min {1๏€ป 2๏€ข}. 2. Showing that ๏‚ฑ works Given ๏€ข ๏€พ 0 we let ๏‚ฑ = min {1๏€ป 2๏€ข}. If 0 ๏€ผ |๏ธ โˆ’ 2| ๏€ผ ๏‚ฑ, then |๏ธ โˆ’ 2| ๏€ผ 1 โ‡’ 1 ๏€ผ ๏ธ ๏€ผ 3 โ‡’ ๏‚ฏ ๏‚ฏ ๏‚ฏ1 1 1 ๏‚ฏ |๏ธ โˆ’ 2| 1 1 ๏€ผ (as in part 1). Also |๏ธ โˆ’ 2| ๏€ผ 2๏€ข, so ๏‚ฏ๏‚ฏ โˆ’ ๏‚ฏ๏‚ฏ = ๏€ผ ยท 2๏€ข = ๏€ข. This shows that lim (1๏€ฝ๏ธ) = 12 . ๏ธโ†’2 |2๏ธ| 2 ๏ธ 2 |2๏ธ| 2 37. 1. Guessing a value for ๏‚ฑ โˆš โˆš Given ๏€ข ๏€พ 0, we must ๏ฌnd ๏‚ฑ ๏€พ 0 such that | ๏ธ โˆ’ ๏ก| ๏€ผ ๏€ข whenever 0 ๏€ผ |๏ธ โˆ’ ๏ก| ๏€ผ ๏‚ฑ. But โˆš โˆš โˆš โˆš |๏ธ โˆ’ ๏ก| โˆš ๏€ผ ๏€ข (from the hint). Now if we can ๏ฌnd a positive constant ๏ƒ such that ๏ธ + ๏ก ๏€พ ๏ƒ then | ๏ธ โˆ’ ๏ก| = โˆš ๏ธ+ ๏ก c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.4 THE PRECISE DEFINITION OF A LIMIT ยค 97 |๏ธ โˆ’ ๏ก| |๏ธ โˆ’ ๏ก| โˆš โˆš ๏€ผ ๏€ผ ๏€ข, and we take |๏ธ โˆ’ ๏ก| ๏€ผ ๏ƒ๏€ข. We can ๏ฌnd this number by restricting ๏ธ to lie in some interval ๏ƒ ๏ธ+ ๏ก ๏ฑ โˆš โˆš โˆš centered at ๏ก. If |๏ธ โˆ’ ๏ก| ๏€ผ 12 ๏ก, then โˆ’ 12 ๏ก ๏€ผ ๏ธ โˆ’ ๏ก ๏€ผ 12 ๏ก โ‡’ 12 ๏ก ๏€ผ ๏ธ ๏€ผ 32 ๏ก โ‡’ ๏ธ + ๏ก ๏€พ 12 ๏ก + ๏ก, and so ๏ƒ= ๏ฑ โˆš 1 ๏ก is a suitable choice for the constant. So |๏ธ โˆ’ ๏ก| ๏€ผ 2๏ก + ๏‚ฑ = min ๏ฎ 1 ๏ก๏€ป 2 ๏‚ณ๏ฑ ๏‚ด ๏ฏ ๏€ข . โˆš 1 ๏ก+ ๏ก 2 2. Showing that ๏‚ฑ works |๏ธ โˆ’ ๏ก| ๏€ผ 12 ๏ก โ‡’ Given ๏€ข ๏€พ 0, we let ๏‚ฑ = min ๏ฎ 1 ๏ก๏€ป 2 ๏‚ณ๏ฑ ๏‚ณ๏ฑ ๏‚ด ๏€ข. This suggests that we let โˆš 1 ๏ก 2๏ก + ๏‚ด ๏ฏ ๏€ข . If 0 ๏€ผ |๏ธ โˆ’ ๏ก| ๏€ผ ๏‚ฑ, then โˆš 1 ๏ก+ ๏ก 2 ๏ฑ ๏‚ณ๏ฑ โˆš โˆš โˆš โˆš ๏‚ด 1 ๏ธ + ๏ก ๏€พ 12 ๏ก + ๏ก (as in part 1). Also |๏ธ โˆ’ ๏ก| ๏€ผ ๏ก + ๏ก ๏€ข, so 2 ๏‚ณ๏ฐ โˆš ๏‚ด ๏ก๏€ฝ2 + ๏ก ๏€ข โˆš โˆš โˆš โˆš |๏ธ โˆ’ ๏ก| โˆš ๏€ผ ๏‚ณ๏ฐ | ๏ธ โˆ’ ๏ก| = โˆš lim ๏ธ = ๏ก by the de๏ฌnition of a limit. โˆš ๏‚ด = ๏€ข. Therefore, ๏ธโ†’๏ก ๏ธ+ ๏ก ๏ก๏€ฝ2 + ๏ก 38. Suppose that lim ๏ˆ(๏ด) = ๏Œ. Given ๏€ข = 12 , there exists ๏‚ฑ ๏€พ 0 such that 0 ๏€ผ |๏ด| ๏€ผ ๏‚ฑ ๏ดโ†’0 ๏Œ โˆ’ 12 ๏€ผ ๏ˆ(๏ด) ๏€ผ ๏Œ + 12 . For 0 ๏€ผ ๏ด ๏€ผ ๏‚ฑ, ๏ˆ(๏ด) = 1, so 1 ๏€ผ ๏Œ + 12 โ‡’ |๏ˆ(๏ด) โˆ’ ๏Œ| ๏€ผ 12 โ‡” โ‡’ ๏Œ ๏€พ 12 . For โˆ’๏‚ฑ ๏€ผ ๏ด ๏€ผ 0, ๏ˆ(๏ด) = 0, so ๏Œ โˆ’ 12 ๏€ผ 0 โ‡’ ๏Œ ๏€ผ 12 . This contradicts ๏Œ ๏€พ 12 . Therefore, lim ๏ˆ(๏ด) does not exist. ๏ดโ†’0 39. Suppose that lim ๏ฆ (๏ธ) = ๏Œ. Given ๏€ข = 12 , there exists ๏‚ฑ ๏€พ 0 such that 0 ๏€ผ |๏ธ| ๏€ผ ๏‚ฑ ๏ธโ†’0 โ‡’ |๏ฆ(๏ธ) โˆ’ ๏Œ| ๏€ผ 12 . Take any rational number ๏ฒ with 0 ๏€ผ |๏ฒ| ๏€ผ ๏‚ฑ. Then ๏ฆ (๏ฒ) = 0, so |0 โˆ’ ๏Œ| ๏€ผ 12 , so ๏Œ โ‰ค |๏Œ| ๏€ผ 12 . Now take any irrational number ๏ณ with 0 ๏€ผ |๏ณ| ๏€ผ ๏‚ฑ. Then ๏ฆ (๏ณ) = 1, so |1 โˆ’ ๏Œ| ๏€ผ 12 . Hence, 1 โˆ’ ๏Œ ๏€ผ 12 , so ๏Œ ๏€พ 12 . This contradicts ๏Œ ๏€ผ 12 , so lim ๏ฆ(๏ธ) does not ๏ธโ†’0 exist. 40. First suppose that lim ๏ฆ (๏ธ) = ๏Œ. Then, given ๏€ข ๏€พ 0 there exists ๏‚ฑ ๏€พ 0 so that 0 ๏€ผ |๏ธ โˆ’ ๏ก| ๏€ผ ๏‚ฑ ๏ธโ†’๏ก โ‡’ |๏ฆ(๏ธ) โˆ’ ๏Œ| ๏€ผ ๏€ข. Then ๏ก โˆ’ ๏‚ฑ ๏€ผ ๏ธ ๏€ผ ๏ก โ‡’ 0 ๏€ผ |๏ธ โˆ’ ๏ก| ๏€ผ ๏‚ฑ so |๏ฆ (๏ธ) โˆ’ ๏Œ| ๏€ผ ๏€ข. Thus, lim ๏ฆ (๏ธ) = ๏Œ. Also ๏ก ๏€ผ ๏ธ ๏€ผ ๏ก + ๏‚ฑ ๏ธโ†’๏กโˆ’ โ‡’ 0 ๏€ผ |๏ธ โˆ’ ๏ก| ๏€ผ ๏‚ฑ so |๏ฆ (๏ธ) โˆ’ ๏Œ| ๏€ผ ๏€ข. Hence, lim ๏ฆ (๏ธ) = ๏Œ. ๏ธโ†’๏ก+ Now suppose lim ๏ฆ (๏ธ) = ๏Œ = lim ๏ฆ(๏ธ). Let ๏€ข ๏€พ 0 be given. Since lim ๏ฆ (๏ธ) = ๏Œ, there exists ๏‚ฑ1 ๏€พ 0 so that ๏ธโ†’๏กโˆ’ ๏ธโ†’๏กโˆ’ ๏ธโ†’๏ก+ ๏ก โˆ’ ๏‚ฑ 1 ๏€ผ ๏ธ ๏€ผ ๏ก โ‡’ |๏ฆ (๏ธ) โˆ’ ๏Œ| ๏€ผ ๏€ข. Since lim ๏ฆ (๏ธ) = ๏Œ, there exists ๏‚ฑ 2 ๏€พ 0 so that ๏ก ๏€ผ ๏ธ ๏€ผ ๏ก + ๏‚ฑ 2 ๏ธโ†’๏ก+ |๏ฆ (๏ธ) โˆ’ ๏Œ| ๏€ผ ๏€ข. Let ๏‚ฑ be the smaller of ๏‚ฑ 1 and ๏‚ฑ2 . Then 0 ๏€ผ |๏ธ โˆ’ ๏ก| ๏€ผ ๏‚ฑ โ‡’ ๏ก โˆ’ ๏‚ฑ 1 ๏€ผ ๏ธ ๏€ผ ๏ก or ๏ก ๏€ผ ๏ธ ๏€ผ ๏ก + ๏‚ฑ2 so |๏ฆ (๏ธ) โˆ’ ๏Œ| ๏€ผ ๏€ข. Hence, lim ๏ฆ (๏ธ) = ๏Œ. So we have proved that lim ๏ฆ (๏ธ) = ๏Œ โ‡” ๏ธโ†’๏ก 41. 1 1 ๏€พ 10,000 โ‡” (๏ธ + 3)4 ๏€ผ (๏ธ + 3)4 10,000 ๏ธโ†’๏ก 1 โ‡” |๏ธ + 3| ๏€ผ โˆš 4 10,000 42. Given ๏ ๏€พ 0, we need ๏‚ฑ ๏€พ 0 such that 0 ๏€ผ |๏ธ + 3| ๏€ผ ๏‚ฑ (๏ธ + 3)4 ๏€ผ lim 1 ๏ 1 ๏ธโ†’โˆ’3 (๏ธ + 3)4 โ‡’ โ‡” lim ๏ฆ(๏ธ) = ๏Œ = lim ๏ฆ (๏ธ). ๏ธโ†’๏กโˆ’ ๏ธโ†’๏ก+ |๏ธ โˆ’ (โˆ’3)| ๏€ผ โ‡’ 1๏€ฝ(๏ธ + 3)4 ๏€พ ๏. Now 1 10 1 ๏€พ๏ (๏ธ + 3)4 1 1 1 . So take ๏‚ฑ = โˆš . Then 0 ๏€ผ |๏ธ + 3| ๏€ผ ๏‚ฑ = โˆš โ‡” |๏ธ + 3| ๏€ผ โˆš 4 4 4 ๏ ๏ ๏ โ‡’ โ‡” 1 ๏€พ ๏, so (๏ธ + 3)4 = โˆž. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 98 ยค CHAPTER 2 LIMITS AND DERIVATIVES 43. Given ๏ ๏€ผ 0 we need ๏‚ฑ ๏€พ 0 so that ln ๏ธ ๏€ผ ๏ whenever 0 ๏€ผ ๏ธ ๏€ผ ๏‚ฑ; that is, ๏ธ = ๏ฅln ๏ธ ๏€ผ ๏ฅ๏ whenever 0 ๏€ผ ๏ธ ๏€ผ ๏‚ฑ. This suggests that we take ๏‚ฑ = ๏ฅ๏ . If 0 ๏€ผ ๏ธ ๏€ผ ๏ฅ๏ , then ln ๏ธ ๏€ผ ln ๏ฅ๏ = ๏. By the de๏ฌnition of a limit, lim ln ๏ธ = โˆ’โˆž. ๏ธโ†’0+ 44. (a) Let ๏ be given. Since lim ๏ฆ (๏ธ) = โˆž, there exists ๏‚ฑ 1 ๏€พ 0 such that 0 ๏€ผ |๏ธ โˆ’ ๏ก| ๏€ผ ๏‚ฑ 1 ๏ธโ†’๏ก lim ๏ง(๏ธ) = ๏ฃ, there exists ๏‚ฑ 2 ๏€พ 0 such that 0 ๏€ผ |๏ธ โˆ’ ๏ก| ๏€ผ ๏‚ฑ 2 ๏ธโ†’๏ก smaller of ๏‚ฑ1 and ๏‚ฑ2 . Then 0 ๏€ผ |๏ธ โˆ’ ๏ก| ๏€ผ ๏‚ฑ โ‡’ ๏ฆ (๏ธ) ๏€พ ๏ + 1 โˆ’ ๏ฃ. Since โ‡’ |๏ง(๏ธ) โˆ’ ๏ฃ| ๏€ผ 1 โ‡’ ๏ง(๏ธ) ๏€พ ๏ฃ โˆ’ 1. Let ๏‚ฑ be the โ‡’ ๏ฆ (๏ธ) + ๏ง(๏ธ) ๏€พ (๏ + 1 โˆ’ ๏ฃ) + (๏ฃ โˆ’ 1) = ๏. Thus, lim [๏ฆ (๏ธ) + ๏ง(๏ธ)] = โˆž. ๏ธโ†’๏ก (b) Let ๏ ๏€พ 0 be given. Since lim ๏ง(๏ธ) = ๏ฃ ๏€พ 0, there exists ๏‚ฑ 1 ๏€พ 0 such that 0 ๏€ผ |๏ธ โˆ’ ๏ก| ๏€ผ ๏‚ฑ 1 ๏ธโ†’๏ก โ‡’ |๏ง(๏ธ) โˆ’ ๏ฃ| ๏€ผ ๏ฃ๏€ฝ2 โ‡’ ๏ง(๏ธ) ๏€พ ๏ฃ๏€ฝ2. Since lim ๏ฆ (๏ธ) = โˆž, there exists ๏‚ฑ 2 ๏€พ 0 such that 0 ๏€ผ |๏ธ โˆ’ ๏ก| ๏€ผ ๏‚ฑ 2 ๏ธโ†’๏ก ๏ฆ (๏ธ) ๏€พ 2๏๏€ฝ๏ฃ. Let ๏‚ฑ = min {๏‚ฑ1 ๏€ป ๏‚ฑ 2 }. Then 0 ๏€ผ |๏ธ โˆ’ ๏ก| ๏€ผ ๏‚ฑ โ‡’ ๏ฆ (๏ธ) ๏ง(๏ธ) ๏€พ 2๏ ๏ฃ = ๏, so lim ๏ฆ (๏ธ) ๏ง(๏ธ) = โˆž. ๏ธโ†’๏ก ๏ฃ 2 (c) Let ๏Ž ๏€ผ 0 be given. Since lim ๏ง(๏ธ) = ๏ฃ ๏€ผ 0, there exists ๏‚ฑ1 ๏€พ 0 such that 0 ๏€ผ |๏ธ โˆ’ ๏ก| ๏€ผ ๏‚ฑ 1 ๏ธโ†’๏ก โ‡’ โ‡’ |๏ง(๏ธ) โˆ’ ๏ฃ| ๏€ผ โˆ’๏ฃ๏€ฝ2 โ‡’ ๏ง(๏ธ) ๏€ผ ๏ฃ๏€ฝ2. Since lim ๏ฆ (๏ธ) = โˆž, there exists ๏‚ฑ 2 ๏€พ 0 such that 0 ๏€ผ |๏ธ โˆ’ ๏ก| ๏€ผ ๏‚ฑ 2 โ‡’ ๏ฆ (๏ธ) ๏€พ 2๏Ž๏€ฝ๏ฃ. (Note that ๏ฃ ๏€ผ 0 and ๏Ž ๏€ผ 0 โ‡’ 2๏Ž๏€ฝ๏ฃ ๏€พ 0.) Let ๏‚ฑ = min {๏‚ฑ1 ๏€ป ๏‚ฑ 2 }. Then 0 ๏€ผ |๏ธ โˆ’ ๏ก| ๏€ผ ๏‚ฑ โ‡’ ๏ธโ†’๏ก 2๏Ž ๏ฃ ๏ฆ (๏ธ) ๏€พ 2๏Ž๏€ฝ๏ฃ โ‡’ ๏ฆ (๏ธ) ๏ง(๏ธ) ๏€ผ ยท = ๏Ž, so lim ๏ฆ (๏ธ) ๏ง(๏ธ) = โˆ’โˆž. ๏ธโ†’๏ก ๏ฃ 2 2.5 Continuity 1. From De๏ฌnition 1, lim ๏ฆ (๏ธ) = ๏ฆ (4). ๏ธโ†’4 2. The graph of ๏ฆ has no hole, jump, or vertical asymptote. 3. (a) ๏ฆ is discontinuous at โˆ’4 since ๏ฆ (โˆ’4) is not de๏ฌned and at โˆ’2, 2, and 4 since the limit does not exist (the left and right limits are not the same). (b) ๏ฆ is continuous from the left at โˆ’2 since lim ๏ฆ (๏ธ) = ๏ฆ (โˆ’2). ๏ฆ is continuous from the right at 2 and 4 since ๏ธโ†’โˆ’2โˆ’ lim ๏ฆ(๏ธ) = ๏ฆ (2) and lim ๏ฆ (๏ธ) = ๏ฆ (4). It is continuous from neither side at โˆ’4 since ๏ฆ (โˆ’4) is unde๏ฌned. ๏ธโ†’2+ ๏ธโ†’4+ 4. From the graph of ๏ง, we see that ๏ง is continuous on the intervals [โˆ’3๏€ป โˆ’2), (โˆ’2๏€ป โˆ’1), (โˆ’1๏€ป 0], (0๏€ป 1), and (1๏€ป 3]. 5. The graph of ๏น = ๏ฆ (๏ธ) must have a discontinuity at ๏ธ = 2 and must show that lim ๏ฆ (๏ธ) = ๏ฆ (2). ๏ธโ†’2+ 6. The graph of ๏น = ๏ฆ (๏ธ) must have discontinuities at ๏ธ = โˆ’1 and ๏ธ = 4. It must show that lim ๏ฆ (๏ธ) = ๏ฆ (โˆ’1) and lim ๏ฆ(๏ธ) = ๏ฆ(4). ๏ธโ†’โˆ’1โˆ’ ๏ธโ†’4+ c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.5 7. The graph of ๏น = ๏ฆ (๏ธ) must have a removable CONTINUITY ยค 99 8. The graph of ๏น = ๏ฆ (๏ธ) must have a discontinuity discontinuity (a hole) at ๏ธ = 3 and a jump discontinuity at ๏ธ = โˆ’2 with at ๏ธ = 5. lim ๏ฆ (๏ธ) 6= ๏ฆ (โˆ’2) and ๏ธโ†’โˆ’2โˆ’ lim ๏ฆ (๏ธ) 6= ๏ฆ(โˆ’2). It must also show that ๏ธโ†’โˆ’2+ lim ๏ฆ (๏ธ) = ๏ฆ (2) and lim ๏ฆ (๏ธ) 6= ๏ฆ (2). ๏ธโ†’2โˆ’ ๏ธโ†’2+ 9. (a) The toll is $7 between 7:00 AM and 10:00 AM and between 4:00 PM and 7:00 PM . (b) The function ๏” has jump discontinuities at ๏ด = 7, 10, 16, and 19. Their signi๏ฌcance to someone who uses the road is that, because of the sudden jumps in the toll, they may want to avoid the higher rates between ๏ด = 7 and ๏ด = 10 and between ๏ด = 16 and ๏ด = 19 if feasible. 10. (a) Continuous; at the location in question, the temperature changes smoothly as time passes, without any instantaneous jumps from one temperature to another. (b) Continuous; the temperature at a speci๏ฌc time changes smoothly as the distance due west from New York City increases, without any instantaneous jumps. (c) Discontinuous; as the distance due west from New York City increases, the altitude above sea level may jump from one height to another without going through all of the intermediate values โ€” at a cliff, for example. (d) Discontinuous; as the distance traveled increases, the cost of the ride jumps in small increments. (e) Discontinuous; when the lights are switched on (or off ), the current suddenly changes between 0 and some nonzero value, without passing through all of the intermediate values. This is debatable, though, depending on your de๏ฌnition of current. 11. lim ๏ฆ (๏ธ) = lim ๏ธโ†’โˆ’1 ๏ธโ†’โˆ’1 ๏‚ก ๏‚ข4 ๏ธ + 2๏ธ3 = ๏‚ต lim ๏ธ + 2 lim ๏ธ3 ๏ธโ†’โˆ’1 ๏ธโ†’โˆ’1 ๏‚ถ4 By the de๏ฌnition of continuity, ๏ฆ is continuous at ๏ก = โˆ’1. ๏‚ค4 ๏‚ฃ = โˆ’1 + 2(โˆ’1)3 = (โˆ’3)4 = 81 = ๏ฆ(โˆ’1). lim (๏ด2 + 5๏ด) lim ๏ด2 + 5 lim ๏ด 22 + 5(2) 14 ๏ด2 + 5๏ด ๏ดโ†’2 ๏ดโ†’2 ๏ดโ†’2 = = = = = ๏ง(2). 12. lim ๏ง(๏ด) = lim ๏ดโ†’2 ๏ดโ†’2 2๏ด + 1 lim (2๏ด + 1) 2 lim ๏ด + lim 1 2(2) + 1 5 ๏ดโ†’2 ๏ดโ†’2 ๏ดโ†’2 By the de๏ฌnition of continuity, ๏ง is continuous at ๏ก = 2. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 100 ยค CHAPTER 2 LIMITS AND DERIVATIVES โˆš 13. lim ๏ฐ(๏ถ) = lim 2 3๏ถ 2 + 1 = 2 lim ๏ถโ†’1 ๏ถโ†’1 ๏ถโ†’1 ๏ฑ ๏ฑ โˆš 3๏ถ 2 + 1 = 2 lim (3๏ถ 2 + 1) = 2 3 lim ๏ถ 2 + lim 1 ๏ถโ†’1 ๏ถโ†’1 ๏ถโ†’1 ๏ฐ โˆš = 2 3(1)2 + 1 = 2 4 = 4 = ๏ฐ(1) By the de๏ฌnition of continuity, ๏ฐ is continuous at ๏ก = 1. ๏‚ก ๏‚ข โˆš ๏ฑ 14. lim ๏ฆ (๏ธ) = lim 3๏ธ4 โˆ’ 5๏ธ + 3 ๏ธ2 + 4 = 3 lim ๏ธ4 โˆ’ 5 lim ๏ธ + 3 lim (๏ธ2 + 4) ๏ธโ†’2 ๏ธโ†’2 ๏ธโ†’2 ๏ธโ†’2 โˆš = 3(2) โˆ’ 5(2) + 3 22 + 4 = 48 โˆ’ 10 + 2 = 40 = ๏ฆ(2) 4 ๏ธโ†’2 By the de๏ฌnition of continuity, ๏ฆ is continuous at ๏ก = 2. 15. For ๏ก ๏€พ 4, we have โˆš โˆš lim ๏ฆ (๏ธ) = lim (๏ธ + ๏ธ โˆ’ 4 ) = lim ๏ธ + lim ๏ธ โˆ’ 4 ๏ธโ†’๏ก ๏ธโ†’๏ก ๏ธโ†’๏ก ๏ฑ = ๏ก + lim ๏ธ โˆ’ lim 4 ๏ธโ†’๏ก ๏ธโ†’๏ก โˆš =๏ก+ ๏กโˆ’4 ๏ธโ†’๏ก [Limit Law 1] [8, 11, and 2] [8 and 7] = ๏ฆ (๏ก) So ๏ฆ is continuous at ๏ธ = ๏ก for every ๏ก in (4๏€ป โˆž). Also, lim ๏ฆ (๏ธ) = 4 = ๏ฆ(4), so ๏ฆ is continuous from the right at 4. ๏ธโ†’4+ Thus, ๏ฆ is continuous on [4๏€ป โˆž). 16. For ๏ก ๏€ผ โˆ’2, we have lim (๏ธ โˆ’ 1) ๏ธโˆ’1 ๏ธโ†’๏ก = ๏ธโ†’๏ก 3๏ธ + 6 lim (3๏ธ + 6) lim ๏ง(๏ธ) = lim ๏ธโ†’๏ก [Limit Law 5] ๏ธโ†’๏ก = lim ๏ธ โˆ’ lim 1 ๏ธโ†’๏ก ๏ธโ†’๏ก = ๏ธโ†’๏ก 3 lim ๏ธ + lim 6 [2๏€ป 1๏€ป and 3] ๏ธโ†’๏ก ๏กโˆ’1 3๏ก + 6 [8 and 7] Thus, ๏ง is continuous at ๏ธ = ๏ก for every ๏ก in (โˆ’โˆž๏€ป โˆ’2); that is, ๏ง is continuous on (โˆ’โˆž๏€ป โˆ’2). 17. ๏ฆ (๏ธ) = 1 is discontinuous at ๏ก = โˆ’2 because ๏ฆ (โˆ’2) is unde๏ฌned. ๏ธ+2 18. ๏ฆ (๏ธ) = ๏€ธ ๏€ผ 1 ๏ธ+2 ๏€บ 1 if ๏ธ 6= โˆ’2 if ๏ธ = โˆ’2 Here ๏ฆ (โˆ’2) = 1, but lim ๏ฆ (๏ธ) = โˆ’โˆž and lim ๏ฆ (๏ธ) = โˆž, ๏ธโ†’โˆ’2โˆ’ ๏ธโ†’โˆ’2+ so lim ๏ฆ (๏ธ) does not exist and ๏ฆ is discontinuous at โˆ’2. ๏ธโ†’โˆ’2 c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.5 19. ๏ฆ (๏ธ) = ๏€จ 2 lim ๏ฆ (๏ธ) = ๏ธโ†’โˆ’1+ 101 if ๏ธ ๏€พ โˆ’1 ๏ธ lim ๏ฆ (๏ธ) = ยค if ๏ธ โ‰ค โˆ’1 ๏ธ+3 ๏ธโ†’โˆ’1โˆ’ CONTINUITY lim (๏ธ + 3) = โˆ’1 + 3 = 2 and ๏ธโ†’โˆ’1โˆ’ lim 2๏ธ = 2โˆ’1 = 12 . Since the left-hand and the ๏ธโ†’โˆ’1+ right-hand limits of ๏ฆ at โˆ’1 are not equal, lim ๏ฆ (๏ธ) does not exist, and ๏ธโ†’โˆ’1 ๏ฆ is discontinuous at โˆ’1. ๏€ธ 2 ๏€ผ๏ธ โˆ’๏ธ ๏ธ2 โˆ’ 1 20. ๏ฆ (๏ธ) = ๏€บ 1 lim ๏ฆ (๏ธ) = lim ๏ธโ†’1 if ๏ธ 6= 1 if ๏ธ = 1 ๏ธ2 โˆ’ ๏ธ ๏ธโ†’1 ๏ธ2 โˆ’ 1 = lim ๏ธ(๏ธ โˆ’ 1) ๏ธโ†’1 (๏ธ + 1)(๏ธ โˆ’ 1) = lim ๏ธ ๏ธโ†’1 ๏ธ + 1 = 1 , 2 but ๏ฆ (1) = 1, so ๏ฆ is discontinous at 1๏€บ ๏€ธ cos ๏ธ ๏€พ ๏€ผ 21. ๏ฆ (๏ธ) = 0 ๏€พ ๏€บ 1 โˆ’ ๏ธ2 if ๏ธ ๏€ผ 0 if ๏ธ = 0 if ๏ธ ๏€พ 0 lim ๏ฆ (๏ธ) = 1, but ๏ฆ (0) = 0 6= 1, so ๏ฆ is discontinuous at 0. ๏ธโ†’0 ๏€ธ 2 ๏€ผ 2๏ธ โˆ’ 5๏ธ โˆ’ 3 ๏ธโˆ’3 22. ๏ฆ (๏ธ) = ๏€บ 6 if ๏ธ 6= 3 if ๏ธ = 3 2๏ธ2 โˆ’ 5๏ธ โˆ’ 3 (2๏ธ + 1)(๏ธ โˆ’ 3) = lim = lim (2๏ธ + 1) = 7, ๏ธโ†’3 ๏ธโ†’3 ๏ธโ†’3 ๏ธโˆ’3 ๏ธโˆ’3 lim ๏ฆ (๏ธ) = lim ๏ธโ†’3 but ๏ฆ (3) = 6, so ๏ฆ is discontinuous at 3. 23. ๏ฆ (๏ธ) = (๏ธ โˆ’ 2)(๏ธ + 1) ๏ธ2 โˆ’ ๏ธ โˆ’ 2 = = ๏ธ + 1 for ๏ธ 6= 2. Since lim ๏ฆ (๏ธ) = 2 + 1 = 3, de๏ฌne ๏ฆ (2) = 3. Then ๏ฆ is ๏ธโ†’2 ๏ธโˆ’2 ๏ธโˆ’2 continuous at 2. 24. ๏ฆ (๏ธ) = (๏ธ โˆ’ 2)(๏ธ2 + 2๏ธ + 4) ๏ธ2 + 2๏ธ + 4 ๏ธ3 โˆ’ 8 4+4+4 = = for ๏ธ 6= 2. Since lim ๏ฆ (๏ธ) = = 3, de๏ฌne ๏ฆ (2) = 3. 2 ๏ธโ†’2 ๏ธ โˆ’4 (๏ธ โˆ’ 2)(๏ธ + 2) ๏ธ+2 2+2 Then ๏ฆ is continuous at 2. 25. ๏† (๏ธ) = 26. ๏‡(๏ธ) = 2๏ธ2 โˆ’ ๏ธ โˆ’ 1 is a rational function, so it is continuous on its domain, (โˆ’โˆž๏€ป โˆž), by Theorem 5(b). ๏ธ2 + 1 ๏ธ2 + 1 2๏ธ2 โˆ’ ๏ธ โˆ’ 1 = ๏ธ2 + 1 is a rational function, so it is continuous on its domain, (2๏ธ + 1)(๏ธ โˆ’ 1) ๏‚ก ๏‚ข ๏‚ข ๏‚ก โˆ’โˆž๏€ป โˆ’ 12 โˆช โˆ’ 12 ๏€ป 1 โˆช (1๏€ป โˆž), by Theorem 5(b). c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 102 ยค CHAPTER 2 LIMITS AND DERIVATIVES โˆš 3 โˆš โˆš ๏‚ข ๏‚กโˆš ๏‚ก ๏‚ข ๏ธโˆ’2 has domain โˆ’โˆž๏€ป 3 2 โˆช 3 2๏€ป โˆž . Now ๏ธ3 โˆ’ 2 is โ‡’ ๏ธ3 = 2 โ‡’ ๏ธ = 3 2, so ๏‘(๏ธ) = 3 ๏ธ โˆ’2 โˆš 3 continuous everywhere by Theorem 5(a) and ๏ธ โˆ’ 2 is continuous everywhere by Theorems 5(a), 7, and 9. Thus, ๏‘ is 27. ๏ธ3 โˆ’ 2 = 0 continuous on its domain by part 5 of Theorem 4. 28. The domain of ๏’(๏ด) = ๏ฅsin ๏ด is (โˆ’โˆž๏€ป โˆž) since the denominator is never 0 [cos ๏‚ผ๏ด โ‰ฅ โˆ’1 โ‡’ 2 + cos ๏‚ผ๏ด โ‰ฅ 1]. By 2 + cos ๏‚ผ๏ด Theorems 7 and 9, ๏ฅsin ๏ด and cos ๏‚ผ๏ด are continuous on R. By part 1 of Theorem 4, 2 + cos ๏‚ผ๏ด is continuous on R and by part 5 of Theorem 4, ๏’ is continuous on R. 29. By Theorem 5(a), the polynomial 1 + 2๏ด is continuous on R. By Theorem 7, the inverse trigonometric function arcsin ๏ธ is continuous on its domain, [โˆ’1๏€ป 1]. By Theorem 9, ๏(๏ด) = arcsin(1 + 2๏ด) is continuous on its domain, which is {๏ด | โˆ’1 โ‰ค 1 + 2๏ด โ‰ค 1} = {๏ด | โˆ’2 โ‰ค 2๏ด โ‰ค 0} = {๏ด | โˆ’1 โ‰ค ๏ด โ‰ค 0} = [โˆ’1๏€ป 0]. ๏‚ฉ ๏‚ช 30. By Theorem 7, the trigonometric function tan ๏ธ is continuous on its domain, ๏ธ | ๏ธ 6= ๏‚ผ2 + ๏‚ผ๏ฎ . By Theorems 5(a), 7, and 9, the composite function โˆš tan ๏ธ 4 โˆ’ ๏ธ2 is continuous on its domain [โˆ’2๏€ป 2]. By part 5 of Theorem 4, ๏‚(๏ธ) = โˆš is 4 โˆ’ ๏ธ2 continuous on its domain, (โˆ’2๏€ป โˆ’๏‚ผ๏€ฝ2) โˆช (โˆ’๏‚ผ๏€ฝ2๏€ป ๏‚ผ๏€ฝ2) โˆช (๏‚ผ๏€ฝ2๏€ป 2). ๏ฒ ๏ฒ ๏ธ+1 1 ๏ธ+1 is de๏ฌned when โ‰ฅ 0 โ‡’ ๏ธ + 1 โ‰ฅ 0 and ๏ธ ๏€พ 0 or ๏ธ + 1 โ‰ค 0 and ๏ธ ๏€ผ 0 โ‡’ ๏ธ ๏€พ 0 31. ๏(๏ธ) = 1 + = ๏ธ ๏ธ ๏ธ or ๏ธ โ‰ค โˆ’1, so ๏ has domain (โˆ’โˆž๏€ป โˆ’1] โˆช (0๏€ป โˆž). ๏ is the composite of a root function and a rational function, so it is continuous at every number in its domain by Theorems 7 and 9. 2 2 32. By Theorems 7 and 9, the composite function ๏ฅโˆ’๏ฒ is continuous on R. By part 1 of Theorem 4, 1 + ๏ฅโˆ’๏ฒ is continuous on R. By Theorem 7, the inverse trigonometric function tanโˆ’1 is continuous on its domain, R. By Theorem 9, the composite ๏‚ณ ๏‚ด 2 function ๏Ž(๏ฒ) = tanโˆ’1 1 + ๏ฅโˆ’๏ฒ is continuous on its domain, R. 33. The function ๏น = 1 is discontinuous at ๏ธ = 0 because the 1 + ๏ฅ1๏€ฝ๏ธ left- and right-hand limits at ๏ธ = 0 are different. 34. The function ๏น = tan2 ๏ธ is discontinuous at ๏ธ = ๏‚ผ2 + ๏‚ผ๏ซ, where ๏ซ is ๏‚ก ๏‚ข any integer. The function ๏น = ln tan2 ๏ธ is also discontinuous ๏‚ก ๏‚ข where tan2 ๏ธ is 0, that is, at ๏ธ = ๏‚ผ๏ซ. So ๏น = ln tan2 ๏ธ is discontinuous at ๏ธ = ๏‚ผ2 ๏ฎ, ๏ฎ any integer. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.5 CONTINUITY ยค 103 โˆš โˆš โˆš 20 โˆ’ ๏ธ2 is continuous on its domain, โˆ’ 20 โ‰ค ๏ธ โ‰ค 20, the product โˆš โˆš โˆš ๏ฆ (๏ธ) = ๏ธ 20 โˆ’ ๏ธ2 is continuous on โˆ’ 20 โ‰ค ๏ธ โ‰ค 20. The number 2 is in that domain, so ๏ฆ is continuous at 2, and โˆš lim ๏ฆ (๏ธ) = ๏ฆ (2) = 2 16 = 8. 35. Because ๏ธ is continuous on R and ๏ธโ†’2 36. Because ๏ธ is continuous on R, sin ๏ธ is continuous on R, and ๏ธ + sin ๏ธ is continuous on R, the composite function ๏ฆ (๏ธ) = sin(๏ธ + sin ๏ธ) is continuous on R, so lim ๏ฆ (๏ธ) = ๏ฆ (๏‚ผ) = sin(๏‚ผ + sin ๏‚ผ) = sin ๏‚ผ = 0. ๏ธโ†’๏‚ผ ๏‚ต 37. The function ๏ฆ (๏ธ) = ln 5 โˆ’ ๏ธ2 1+๏ธ ๏‚ถ is continuous throughout its domain because it is the composite of a logarithm function and a rational function. For the domain of ๏ฆ , we must have 5 โˆ’ ๏ธ2 ๏€พ 0, so the numerator and denominator must have the 1+๏ธ โˆš โˆš same sign, that is, the domain is (โˆ’โˆž๏€ป โˆ’ 5 ] โˆช (โˆ’1๏€ป 5 ]. The number 1 is in that domain, so ๏ฆ is continuous at 1, and lim ๏ฆ (๏ธ) = ๏ฆ (1) = ln ๏ธโ†’1 5โˆ’1 = ln 2. 1+1 โˆš 38. The function ๏ฆ (๏ธ) = 3 ๏ธ2 โˆ’2๏ธโˆ’4 is continuous throughout its domain because it is the composite of an exponential function, a root function, and a polynomial. Its domain is ๏‚ฉ ๏‚ช ๏‚ฉ ๏‚ช ๏‚ฉ ๏‚ช ๏ธ | ๏ธ2 โˆ’ 2๏ธ โˆ’ 4 โ‰ฅ 0 = ๏ธ | ๏ธ2 โˆ’ 2๏ธ + 1 โ‰ฅ 5 = ๏ธ | (๏ธ โˆ’ 1)2 โ‰ฅ 5 ๏ฎ ๏‚ฏ โˆš ๏ฏ โˆš โˆš = ๏ธ ๏‚ฏ |๏ธ โˆ’ 1| โ‰ฅ 5 = (โˆ’โˆž๏€ป 1 โˆ’ 5 ] โˆช [1 + 5๏€ป โˆž) โˆš The number 4 is in that domain, so ๏ฆ is continuous at 4, and lim ๏ฆ (๏ธ) = ๏ฆ(4) = 3 16โˆ’8โˆ’4 = 32 = 9. ๏ธโ†’4 39. ๏ฆ (๏ธ) = ๏€จ if ๏ธ โ‰ค 1 1 โˆ’ ๏ธ2 if ๏ธ ๏€พ 1 ln ๏ธ By Theorem 5, since ๏ฆ (๏ธ) equals the polynomial 1 โˆ’ ๏ธ2 on (โˆ’โˆž๏€ป 1], ๏ฆ is continuous on (โˆ’โˆž๏€ป 1]. By Theorem 7, since ๏ฆ (๏ธ) equals the logarithm function ln ๏ธ on (1๏€ป โˆž), ๏ฆ is continuous on (1๏€ป โˆž). At ๏ธ = 1, lim ๏ฆ (๏ธ) = lim (1 โˆ’ ๏ธ2 ) = 1 โˆ’ 12 = 0 and lim ๏ฆ (๏ธ) = lim ln ๏ธ = ln 1 = 0. Thus, lim ๏ฆ (๏ธ) exists and ๏ธโ†’1โˆ’ ๏ธโ†’1โˆ’ ๏ธโ†’1+ ๏ธโ†’1+ ๏ธโ†’1 equals 0. Also, ๏ฆ (1) = 1 โˆ’ 12 = 0. Thus, ๏ฆ is continuous at ๏ธ = 1. We conclude that ๏ฆ is continuous on (โˆ’โˆž๏€ป โˆž). 40. ๏ฆ (๏ธ) = ๏€จ sin ๏ธ if ๏ธ ๏€ผ ๏‚ผ๏€ฝ4 cos ๏ธ if ๏ธ โ‰ฅ ๏‚ผ๏€ฝ4 By Theorem 7, the trigonometric functions are continuous. Since ๏ฆ(๏ธ) = sin ๏ธ on (โˆ’โˆž๏€ป ๏‚ผ๏€ฝ4) and ๏ฆ (๏ธ) = cos ๏ธ on โˆš lim sin ๏ธ = sin ๏‚ผ4 = 1๏€ฝ 2 since the sine (๏‚ผ๏€ฝ4๏€ป โˆž), ๏ฆ is continuous on (โˆ’โˆž๏€ป ๏‚ผ๏€ฝ4) โˆช (๏‚ผ๏€ฝ4๏€ป โˆž)๏€บ lim ๏ฆ (๏ธ) = ๏ธโ†’(๏‚ผ๏€ฝ4)โˆ’ function is continuous at ๏‚ผ๏€ฝ4๏€บ Similarly, at ๏‚ผ๏€ฝ4. Thus, lim ๏ธโ†’(๏‚ผ๏€ฝ4) lim ๏ธโ†’(๏‚ผ๏€ฝ4)+ ๏ฆ (๏ธ) = lim ๏ธโ†’(๏‚ผ๏€ฝ4)+ ๏ธโ†’(๏‚ผ๏€ฝ4)โˆ’ โˆš cos ๏ธ = 1๏€ฝ 2 by continuity of the cosine function โˆš ๏ฆ (๏ธ) exists and equals 1๏€ฝ 2, which agrees with the value ๏ฆ (๏‚ผ๏€ฝ4). Therefore, ๏ฆ is continuous at ๏‚ผ๏€ฝ4, so ๏ฆ is continuous on (โˆ’โˆž๏€ป โˆž). c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 104 ยค CHAPTER 2 ๏€ธ 2 ๏ธ ๏€พ ๏€ผ 41. ๏ฆ (๏ธ) = ๏ธ ๏€พ ๏€บ 1๏€ฝ๏ธ LIMITS AND DERIVATIVES if ๏ธ ๏€ผ โˆ’1 if โˆ’ 1 โ‰ค ๏ธ ๏€ผ 1 if ๏ธ โ‰ฅ 1 ๏ฆ is continuous on (โˆ’โˆž๏€ป โˆ’1), (โˆ’1๏€ป 1), and (1๏€ป โˆž), where it is a polynomial, a polynomial, and a rational function, respectively. Now lim ๏ธ2 = 1 and lim ๏ฆ (๏ธ) = ๏ธโ†’โˆ’1โˆ’ ๏ธโ†’โˆ’1โˆ’ lim ๏ฆ (๏ธ) = ๏ธโ†’โˆ’1+ lim ๏ธ = โˆ’1, ๏ธโ†’โˆ’1+ so ๏ฆ is discontinuous at โˆ’1. Since ๏ฆ (โˆ’1) = โˆ’1, ๏ฆ is continuous from the right at โˆ’1. Also, lim ๏ฆ (๏ธ) = lim ๏ธ = 1 and ๏ธโ†’1โˆ’ 1 lim ๏ฆ (๏ธ) = lim ๏ธโ†’1+ ๏ธ ๏ธโ†’1+ ๏€ธ ๏ธ 2 ๏€พ ๏€ผ 42. ๏ฆ (๏ธ) = 3 โˆ’ ๏ธ ๏€พ ๏€บโˆš ๏ธ ๏ธโ†’1โˆ’ = 1 = ๏ฆ (1), so ๏ฆ is continuous at 1. if ๏ธ โ‰ค 1 if 1 ๏€ผ ๏ธ โ‰ค 4 if ๏ธ ๏€พ 4 ๏ฆ is continuous on (โˆ’โˆž๏€ป 1), (1๏€ป 4), and (4๏€ป โˆž), where it is an exponential, a polynomial, and a root function, respectively. Now lim ๏ฆ (๏ธ) = lim 2๏ธ = 2 and lim ๏ฆ (๏ธ) = lim (3 โˆ’ ๏ธ) = 2. Since ๏ฆ (1) = 2 we have continuity at 1. Also, ๏ธโ†’1โˆ’ ๏ธโ†’1โˆ’ ๏ธโ†’1+ ๏ธโ†’1+ lim ๏ฆ (๏ธ) = lim (3 โˆ’ ๏ธ) = โˆ’1 = ๏ฆ (4) and lim ๏ฆ(๏ธ) = lim ๏ธโ†’4โˆ’ ๏ธโ†’4โˆ’ ๏ธโ†’4+ ๏ธโ†’4+ โˆš ๏ธ = 2, so ๏ฆ is discontinuous at 4, but it is continuous from the left at 4. ๏€ธ ๏ธ+2 ๏€พ ๏€พ ๏€ผ 43. ๏ฆ (๏ธ) = ๏ฅ๏ธ ๏€พ ๏€พ ๏€บ 2โˆ’๏ธ if ๏ธ ๏€ผ 0 if 0 โ‰ค ๏ธ โ‰ค 1 if ๏ธ ๏€พ 1 ๏ฆ is continuous on (โˆ’โˆž๏€ป 0) and (1๏€ป โˆž) since on each of these intervals it is a polynomial; it is continuous on (0๏€ป 1) since it is an exponential. Now lim ๏ฆ (๏ธ) = lim (๏ธ + 2) = 2 and lim ๏ฆ (๏ธ) = lim ๏ฅ๏ธ = 1, so ๏ฆ is discontinuous at 0. Since ๏ฆ (0) = 1, ๏ฆ is ๏ธโ†’0โˆ’ ๏ธโ†’0โˆ’ ๏ธโ†’0+ ๏ธโ†’0+ continuous from the right at 0. Also lim ๏ฆ (๏ธ) = lim ๏ฅ๏ธ = ๏ฅ and lim ๏ฆ (๏ธ) = lim (2 โˆ’ ๏ธ) = 1, so ๏ฆ is discontinuous ๏ธโ†’1โˆ’ ๏ธโ†’1โˆ’ ๏ธโ†’1+ ๏ธโ†’1+ at 1. Since ๏ฆ (1) = ๏ฅ, ๏ฆ is continuous from the left at 1. 44. By Theorem 5, each piece of ๏† is continuous on its domain. We need to check for continuity at ๏ฒ = ๏’. lim ๏† (๏ฒ) = lim ๏ฒโ†’๏’โˆ’ ๏ฒโ†’๏’โˆ’ ๏‡๏ ๏‡๏ ๏‡๏ ๏‡๏ ๏‡๏๏ฒ ๏‡๏ = and lim ๏† (๏ฒ) = lim = , so lim ๏† (๏ฒ) = . Since ๏† (๏’) = , ๏ฒโ†’๏’ ๏’3 ๏’2 ๏’2 ๏’2 ๏’2 ๏ฒโ†’๏’+ ๏ฒโ†’๏’+ ๏ฒ 2 ๏† is continuous at ๏’. Therefore, ๏† is a continuous function of ๏ฒ. 45. ๏ฆ (๏ธ) = ๏€จ ๏ฃ๏ธ2 + 2๏ธ if ๏ธ ๏€ผ 2 ๏ธ3 โˆ’ ๏ฃ๏ธ if ๏ธ โ‰ฅ 2 ๏ฆ is continuous on (โˆ’โˆž๏€ป 2) and (2๏€ป โˆž). Now lim ๏ฆ(๏ธ) = lim ๏ธโ†’2โˆ’ ๏ธโ†’2โˆ’ ๏‚ก 2 ๏‚ข ๏ฃ๏ธ + 2๏ธ = 4๏ฃ + 4 and c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.5 lim ๏ฆ (๏ธ) = lim ๏ธโ†’2+ ๏ธโ†’2+ CONTINUITY ยค 105 ๏‚ก 3 ๏‚ข ๏ธ โˆ’ ๏ฃ๏ธ = 8 โˆ’ 2๏ฃ. So ๏ฆ is continuous โ‡” 4๏ฃ + 4 = 8 โˆ’ 2๏ฃ โ‡” 6๏ฃ = 4 โ‡” ๏ฃ = 23 . Thus, for ๏ฆ to be continuous on (โˆ’โˆž๏€ป โˆž), ๏ฃ = 23 . 46. ๏ฆ (๏ธ) = ๏€ธ 2 ๏ธ โˆ’4 ๏€พ ๏€พ ๏€พ ๏ธโˆ’2 ๏€ผ if ๏ธ ๏€ผ 2 2 ๏ก๏ธ โˆ’ ๏ข๏ธ + 3 ๏€พ ๏€พ ๏€พ ๏€บ 2๏ธ โˆ’ ๏ก + ๏ข At ๏ธ = 2: if 2 โ‰ค ๏ธ ๏€ผ 3 if ๏ธ โ‰ฅ 3 lim ๏ฆ (๏ธ) = lim ๏ธโ†’2โˆ’ ๏ธโ†’2โˆ’ ๏ธ2 โˆ’ 4 (๏ธ + 2)(๏ธ โˆ’ 2) = lim = lim (๏ธ + 2) = 2 + 2 = 4 ๏ธโˆ’2 ๏ธโˆ’2 ๏ธโ†’2โˆ’ ๏ธโ†’2โˆ’ lim ๏ฆ (๏ธ) = lim (๏ก๏ธ2 โˆ’ ๏ข๏ธ + 3) = 4๏ก โˆ’ 2๏ข + 3 ๏ธโ†’2+ ๏ธโ†’2+ We must have 4๏ก โˆ’ 2๏ข + 3 = 4, or 4๏ก โˆ’ 2๏ข = 1 (1). At ๏ธ = 3: lim ๏ฆ (๏ธ) = lim (๏ก๏ธ2 โˆ’ ๏ข๏ธ + 3) = 9๏ก โˆ’ 3๏ข + 3 ๏ธโ†’3โˆ’ ๏ธโ†’3โˆ’ lim ๏ฆ (๏ธ) = lim (2๏ธ โˆ’ ๏ก + ๏ข) = 6 โˆ’ ๏ก + ๏ข ๏ธโ†’3+ ๏ธโ†’3+ We must have 9๏ก โˆ’ 3๏ข + 3 = 6 โˆ’ ๏ก + ๏ข, or 10๏ก โˆ’ 4๏ข = 3 (2). Now solve the system of equations by adding โˆ’2 times equation (1) to equation (2). โˆ’8๏ก + 4๏ข = โˆ’2 10๏ก โˆ’ 4๏ข = 2๏ก = 3 1 So ๏ก = 12 . Substituting 12 for ๏ก in (1) gives us โˆ’2๏ข = โˆ’1, so ๏ข = 12 as well. Thus, for ๏ฆ to be continuous on (โˆ’โˆž๏€ป โˆž), ๏ก = ๏ข = 12 . 47. If ๏ฆ and ๏ง are continuous and ๏ง(2) = 6, then lim [3๏ฆ (๏ธ) + ๏ฆ (๏ธ) ๏ง(๏ธ)] = 36 ๏ธโ†’2 โ‡’ 3 lim ๏ฆ (๏ธ) + lim ๏ฆ (๏ธ) ยท lim ๏ง(๏ธ) = 36 โ‡’ 3๏ฆ (2) + ๏ฆ(2) ยท 6 = 36 โ‡’ 9๏ฆ (2) = 36 โ‡’ ๏ฆ (2) = 4. ๏ธโ†’2 ๏ธโ†’2 48. (a) ๏ฆ (๏ธ) = ๏ธโ†’2 1 1 and ๏ง(๏ธ) = 2 , so (๏ฆ โ—ฆ ๏ง)(๏ธ) = ๏ฆ (๏ง(๏ธ)) = ๏ฆ (1๏€ฝ๏ธ2 ) = 1 ๏€ฝ(1๏€ฝ๏ธ2 ) = ๏ธ2 . ๏ธ ๏ธ (b) The domain of ๏ฆ โ—ฆ ๏ง is the set of numbers ๏ธ in the domain of ๏ง (all nonzero reals) such that ๏ง(๏ธ) is in the domain of ๏ฆ (also ๏‚ฝ ๏‚ฏ ๏‚พ ๏‚ฏ 1 all nonzero reals). Thus, the domain is ๏ธ ๏‚ฏ๏‚ฏ ๏ธ 6= 0 and 2 6= 0 = {๏ธ | ๏ธ 6= 0} or (โˆ’โˆž๏€ป 0) โˆช (0๏€ป โˆž). Since ๏ฆ โ—ฆ ๏ง is ๏ธ the composite of two rational functions, it is continuous throughout its domain; that is, everywhere except ๏ธ = 0. 49. (a) ๏ฆ (๏ธ) = (๏ธ2 + 1)(๏ธ2 โˆ’ 1) (๏ธ2 + 1)(๏ธ + 1)(๏ธ โˆ’ 1) ๏ธ4 โˆ’ 1 = = = (๏ธ2 + 1)(๏ธ + 1) [or ๏ธ3 + ๏ธ2 + ๏ธ + 1] ๏ธโˆ’1 ๏ธโˆ’1 ๏ธโˆ’1 for ๏ธ 6= 1. The discontinuity is removable and ๏ง(๏ธ) = ๏ธ3 + ๏ธ2 + ๏ธ + 1 agrees with ๏ฆ for ๏ธ 6= 1 and is continuous on R. (b) ๏ฆ (๏ธ) = ๏ธ(๏ธ2 โˆ’ ๏ธ โˆ’ 2) ๏ธ(๏ธ โˆ’ 2)(๏ธ + 1) ๏ธ3 โˆ’ ๏ธ2 โˆ’ 2๏ธ = = = ๏ธ(๏ธ + 1) [or ๏ธ2 + ๏ธ] for ๏ธ 6= 2. The discontinuity ๏ธโˆ’2 ๏ธโˆ’2 ๏ธโˆ’2 is removable and ๏ง(๏ธ) = ๏ธ2 + ๏ธ agrees with ๏ฆ for ๏ธ 6= 2 and is continuous on R. (c) lim ๏ฆ (๏ธ) = lim [[sin ๏ธ]] = lim 0 = 0 and lim ๏ฆ (๏ธ) = lim [[sin ๏ธ]] = lim (โˆ’1) = โˆ’1, so lim ๏ฆ (๏ธ) does not ๏ธโ†’๏‚ผโˆ’ ๏ธโ†’๏‚ผ โˆ’ ๏ธโ†’๏‚ผ โˆ’ ๏ธโ†’๏‚ผ + ๏ธโ†’๏‚ผ + ๏ธโ†’๏‚ผ + ๏ธโ†’๏‚ผ exist. The discontinuity at ๏ธ = ๏‚ผ is a jump discontinuity. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 106 ยค CHAPTER 2 LIMITS AND DERIVATIVES 50. ๏ฆ does not satisfy the conclusion of the ๏ฆ does satisfy the conclusion of the Intermediate Value Theorem. Intermediate Value Theorem. 51. ๏ฆ (๏ธ) = ๏ธ2 + 10 sin ๏ธ is continuous on the interval [31๏€ป 32], ๏ฆ (31) โ‰ˆ 957, and ๏ฆ(32) โ‰ˆ 1030. Since 957 ๏€ผ 1000 ๏€ผ 1030, there is a number c in (31๏€ป 32) such that ๏ฆ (๏ฃ) = 1000 by the Intermediate Value Theorem. Note: There is also a number c in (โˆ’32๏€ป โˆ’31) such that ๏ฆ (๏ฃ) = 1000๏€บ 52. Suppose that ๏ฆ(3) ๏€ผ 6. By the Intermediate Value Theorem applied to the continuous function ๏ฆ on the closed interval [2๏€ป 3], the fact that ๏ฆ (2) = 8 ๏€พ 6 and ๏ฆ(3) ๏€ผ 6 implies that there is a number ๏ฃ in (2๏€ป 3) such that ๏ฆ (๏ฃ) = 6. This contradicts the fact that the only solutions of the equation ๏ฆ (๏ธ) = 6 are ๏ธ = 1 and ๏ธ = 4. Hence, our supposition that ๏ฆ (3) ๏€ผ 6 was incorrect. It follows that ๏ฆ(3) โ‰ฅ 6. But ๏ฆ (3) 6= 6 because the only solutions of ๏ฆ (๏ธ) = 6 are ๏ธ = 1 and ๏ธ = 4. Therefore, ๏ฆ (3) ๏€พ 6. 53. ๏ฆ (๏ธ) = ๏ธ4 + ๏ธ โˆ’ 3 is continuous on the interval [1๏€ป 2]๏€ป ๏ฆ (1) = โˆ’1, and ๏ฆ(2) = 15. Since โˆ’1 ๏€ผ 0 ๏€ผ 15, there is a number ๏ฃ in (1๏€ป 2) such that ๏ฆ (๏ฃ) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation ๏ธ4 + ๏ธ โˆ’ 3 = 0 in the interval (1๏€ป 2)๏€บ โˆš โˆš โˆš ๏ธ is equivalent to the equation ln ๏ธ โˆ’ ๏ธ + ๏ธ = 0. ๏ฆ (๏ธ) = ln ๏ธ โˆ’ ๏ธ + ๏ธ is continuous on the โˆš โˆš interval [2๏€ป 3], ๏ฆ (2) = ln 2 โˆ’ 2 + 2 โ‰ˆ 0๏€บ107, and ๏ฆ (3) = ln 3 โˆ’ 3 + 3 โ‰ˆ โˆ’0๏€บ169. Since ๏ฆ (2) ๏€พ 0 ๏€พ ๏ฆ (3), there is a 54. The equation ln ๏ธ = ๏ธ โˆ’ number ๏ฃ in (2๏€ป 3) such that ๏ฆ (๏ฃ) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation โˆš โˆš ln ๏ธ โˆ’ ๏ธ + ๏ธ = 0, or ln ๏ธ = ๏ธ โˆ’ ๏ธ, in the interval (2๏€ป 3). 55. The equation ๏ฅ๏ธ = 3 โˆ’ 2๏ธ is equivalent to the equation ๏ฅ๏ธ + 2๏ธ โˆ’ 3 = 0. ๏ฆ (๏ธ) = ๏ฅ๏ธ + 2๏ธ โˆ’ 3 is continuous on the interval [0๏€ป 1], ๏ฆ (0) = โˆ’2, and ๏ฆ (1) = ๏ฅ โˆ’ 1 โ‰ˆ 1๏€บ72. Since โˆ’2 ๏€ผ 0 ๏€ผ ๏ฅ โˆ’ 1, there is a number ๏ฃ in (0๏€ป 1) such that ๏ฆ (๏ฃ) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation ๏ฅ๏ธ + 2๏ธ โˆ’ 3 = 0, or ๏ฅ๏ธ = 3 โˆ’ 2๏ธ, in the interval (0๏€ป 1). 56. The equation sin ๏ธ = ๏ธ2 โˆ’ ๏ธ is equivalent to the equation sin ๏ธ โˆ’ ๏ธ2 + ๏ธ = 0. ๏ฆ (๏ธ) = sin ๏ธ โˆ’ ๏ธ2 + ๏ธ is continuous on the interval [1๏€ป 2]๏€ป ๏ฆ (1) = sin 1 โ‰ˆ 0๏€บ84, and ๏ฆ (2) = sin 2 โˆ’ 2 โ‰ˆ โˆ’1๏€บ09. Since sin 1 ๏€พ 0 ๏€พ sin 2 โˆ’ 2, there is a number ๏ฃ in (1๏€ป 2) such that ๏ฆ (๏ฃ) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation sin ๏ธ โˆ’ ๏ธ2 + ๏ธ = 0, or sin ๏ธ = ๏ธ2 โˆ’ ๏ธ, in the interval (1๏€ป 2). 57. (a) ๏ฆ (๏ธ) = cos ๏ธ โˆ’ ๏ธ3 is continuous on the interval [0๏€ป 1], ๏ฆ (0) = 1 ๏€พ 0, and ๏ฆ (1) = cos 1 โˆ’ 1 โ‰ˆ โˆ’0๏€บ46 ๏€ผ 0. Since 1 ๏€พ 0 ๏€พ โˆ’0๏€บ46, there is a number ๏ฃ in (0๏€ป 1) such that ๏ฆ (๏ฃ) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation cos ๏ธ โˆ’ ๏ธ3 = 0, or cos ๏ธ = ๏ธ3 , in the interval (0๏€ป 1). c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.5 CONTINUITY ยค 107 (b) ๏ฆ (0๏€บ86) โ‰ˆ 0๏€บ016 ๏€พ 0 and ๏ฆ (0๏€บ87) โ‰ˆ โˆ’0๏€บ014 ๏€ผ 0, so there is a root between 0๏€บ86 and 0๏€บ87, that is, in the interval (0๏€บ86๏€ป 0๏€บ87). 58. (a) ๏ฆ (๏ธ) = ln ๏ธ โˆ’ 3 + 2๏ธ is continuous on the interval [1๏€ป 2], ๏ฆ (1) = โˆ’1 ๏€ผ 0, and ๏ฆ (2) = ln 2 + 1 โ‰ˆ 1๏€บ7 ๏€พ 0. Since โˆ’1 ๏€ผ 0 ๏€ผ 1๏€บ7, there is a number ๏ฃ in (1๏€ป 2) such that ๏ฆ (๏ฃ) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation ln ๏ธ โˆ’ 3 + 2๏ธ = 0, or ln ๏ธ = 3 โˆ’ 2๏ธ, in the interval (1๏€ป 2). (b) ๏ฆ (1๏€บ34) โ‰ˆ โˆ’0๏€บ03 ๏€ผ 0 and ๏ฆ (1๏€บ35) โ‰ˆ 0๏€บ0001 ๏€พ 0, so there is a root between 1๏€บ34 and 1๏€บ35๏€ป that is, in the interval (1๏€บ34๏€ป 1๏€บ35). 59. (a) Let ๏ฆ (๏ธ) = 100๏ฅโˆ’๏ธ๏€ฝ100 โˆ’ 0๏€บ01๏ธ2 ๏€บ Then ๏ฆ (0) = 100 ๏€พ 0 and ๏ฆ (100) = 100๏ฅโˆ’1 โˆ’ 100 โ‰ˆ โˆ’63๏€บ2 ๏€ผ 0. So by the Intermediate Value Theorem, there is a number ๏ฃ in (0๏€ป 100) such that ๏ฆ (๏ฃ) = 0. This implies that 100๏ฅโˆ’๏ฃ๏€ฝ100 = 0๏€บ01๏ฃ2 . (b) Using the intersect feature of the graphing device, we ๏ฌnd that the root of the equation is ๏ธ = 70๏€บ347, correct to three decimal places. 60. (a) Let ๏ฆ (๏ธ) = arctan ๏ธ + ๏ธ โˆ’ 1. Then ๏ฆ (0) = โˆ’1 ๏€ผ 0 and ๏ฆ (1) = ๏‚ผ4 ๏€พ 0. So by the Intermediate Value Theorem, there is a number ๏ฃ in (0๏€ป 1) such that ๏ฆ (๏ฃ) = 0. This implies that arctan ๏ฃ = 1 โˆ’ ๏ฃ. (b) Using the intersect feature of the graphing device, we ๏ฌnd that the root of the equation is ๏ธ = 0๏€บ520, correct to three decimal places. 61. Let ๏ฆ (๏ธ) = sin ๏ธ3 . Then ๏ฆ is continuous on [1๏€ป 2] since ๏ฆ is the composite of the sine function and the cubing function, both of which are continuous on R. The zeros of the sine are at ๏ฎ๏‚ผ, so we note that 0 ๏€ผ 1 ๏€ผ ๏‚ผ ๏€ผ 32 ๏‚ผ ๏€ผ 2๏‚ผ ๏€ผ 8 ๏€ผ 3๏‚ผ, and that the ๏ฑ โˆš pertinent cube roots are related by 1 ๏€ผ 3 32 ๏‚ผ [call this value ๏] ๏€ผ 2. [By observation, we might notice that ๏ธ = 3 ๏‚ผ and โˆš ๏ธ = 3 2๏‚ผ are zeros of ๏ฆ .] Now ๏ฆ(1) = sin 1 ๏€พ 0, ๏ฆ (๏) = sin 32 ๏‚ผ = โˆ’1 ๏€ผ 0, and ๏ฆ (2) = sin 8 ๏€พ 0. Applying the Intermediate Value Theorem on [1๏€ป ๏] and then on [๏๏€ป 2], we see there are numbers ๏ฃ and ๏ค in (1๏€ป ๏) and (๏๏€ป 2) such that ๏ฆ (๏ฃ) = ๏ฆ (๏ค) = 0. Thus, ๏ฆ has at least two ๏ธ-intercepts in (1๏€ป 2). 62. Let ๏ฆ(๏ธ) = ๏ธ2 โˆ’ 3 + 1๏€ฝ๏ธ. Then ๏ฆ is continuous on (0๏€ป 2] since ๏ฆ is a rational function whose domain is (0๏€ป โˆž). By ๏‚ก ๏‚ข inspection, we see that ๏ฆ 14 = 17 ๏€พ 0, ๏ฆ (1) = โˆ’1 ๏€ผ 0, and ๏ฆ (2) = 32 ๏€พ 0. Appling the Intermediate Value Theorem on 16 ๏‚ก ๏‚ข ๏‚ฃ1 ๏‚ค ๏€ป 1 and then on [1๏€ป 2], we see there are numbers ๏ฃ and ๏ค in 14 ๏€ป 1 and (1๏€ป 2) such that ๏ฆ (๏ฃ) = ๏ฆ (๏ค) = 0. Thus, ๏ฆ has at 4 least two ๏ธ-intercepts in (0๏€ป 2). c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 108 ยค CHAPTER 2 LIMITS AND DERIVATIVES 63. (โ‡’) If ๏ฆ is continuous at ๏ก, then by Theorem 8 with ๏ง(๏จ) = ๏ก + ๏จ, we have ๏‚ณ ๏‚ด lim ๏ฆ (๏ก + ๏จ) = ๏ฆ lim (๏ก + ๏จ) = ๏ฆ (๏ก). ๏จโ†’0 ๏จโ†’0 (โ‡) Let ๏€ข ๏€พ 0. Since lim ๏ฆ(๏ก + ๏จ) = ๏ฆ (๏ก), there exists ๏‚ฑ ๏€พ 0 such that 0 ๏€ผ |๏จ| ๏€ผ ๏‚ฑ ๏จโ†’0 โ‡’ |๏ฆ (๏ก + ๏จ) โˆ’ ๏ฆ (๏ก)| ๏€ผ ๏€ข. So if 0 ๏€ผ |๏ธ โˆ’ ๏ก| ๏€ผ ๏‚ฑ, then |๏ฆ (๏ธ) โˆ’ ๏ฆ (๏ก)| = |๏ฆ (๏ก + (๏ธ โˆ’ ๏ก)) โˆ’ ๏ฆ (๏ก)| ๏€ผ ๏€ข. Thus, lim ๏ฆ (๏ธ) = ๏ฆ (๏ก) and so ๏ฆ is continuous at ๏ก. ๏ธโ†’๏ก 64. lim sin(๏ก + ๏จ) = lim (sin ๏ก cos ๏จ + cos ๏ก sin ๏จ) = lim (sin ๏ก cos ๏จ) + lim (cos ๏ก sin ๏จ) ๏จโ†’0 ๏จโ†’0 = ๏‚ณ ๏จโ†’0 ๏จโ†’0 ๏‚ด๏‚ณ ๏‚ด ๏‚ณ ๏‚ด๏‚ณ ๏‚ด lim sin ๏ก lim cos ๏จ + lim cos ๏ก lim sin ๏จ = (sin ๏ก)(1) + (cos ๏ก)(0) = sin ๏ก ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 65. As in the previous exercise, we must show that lim cos(๏ก + ๏จ) = cos ๏ก to prove that the cosine function is continuous. ๏จโ†’0 lim cos(๏ก + ๏จ) = lim (cos ๏ก cos ๏จ โˆ’ sin ๏ก sin ๏จ) = lim (cos ๏ก cos ๏จ) โˆ’ lim (sin ๏ก sin ๏จ) ๏จโ†’0 ๏จโ†’0 = ๏‚ณ ๏จโ†’0 ๏จโ†’0 ๏‚ด๏‚ณ ๏‚ด ๏‚ณ ๏‚ด๏‚ณ ๏‚ด lim cos ๏ก lim cos ๏จ โˆ’ lim sin ๏ก lim sin ๏จ = (cos ๏ก)(1) โˆ’ (sin ๏ก)(0) = cos ๏ก ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 66. (a) Since ๏ฆ is continuous at ๏ก, lim ๏ฆ(๏ธ) = ๏ฆ (๏ก). Thus, using the Constant Multiple Law of Limits, we have ๏ธโ†’๏ก lim (๏ฃ๏ฆ )(๏ธ) = lim ๏ฃ๏ฆ (๏ธ) = ๏ฃ lim ๏ฆ (๏ธ) = ๏ฃ๏ฆ (๏ก) = (๏ฃ๏ฆ )(๏ก). Therefore, ๏ฃ๏ฆ is continuous at ๏ก. ๏ธโ†’๏ก ๏ธโ†’๏ก ๏ธโ†’๏ก (b) Since ๏ฆ and ๏ง are continuous at ๏ก, lim ๏ฆ (๏ธ) = ๏ฆ (๏ก) and lim ๏ง(๏ธ) = ๏ง(๏ก). Since ๏ง(๏ก) 6= 0, we can use the Quotient Law ๏ธโ†’๏ก ๏ธโ†’๏ก ๏‚ต ๏‚ถ ๏‚ต ๏‚ถ lim ๏ฆ(๏ธ) ๏ฆ(๏ก) ๏ฆ ๏ฆ(๏ธ) ๏ฆ ๏ฆ ๏ธโ†’๏ก = = = of Limits: lim (๏ธ) = lim (๏ก). Thus, is continuous at ๏ก. ๏ธโ†’๏ก ๏ธโ†’๏ก ๏ง(๏ธ) ๏ง lim ๏ง(๏ธ) ๏ง(๏ก) ๏ง ๏ง ๏ธโ†’๏ก 67. ๏ฆ (๏ธ) = ๏€จ 0 if ๏ธ is rational 1 if ๏ธ is irrational is continuous nowhere. For, given any number ๏ก and any ๏‚ฑ ๏€พ 0, the interval (๏ก โˆ’ ๏‚ฑ๏€ป ๏ก + ๏‚ฑ) contains both in๏ฌnitely many rational and in๏ฌnitely many irrational numbers. Since ๏ฆ (๏ก) = 0 or 1, there are in๏ฌnitely many numbers ๏ธ with 0 ๏€ผ |๏ธ โˆ’ ๏ก| ๏€ผ ๏‚ฑ and |๏ฆ (๏ธ) โˆ’ ๏ฆ (๏ก)| = 1. Thus, lim ๏ฆ(๏ธ) 6= ๏ฆ (๏ก). [In fact, lim ๏ฆ (๏ธ) does not even exist.] ๏ธโ†’๏ก 68. ๏ง(๏ธ) = ๏€จ 0 if ๏ธ is rational ๏ธ if ๏ธ is irrational ๏ธโ†’๏ก is continuous at 0. To see why, note that โˆ’ |๏ธ| โ‰ค ๏ง(๏ธ) โ‰ค |๏ธ|, so by the Squeeze Theorem lim ๏ง(๏ธ) = 0 = ๏ง(0). But ๏ง is continuous nowhere else. For if ๏ก 6= 0 and ๏‚ฑ ๏€พ 0, the interval (๏ก โˆ’ ๏‚ฑ๏€ป ๏ก + ๏‚ฑ) contains both ๏ธโ†’0 in๏ฌnitely many rational and in๏ฌnitely many irrational numbers. Since ๏ง(๏ก) = 0 or ๏ก, there are in๏ฌnitely many numbers ๏ธ with 0 ๏€ผ |๏ธ โˆ’ ๏ก| ๏€ผ ๏‚ฑ and |๏ง(๏ธ) โˆ’ ๏ง(๏ก)| ๏€พ |๏ก| ๏€ฝ2. Thus, lim ๏ง(๏ธ) 6= ๏ง(๏ก). ๏ธโ†’๏ก 69. If there is such a number, it satis๏ฌes the equation ๏ธ3 + 1 = ๏ธ โ‡” ๏ธ3 โˆ’ ๏ธ + 1 = 0. Let the left-hand side of this equation be called ๏ฆ (๏ธ). Now ๏ฆ (โˆ’2) = โˆ’5 ๏€ผ 0, and ๏ฆ (โˆ’1) = 1 ๏€พ 0. Note also that ๏ฆ (๏ธ) is a polynomial, and thus continuous. So by the Intermediate Value Theorem, there is a number ๏ฃ between โˆ’2 and โˆ’1 such that ๏ฆ(๏ฃ) = 0, so that ๏ฃ = ๏ฃ3 + 1. 70. ๏ข ๏ก + 3 = 0 โ‡’ ๏ก(๏ธ3 + ๏ธ โˆ’ 2) + ๏ข(๏ธ3 + 2๏ธ2 โˆ’ 1) = 0. Let ๏ฐ(๏ธ) denote the left side of the last ๏ธ3 + 2๏ธ2 โˆ’ 1 ๏ธ +๏ธโˆ’2 equation. Since ๏ฐ is continuous on [โˆ’1๏€ป 1], ๏ฐ(โˆ’1) = โˆ’4๏ก ๏€ผ 0, and ๏ฐ(1) = 2๏ข ๏€พ 0, there exists a ๏ฃ in (โˆ’1๏€ป 1) such that c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.6 LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES ยค 109 ๏ฐ(๏ฃ) = 0 by the Intermediate Value Theorem. Note that the only root of either denominator that is in (โˆ’1๏€ป 1) is โˆš โˆš (โˆ’1 + 5 )๏€ฝ2 = ๏ฒ, but ๏ฐ(๏ฒ) = (3 5 โˆ’ 9)๏ก๏€ฝ2 6= 0. Thus, ๏ฃ is not a root of either denominator, so ๏ฐ(๏ฃ) = 0 โ‡’ ๏ธ = ๏ฃ is a root of the given equation. 71. ๏ฆ (๏ธ) = ๏ธ4 sin(1๏€ฝ๏ธ) is continuous on (โˆ’โˆž๏€ป 0) โˆช (0๏€ป โˆž) since it is the product of a polynomial and a composite of a trigonometric function and a rational function. Now since โˆ’1 โ‰ค sin(1๏€ฝ๏ธ) โ‰ค 1, we have โˆ’๏ธ4 โ‰ค ๏ธ4 sin(1๏€ฝ๏ธ) โ‰ค ๏ธ4 . Because lim (โˆ’๏ธ4 ) = 0 and lim ๏ธ4 = 0, the Squeeze Theorem gives us lim (๏ธ4 sin(1๏€ฝ๏ธ)) = 0, which equals ๏ฆ(0). Thus, ๏ฆ is ๏ธโ†’0 ๏ธโ†’0 ๏ธโ†’0 continuous at 0 and, hence, on (โˆ’โˆž๏€ป โˆž). 72. (a) lim ๏† (๏ธ) = 0 and lim ๏† (๏ธ) = 0, so lim ๏† (๏ธ) = 0, which is ๏† (0), and hence ๏† is continuous at ๏ธ = ๏ก if ๏ก = 0. For ๏ธโ†’0โˆ’ ๏ธโ†’0+ ๏ธโ†’0 ๏ก ๏€พ 0, lim ๏† (๏ธ) = lim ๏ธ = ๏ก = ๏† (๏ก). For ๏ก ๏€ผ 0, lim ๏† (๏ธ) = lim (โˆ’๏ธ) = โˆ’๏ก = ๏† (๏ก). Thus, ๏† is continuous at ๏ธโ†’๏ก ๏ธโ†’๏ก ๏ธโ†’๏ก ๏ธโ†’๏ก ๏ธ = ๏ก; that is, continuous everywhere. ๏‚ฏ ๏‚ฏ ๏‚ฏ ๏‚ฏ (b) Assume that ๏ฆ is continuous on the interval ๏‰. Then for ๏ก โˆˆ ๏‰, lim |๏ฆ (๏ธ)| = ๏‚ฏ lim ๏ฆ (๏ธ)๏‚ฏ = |๏ฆ (๏ก)| by Theorem 8. (If ๏ก is ๏ธโ†’๏ก ๏ธโ†’๏ก an endpoint of ๏‰, use the appropriate one-sided limit.) So |๏ฆ | is continuous on ๏‰. ๏€จ 1 if ๏ธ โ‰ฅ 0 (c) No, the converse is false. For example, the function ๏ฆ(๏ธ) = is not continuous at ๏ธ = 0, but |๏ฆ(๏ธ)| = 1 is โˆ’1 if ๏ธ ๏€ผ 0 continuous on R. 73. De๏ฌne ๏ต(๏ด) to be the monkโ€™s distance from the monastery, as a function of time ๏ด (in hours), on the ๏ฌrst day, and de๏ฌne ๏ค(๏ด) to be his distance from the monastery, as a function of time, on the second day. Let ๏„ be the distance from the monastery to the top of the mountain. From the given information we know that ๏ต(0) = 0, ๏ต(12) = ๏„, ๏ค(0) = ๏„ and ๏ค(12) = 0. Now consider the function ๏ต โˆ’ ๏ค, which is clearly continuous. We calculate that (๏ต โˆ’ ๏ค)(0) = โˆ’๏„ and (๏ต โˆ’ ๏ค)(12) = ๏„. So by the Intermediate Value Theorem, there must be some time ๏ด0 between 0 and 12 such that (๏ต โˆ’ ๏ค)(๏ด0 ) = 0 โ‡” ๏ต(๏ด0 ) = ๏ค(๏ด0 ). So at time ๏ด0 after 7:00 AM, the monk will be at the same place on both days. 2.6 Limits at Infinity; Horizontal Asymptotes 1. (a) As ๏ธ becomes large, the values of ๏ฆ (๏ธ) approach 5. (b) As ๏ธ becomes large negative, the values of ๏ฆ (๏ธ) approach 3. 2. (a) The graph of a function can intersect a The graph of a function can intersect a horizontal asymptote. vertical asymptote in the sense that it can It can even intersect its horizontal asymptote an in๏ฌnite meet but not cross it. number of times. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 110 ยค CHAPTER 2 LIMITS AND DERIVATIVES (b) The graph of a function can have 0, 1, or 2 horizontal asymptotes. Representative examples are shown. No horizontal asymptote 3. (a) lim ๏ฆ (๏ธ) = โˆ’2 ๏ธโ†’โˆž (d) lim ๏ฆ (๏ธ) = โˆ’โˆž ๏ธโ†’3 4. (a) lim ๏ง(๏ธ) = 2 ๏ธโ†’โˆž (d) lim ๏ง(๏ธ) = โˆ’โˆž ๏ธโ†’2โˆ’ 5. lim ๏ฆ (๏ธ) = โˆ’โˆž, ๏ธโ†’0 lim ๏ฆ(๏ธ) = 5, One horizontal asymptote (b) lim ๏ฆ (๏ธ) = 2 (b) lim ๏ง(๏ธ) = โˆ’1 (c) lim ๏ง(๏ธ) = โˆ’โˆž (e) lim ๏ง(๏ธ) = โˆž (f ) Vertical: ๏ธ = 0, ๏ธ = 2; ๏ธโ†’โˆ’โˆž 6. lim ๏ฆ (๏ธ) = โˆž, ๏ธโ†’2 lim ๏ฆ (๏ธ) = 0, 9. ๏ฆ (0) = 3, ๏ธโ†’2โˆ’ lim ๏ฆ (๏ธ) = โˆž, ๏ธโ†’0+ lim ๏ฆ (๏ธ) = โˆ’โˆž, ๏ธโ†’โˆ’โˆž ๏ฆ is odd horizontal: ๏น = โˆ’1, ๏น = 2 lim ๏ฆ (๏ธ) = โˆž, ๏ธโ†’โˆ’2+ lim ๏ฆ (๏ธ) = โˆ’โˆž, ๏ธโ†’โˆž ๏ธโ†’2+ ๏ธโ†’0 ๏ธโ†’2+ lim ๏ฆ (๏ธ) = โˆ’5 ๏ธโ†’โˆž ๏ธโ†’1 (e) Vertical: ๏ธ = 1, ๏ธ = 3; horizontal: ๏น = โˆ’2, ๏น = 2 ๏ธโ†’โˆ’2โˆ’ 8. lim ๏ฆ (๏ธ) = 3, (c) lim ๏ฆ (๏ธ) = โˆž ๏ธโ†’โˆ’โˆž ๏ธโ†’โˆ’โˆž ๏ธโ†’โˆž Two horizontal asymptotes lim ๏ฆ(๏ธ) = 0, ๏ธโ†’โˆ’โˆž ๏ฆ (0) = 0 lim ๏ฆ (๏ธ) = 4, ๏ธโ†’0โˆ’ lim ๏ฆ(๏ธ) = โˆ’โˆž, lim ๏ฆ (๏ธ) = โˆž, ๏ธโ†’2 lim ๏ฆ (๏ธ) = 0, ๏ธโ†’โˆ’โˆž lim ๏ฆ (๏ธ) = โˆž, ๏ธโ†’โˆž lim ๏ฆ (๏ธ) = โˆž, ๏ธโ†’0+ lim ๏ฆ (๏ธ) = โˆ’โˆž ๏ธโ†’0โˆ’ 10. lim ๏ฆ (๏ธ) = โˆ’โˆž, ๏ธโ†’3 lim ๏ฆ (๏ธ) = 2, ๏ธโ†’โˆž ๏ฆ (0) = 0, ๏ฆ is even lim ๏ฆ (๏ธ) = 2, ๏ธโ†’4+ 7. lim ๏ฆ (๏ธ) = โˆ’โˆž, lim ๏ฆ(๏ธ) = โˆ’โˆž, ๏ธโ†’4โˆ’ lim ๏ฆ(๏ธ) = 3 ๏ธโ†’โˆž c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.6 LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES ยค 11. If ๏ฆ (๏ธ) = ๏ธ2๏€ฝ2๏ธ , then a calculator gives ๏ฆ(0) = 0, ๏ฆ (1) = 0๏€บ5, ๏ฆ(2) = 1, ๏ฆ (3) = 1๏€บ125, ๏ฆ (4) = 1, ๏ฆ (5) = 0๏€บ78125, ๏ฆ (6) = 0๏€บ5625, ๏ฆ (7) = 0๏€บ3828125, ๏ฆ (8) = 0๏€บ25, ๏ฆ (9) = 0๏€บ158203125, ๏ฆ(10) = 0๏€บ09765625, ๏ฆ (20) โ‰ˆ 0๏€บ00038147, ๏‚ก ๏‚ข ๏ฆ (50) โ‰ˆ 2๏€บ2204 ร— 10โˆ’12 , ๏ฆ (100) โ‰ˆ 7๏€บ8886 ร— 10โˆ’27 . It appears that lim ๏ธ2๏€ฝ2๏ธ = 0. ๏ธโ†’โˆž ๏ธ 12. (a) From a graph of ๏ฆ(๏ธ) = (1 โˆ’ 2๏€ฝ๏ธ) in a window of [0๏€ป 10,000] by [0๏€ป 0๏€บ2], we estimate that lim ๏ฆ (๏ธ) = 0๏€บ14 ๏ธโ†’โˆž (to two decimal places.) (b) From the table, we estimate that lim ๏ฆ (๏ธ) = 0๏€บ1353 (to four decimal places.) ๏ธโ†’โˆž ๏ธ ๏ฆ (๏ธ) 10,000 100,000 1,000,000 0๏€บ135 308 0๏€บ135 333 0๏€บ135 335 [Divide both the numerator and denominator by ๏ธ2 2๏ธ2 โˆ’ 7 (2๏ธ2 โˆ’ 7)๏€ฝ๏ธ2 = lim 2 ๏ธโ†’โˆž 5๏ธ + ๏ธ โˆ’ 3 ๏ธโ†’โˆž (5๏ธ2 + ๏ธ โˆ’ 3)๏€ฝ๏ธ2 13. lim (the highest power of ๏ธ that appears in the denominator)] 2 = lim (2 โˆ’ 7๏€ฝ๏ธ ) ๏ธโ†’โˆž [Limit Law 5] lim (5 + 1๏€ฝ๏ธ โˆ’ 3๏€ฝ๏ธ2 ) ๏ธโ†’โˆž = lim 2 โˆ’ lim (7๏€ฝ๏ธ2 ) ๏ธโ†’โˆž ๏ธโ†’โˆž = ๏ธโ†’โˆž lim 5 + lim (1๏€ฝ๏ธ) โˆ’ lim (3๏€ฝ๏ธ2 ) ๏ธโ†’โˆž 2 โˆ’ 7 lim (1๏€ฝ๏ธ2 ) ๏ธโ†’โˆž 5 + lim (1๏€ฝ๏ธ) โˆ’ 3 lim (1๏€ฝ๏ธ2 ) ๏ธโ†’โˆž 14. lim ๏ธโ†’โˆž ๏ฒ 2 โˆ’ 7(0) 5 + 0 + 3(0) = 2 5 ๏ฒ lim ๏ธโ†’โˆž ๏ณ [Limit Laws 7 and 3] ๏ธโ†’โˆž = 9๏ธ3 + 8๏ธ โˆ’ 4 = 3 โˆ’ 5๏ธ + ๏ธ3 [Limit Laws 1 and 2] ๏ธโ†’โˆž [Theorem 5] 9๏ธ3 + 8๏ธ โˆ’ 4 3 โˆ’ 5๏ธ + ๏ธ3 [Limit Law 11] 9 + 8๏€ฝ๏ธ2 โˆ’ 4๏€ฝ๏ธ3 ๏ธโ†’โˆž 3๏€ฝ๏ธ3 โˆ’ 5๏€ฝ๏ธ2 + 1 ๏ถ ๏ต lim (9 + 8๏€ฝ๏ธ2 โˆ’ 4๏€ฝ๏ธ3 ) ๏ต ๏ธโ†’โˆž =๏ด lim (3๏€ฝ๏ธ3 โˆ’ 5๏€ฝ๏ธ2 + 1) = [Divide by ๏ธ3 ] lim [Limit Law 5] ๏ธโ†’โˆž ๏ถ ๏ต lim 9 + lim (8๏€ฝ๏ธ2 ) โˆ’ lim (4๏€ฝ๏ธ3 ) ๏ต ๏ธโ†’โˆž ๏ธโ†’โˆž ๏ธโ†’โˆž =๏ด lim (3๏€ฝ๏ธ3 ) โˆ’ lim (5๏€ฝ๏ธ2 ) + lim 1 ๏ธโ†’โˆž ๏ธโ†’โˆž ๏ถ ๏ต 9 + 8 lim (1๏€ฝ๏ธ2 ) โˆ’ 4 lim (1๏€ฝ๏ธ3 ) ๏ต ๏ธโ†’โˆž ๏ธโ†’โˆž =๏ด 3 lim (1๏€ฝ๏ธ3 ) โˆ’ 5 lim (1๏€ฝ๏ธ2 ) + 1 ๏ธโ†’โˆž = ๏ณ = ๏ฒ 9 + 8(0) โˆ’ 4(0) 3(0) โˆ’ 5(0) + 1 [Limit Laws 1 and 2] ๏ธโ†’โˆž [Limit Laws 7 and 3] ๏ธโ†’โˆž [Theorem 5] 9 โˆš = 9=3 1 c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 111 112 ยค CHAPTER 2 LIMITS AND DERIVATIVES lim 3 โˆ’ 2 lim 1๏€ฝ๏ธ 3 โˆ’ 2(0) 3 3๏ธ โˆ’ 2 (3๏ธ โˆ’ 2)๏€ฝ๏ธ 3 โˆ’ 2๏€ฝ๏ธ ๏ธโ†’โˆž ๏ธโ†’โˆž = lim = lim = = = ๏ธโ†’โˆž 2๏ธ + 1 ๏ธโ†’โˆž (2๏ธ + 1)๏€ฝ๏ธ ๏ธโ†’โˆž 2 + 1๏€ฝ๏ธ lim 2 + lim 1๏€ฝ๏ธ 2+0 2 15. lim ๏ธโ†’โˆž ๏ธโ†’โˆž 1 โˆ’ ๏ธ2 (1 โˆ’ ๏ธ2 )๏€ฝ๏ธ3 1๏€ฝ๏ธ3 โˆ’ 1๏€ฝ๏ธ = lim = lim ๏ธโ†’โˆž ๏ธ3 โˆ’ ๏ธ + 1 ๏ธโ†’โˆž (๏ธ3 โˆ’ ๏ธ + 1)๏€ฝ๏ธ3 ๏ธโ†’โˆž 1 โˆ’ 1๏€ฝ๏ธ2 + 1๏€ฝ๏ธ3 16. lim lim 1๏€ฝ๏ธ3 โˆ’ lim 1๏€ฝ๏ธ ๏ธโ†’โˆž = ๏ธโ†’โˆž 17. ๏ธโ†’โˆž lim 1 โˆ’ lim 1๏€ฝ๏ธ2 + lim 1๏€ฝ๏ธ3 ๏ธโ†’โˆž = ๏ธโ†’โˆž 0โˆ’0 =0 1โˆ’0+0 lim 1๏€ฝ๏ธ โˆ’ 2 lim 1๏€ฝ๏ธ2 0 โˆ’ 2(0) ๏ธโˆ’2 (๏ธ โˆ’ 2)๏€ฝ๏ธ2 1๏€ฝ๏ธ โˆ’ 2๏€ฝ๏ธ2 ๏ธโ†’โˆ’โˆž ๏ธโ†’โˆ’โˆž = lim =0 = lim = = ๏ธโ†’โˆ’โˆž ๏ธ2 + 1 ๏ธโ†’โˆ’โˆž (๏ธ2 + 1)๏€ฝ๏ธ2 ๏ธโ†’โˆ’โˆž 1 + 1๏€ฝ๏ธ2 lim 1 + lim 1๏€ฝ๏ธ2 1+0 lim ๏ธโ†’โˆ’โˆž 18. lim ๏ธโ†’โˆ’โˆž ๏ธโ†’โˆ’โˆž (4๏ธ3 + 6๏ธ2 โˆ’ 2)๏€ฝ๏ธ3 4 + 6๏€ฝ๏ธ โˆ’ 2๏€ฝ๏ธ3 4+0โˆ’0 4๏ธ3 + 6๏ธ2 โˆ’ 2 = lim =2 = lim = 3 3 3 ๏ธโ†’โˆ’โˆž ๏ธโ†’โˆ’โˆž 2๏ธ โˆ’ 4๏ธ + 5 (2๏ธ โˆ’ 4๏ธ + 5)๏€ฝ๏ธ 2 โˆ’ 4๏€ฝ๏ธ2 + 5๏€ฝ๏ธ3 2โˆ’0+0 โˆš โˆš 0+1 ๏ด + ๏ด2 ( ๏ด + ๏ด2 )๏€ฝ๏ด2 1๏€ฝ๏ด3๏€ฝ2 + 1 = = โˆ’1 = lim = lim ๏ดโ†’โˆž 2๏ด โˆ’ ๏ด2 ๏ดโ†’โˆž (2๏ด โˆ’ ๏ด2 )๏€ฝ๏ด2 ๏ดโ†’โˆž 2๏€ฝ๏ด โˆ’ 1 0โˆ’1 19. lim โˆš ๏‚ข ๏‚ก โˆš ๏ด โˆ’ ๏ด ๏ด ๏€ฝ๏ด3๏€ฝ2 1๏€ฝ๏ด1๏€ฝ2 โˆ’ 1 1 0โˆ’1 ๏ดโˆ’๏ด ๏ด =โˆ’ = lim = = lim ๏ดโ†’โˆž 2๏ด3๏€ฝ2 + 3๏ด โˆ’ 5 ๏ดโ†’โˆž (2๏ด3๏€ฝ2 + 3๏ด โˆ’ 5) ๏€ฝ๏ด3๏€ฝ2 ๏ดโ†’โˆž 2 + 3๏€ฝ๏ด1๏€ฝ2 โˆ’ 5๏€ฝ๏ด3๏€ฝ2 2+0โˆ’0 2 20. lim (2๏ธ2 + 1)2 (2๏ธ2 + 1)2 ๏€ฝ๏ธ4 [(2๏ธ2 + 1)๏€ฝ๏ธ2 ]2 = lim = lim ๏ธโ†’โˆž (๏ธ โˆ’ 1)2 (๏ธ2 + ๏ธ) ๏ธโ†’โˆž [(๏ธ โˆ’ 1)2 (๏ธ2 + ๏ธ)]๏€ฝ๏ธ4 ๏ธโ†’โˆž [(๏ธ2 โˆ’ 2๏ธ + 1)๏€ฝ๏ธ2 ][(๏ธ2 + ๏ธ)๏€ฝ๏ธ2 ] 21. lim (2 + 0)2 (2 + 1๏€ฝ๏ธ2 )2 = =4 2 ๏ธโ†’โˆž (1 โˆ’ 2๏€ฝ๏ธ + 1๏€ฝ๏ธ )(1 + 1๏€ฝ๏ธ) (1 โˆ’ 0 + 0)(1 + 0) = lim ๏ธ2 ๏ธ2 ๏€ฝ๏ธ2 1 = lim ๏ฐ = lim โˆš 4 4 2 4 ๏ธโ†’โˆž ๏ธโ†’โˆž ๏ธ +1 ๏ธ + 1๏€ฝ๏ธ (๏ธ + 1)๏€ฝ๏ธ4 [since ๏ธ2 = 22. lim โˆš ๏ธโ†’โˆž โˆš ๏ธ4 for ๏ธ ๏€พ 0] 1 1 =1 = โˆš = lim ๏ฐ ๏ธโ†’โˆž 1+0 1 + 1๏€ฝ๏ธ4 ๏ฐ โˆš โˆš lim (1 + 4๏ธ6 )๏€ฝ๏ธ6 1 + 4๏ธ6 1 + 4๏ธ6 ๏€ฝ๏ธ3 ๏ธโ†’โˆž 23. lim = lim = ๏ธโ†’โˆž ๏ธโ†’โˆž (2 โˆ’ ๏ธ3 )๏€ฝ๏ธ3 2 โˆ’ ๏ธ3 lim (2๏€ฝ๏ธ3 โˆ’ 1) [since ๏ธ3 = โˆš ๏ธ6 for ๏ธ ๏€พ 0] ๏ธโ†’โˆž ๏ฐ lim 1๏€ฝ๏ธ6 + 4 ๏ธโ†’โˆž = lim (2๏€ฝ๏ธ3 ) โˆ’ lim 1 ๏ธโ†’โˆž = ๏ธโ†’โˆž ๏ฑ lim (1๏€ฝ๏ธ6 ) + lim 4 ๏ธโ†’โˆž ๏ธโ†’โˆž 0โˆ’1 โˆš 2 0+4 = = = โˆ’2 โˆ’1 โˆ’1 ๏ฐ โˆš โˆš lim โˆ’ (1 + 4๏ธ6 )๏€ฝ๏ธ6 1 + 4๏ธ6 1 + 4๏ธ6 ๏€ฝ๏ธ3 ๏ธโ†’โˆ’โˆž 24. lim = lim = ๏ธโ†’โˆ’โˆž ๏ธโ†’โˆ’โˆž (2 โˆ’ ๏ธ3 )๏€ฝ๏ธ3 2 โˆ’ ๏ธ3 lim (2๏€ฝ๏ธ3 โˆ’ 1) โˆš [since ๏ธ3 = โˆ’ ๏ธ6 for ๏ธ ๏€ผ 0] ๏ธโ†’โˆ’โˆž = ๏ฐ lim โˆ’ 1๏€ฝ๏ธ6 + 4 ๏ธโ†’โˆ’โˆž 2 lim (1๏€ฝ๏ธ3 ) โˆ’ lim 1 ๏ธโ†’โˆ’โˆž ๏ธโ†’โˆ’โˆž โˆš โˆ’2 โˆ’ 0+4 = =2 = โˆ’1 โˆ’1 = ๏ฑ โˆ’ lim (1๏€ฝ๏ธ6 ) + lim 4 ๏ธโ†’โˆ’โˆž ๏ธโ†’โˆ’โˆž 2(0) โˆ’ 1 c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.6 ๏ฐ (๏ธ + 3๏ธ2 )๏€ฝ๏ธ2 lim โˆš โˆš ๏ธ + 3๏ธ2 ๏ธ + 3๏ธ2 ๏€ฝ๏ธ ๏ธโ†’โˆž = lim = ๏ธโ†’โˆž ๏ธโ†’โˆž (4๏ธ โˆ’ 1)๏€ฝ๏ธ 4๏ธ โˆ’ 1 lim (4 โˆ’ 1๏€ฝ๏ธ) 25. lim LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES [since ๏ธ = ยค 113 โˆš ๏ธ2 for ๏ธ ๏€พ 0] ๏ธโ†’โˆž = ๏ฐ lim 1๏€ฝ๏ธ + 3 ๏ธโ†’โˆž lim 4 โˆ’ lim (1๏€ฝ๏ธ) ๏ธโ†’โˆž = ๏ธโ†’โˆž ๏ฑ lim (1๏€ฝ๏ธ) + lim 3 ๏ธโ†’โˆž ๏ธโ†’โˆž 4โˆ’0 = โˆš โˆš 0+3 3 = 4 4 ๏ธ + 3๏ธ2 (๏ธ + 3๏ธ2 )๏€ฝ๏ธ 1 + 3๏ธ = lim = lim ๏ธโ†’โˆž 4๏ธ โˆ’ 1 ๏ธโ†’โˆž (4๏ธ โˆ’ 1)๏€ฝ๏ธ ๏ธโ†’โˆž 4 โˆ’ 1๏€ฝ๏ธ 26. lim = โˆž since 1 + 3๏ธ โ†’ โˆž and 4 โˆ’ 1๏€ฝ๏ธ โ†’ 4 as ๏ธ โ†’ โˆž. ๏‚กโˆš ๏‚กโˆš ๏‚ข๏‚กโˆš ๏‚ข ๏‚ข2 9๏ธ2 + ๏ธ โˆ’ 3๏ธ 9๏ธ2 + ๏ธ + 3๏ธ 9๏ธ2 + ๏ธ โˆ’ (3๏ธ)2 โˆš โˆš = lim ๏ธโ†’โˆž ๏ธโ†’โˆž 9๏ธ2 + ๏ธ + 3๏ธ 9๏ธ2 + ๏ธ + 3๏ธ ๏‚ก 2 ๏‚ข 9๏ธ + ๏ธ โˆ’ 9๏ธ2 1๏€ฝ๏ธ ๏ธ = lim โˆš = lim โˆš ยท ๏ธโ†’โˆž ๏ธโ†’โˆž 9๏ธ2 + ๏ธ + 3๏ธ 9๏ธ2 + ๏ธ + 3๏ธ 1๏€ฝ๏ธ ๏‚กโˆš ๏‚ข 27. lim 9๏ธ2 + ๏ธ โˆ’ 3๏ธ = lim ๏ธโ†’โˆž 1 1 ๏ธ๏€ฝ๏ธ 1 1 = = lim ๏ฐ = โˆš = lim ๏ฐ = 2 2 2 ๏ธโ†’โˆž ๏ธโ†’โˆž 3 + 3 6 9 + 3 9๏ธ ๏€ฝ๏ธ + ๏ธ๏€ฝ๏ธ + 3๏ธ๏€ฝ๏ธ 9 + 1๏€ฝ๏ธ + 3 28. ๏‚ทโˆš 2 ๏‚ธ ๏‚กโˆš ๏‚กโˆš ๏‚ข ๏‚ข 4๏ธ + 3๏ธ โˆ’ 2๏ธ 4๏ธ2 + 3๏ธ + 2๏ธ = lim 4๏ธ2 + 3๏ธ + 2๏ธ โˆš ๏ธโ†’โˆ’โˆž ๏ธโ†’โˆ’โˆž 4๏ธ2 + 3๏ธ โˆ’ 2๏ธ ๏‚ก 2 ๏‚ข 2 4๏ธ + 3๏ธ โˆ’ (2๏ธ) 3๏ธ โˆš = lim โˆš = lim ๏ธโ†’โˆ’โˆž ๏ธโ†’โˆ’โˆž 4๏ธ2 + 3๏ธ โˆ’ 2๏ธ 4๏ธ2 + 3๏ธ โˆ’ 2๏ธ 3๏ธ๏€ฝ๏ธ 3 ๏ฐ ๏‚ข = lim ๏‚กโˆš = lim 2 ๏ธโ†’โˆ’โˆž ๏ธโ†’โˆ’โˆž 4๏ธ + 3๏ธ โˆ’ 2๏ธ ๏€ฝ๏ธ โˆ’ 4 + 3๏€ฝ๏ธ โˆ’ 2 3 3 =โˆ’ = โˆš 4 โˆ’ 4+0โˆ’2 lim 29. lim ๏ธโ†’โˆž โˆš [since ๏ธ = โˆ’ ๏ธ2 for ๏ธ ๏€ผ 0] โˆš โˆš ๏‚กโˆš ๏‚ข ๏‚กโˆš ๏‚ข ๏ธ2 + ๏ก๏ธ โˆ’ ๏ธ2 + ๏ข๏ธ ๏ธ2 + ๏ก๏ธ + ๏ธ2 + ๏ข๏ธ โˆš โˆš ๏ธโ†’โˆž ๏ธ2 + ๏ก๏ธ + ๏ธ2 + ๏ข๏ธ โˆš ๏‚กโˆš ๏‚ข ๏ธ2 + ๏ก๏ธ โˆ’ ๏ธ2 + ๏ข๏ธ = lim (๏ธ2 + ๏ก๏ธ) โˆ’ (๏ธ2 + ๏ข๏ธ) [(๏ก โˆ’ ๏ข)๏ธ]๏€ฝ๏ธ โˆš = lim ๏‚กโˆš = lim โˆš โˆš ๏‚ข โˆš ๏ธโ†’โˆž ๏ธ2 + ๏ก๏ธ + ๏ธ2 + ๏ข๏ธ ๏ธโ†’โˆž ๏ธ2 + ๏ก๏ธ + ๏ธ2 + ๏ข๏ธ ๏€ฝ ๏ธ2 30. For ๏ธ ๏€พ 0, ๏กโˆ’๏ข ๏กโˆ’๏ข ๏กโˆ’๏ข ๏ฐ โˆš = = lim ๏ฐ = โˆš ๏ธโ†’โˆž 2 1+0+ 1+0 1 + ๏ก๏€ฝ๏ธ + 1 + ๏ข๏€ฝ๏ธ โˆš โˆš โˆš โˆš ๏ธ2 + 1 ๏€พ ๏ธ2 = ๏ธ. So as ๏ธ โ†’ โˆž, we have ๏ธ2 + 1 โ†’ โˆž, that is, lim ๏ธ2 + 1 = โˆž. ๏ธโ†’โˆž ๏ธ4 โˆ’ 3๏ธ2 + ๏ธ (๏ธ4 โˆ’ 3๏ธ2 + ๏ธ)๏€ฝ๏ธ3 = lim 3 ๏ธโ†’โˆž ๏ธ โˆ’ ๏ธ + 2 ๏ธโ†’โˆž (๏ธ3 โˆ’ ๏ธ + 2)๏€ฝ๏ธ3 31. lim ๏‚ท divide by the highest power of ๏ธ in the denominator ๏‚ธ ๏ธ โˆ’ 3๏€ฝ๏ธ + 1๏€ฝ๏ธ2 =โˆž ๏ธโ†’โˆž 1 โˆ’ 1๏€ฝ๏ธ2 + 2๏€ฝ๏ธ3 = lim since the numerator increases without bound and the denominator approaches 1 as ๏ธ โ†’ โˆž. 32. lim (๏ฅโˆ’๏ธ + 2 cos 3๏ธ) does not exist. lim ๏ฅโˆ’๏ธ = 0, but lim (2 cos 3๏ธ) does not exist because the values of 2 cos 3๏ธ ๏ธโ†’โˆž ๏ธโ†’โˆž ๏ธโ†’โˆž oscillate between the values of โˆ’2 and 2 in๏ฌnitely often, so the given limit does not exist. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 114 ยค 33. lim (๏ธ2 + 2๏ธ7 ) = lim ๏ธ7 CHAPTER 2 ๏ธโ†’โˆ’โˆž LIMITS AND DERIVATIVES ๏ธโ†’โˆ’โˆž ๏‚ต ๏‚ถ 1 + 2 [factor out the largest power of ๏ธ] = โˆ’โˆž because ๏ธ7 โ†’ โˆ’โˆž and ๏ธ5 1๏€ฝ๏ธ5 + 2 โ†’ 2 as ๏ธ โ†’ โˆ’โˆž. ๏‚ก ๏‚ข ๏‚ก ๏‚ข Or: lim ๏ธ2 + 2๏ธ7 = lim ๏ธ2 1 + 2๏ธ5 = โˆ’โˆž. ๏ธโ†’โˆ’โˆž 34. ๏ธโ†’โˆ’โˆž 1 + ๏ธ6 (1 + ๏ธ6 )๏€ฝ๏ธ4 = lim ๏ธโ†’โˆ’โˆž ๏ธ4 + 1 ๏ธโ†’โˆ’โˆž (๏ธ4 + 1)๏€ฝ๏ธ4 lim ๏‚ท divide by the highest power of ๏ธ in the denominator ๏‚ธ = lim ๏ธโ†’โˆ’โˆž 1๏€ฝ๏ธ4 + ๏ธ2 =โˆž 1 + 1๏€ฝ๏ธ4 since the numerator increases without bound and the denominator approaches 1 as ๏ธ โ†’ โˆ’โˆž. 35. Let ๏ด = ๏ฅ๏ธ . As ๏ธ โ†’ โˆž, ๏ด โ†’ โˆž. lim arctan(๏ฅ๏ธ ) = lim arctan ๏ด = ๏‚ผ2 by (3). ๏ธโ†’โˆž ๏ดโ†’โˆž 1โˆ’0 ๏ฅ3๏ธ โˆ’ ๏ฅโˆ’3๏ธ 1 โˆ’ ๏ฅโˆ’6๏ธ =1 = lim = 3๏ธ โˆ’3๏ธ ๏ธโ†’โˆž ๏ฅ ๏ธโ†’โˆž 1 + ๏ฅโˆ’6๏ธ +๏ฅ 1+0 36. Divide numerator and denominator by ๏ฅ3๏ธ : lim 0โˆ’1 1 1 โˆ’ ๏ฅ๏ธ (1 โˆ’ ๏ฅ๏ธ )๏€ฝ๏ฅ๏ธ 1๏€ฝ๏ฅ๏ธ โˆ’ 1 = =โˆ’ = lim = lim ๏ธ ๏ธ ๏ธ ๏ธโ†’โˆž 1 + 2๏ฅ ๏ธโ†’โˆž (1 + 2๏ฅ )๏€ฝ๏ฅ ๏ธโ†’โˆž 1๏€ฝ๏ฅ๏ธ + 2 0+2 2 37. lim 38. Since 0 โ‰ค sin2 ๏ธ โ‰ค 1, we have 0 โ‰ค Theorem, lim sin2 ๏ธ ๏ธโ†’โˆž ๏ธ2 + 1 1 sin2 ๏ธ 1 โ‰ค 2 . We know that lim 0 = 0 and lim 2 = 0, so by the Squeeze ๏ธโ†’โˆž ๏ธโ†’โˆž ๏ธ + 1 ๏ธ2 + 1 ๏ธ +1 = 0. 39. Since โˆ’1 โ‰ค cos ๏ธ โ‰ค 1 and ๏ฅโˆ’2๏ธ ๏€พ 0, we have โˆ’๏ฅโˆ’2๏ธ โ‰ค ๏ฅโˆ’2๏ธ cos ๏ธ โ‰ค ๏ฅโˆ’2๏ธ . We know that lim (โˆ’๏ฅโˆ’2๏ธ ) = 0 and ๏ธโ†’โˆž ๏‚ก ๏‚ข lim ๏ฅโˆ’2๏ธ = 0, so by the Squeeze Theorem, lim (๏ฅโˆ’2๏ธ cos ๏ธ) = 0. ๏ธโ†’โˆž ๏ธโ†’โˆž 40. Let ๏ด = ln ๏ธ. As ๏ธ โ†’ 0+ , ๏ด โ†’ โˆ’โˆž. lim tanโˆ’1 (ln ๏ธ) = lim tanโˆ’1 ๏ด = โˆ’ ๏‚ผ2 by (4). ๏ดโ†’โˆ’โˆž ๏ธโ†’0+ 41. lim [ln(1 + ๏ธ2 ) โˆ’ ln(1 + ๏ธ)] = lim ln ๏ธโ†’โˆž ๏ธโ†’โˆž parentheses is โˆž. 42. lim [ln(2 + ๏ธ) โˆ’ ln(1 + ๏ธ)] = lim ln ๏ธโ†’โˆž ๏ธโ†’โˆž 1 + ๏ธ2 = ln 1+๏ธ ๏‚ต 2+๏ธ 1+๏ธ ๏‚ถ ๏‚ต 1 + ๏ธ2 ๏ธโ†’โˆž 1 + ๏ธ lim = lim ln ๏ธโ†’โˆž ๏‚ต ๏‚ถ 2๏€ฝ๏ธ + 1 1๏€ฝ๏ธ + 1 = ln ๏‚ถ ๏ธ (ii) lim ๏ฆ (๏ธ) = lim ๏ธ (iii) lim ๏ฆ (๏ธ) = lim ๏ธ = โˆž since ๏ธ โ†’ 1 and ln ๏ธ โ†’ 0+ as ๏ธ โ†’ 1+ . ln ๏ธ ๏ธโ†’1โˆ’ ๏ธโ†’1+ ๏ธโ†’0+ ln ๏ธ ๏ธโ†’1โˆ’ ln ๏ธ ๏ธโ†’1+ lim = ln 43. (a) (i) lim ๏ฆ (๏ธ) = lim ๏ธโ†’0+ ๏‚ถ 1 +๏ธ ๏ธ = โˆž, since the limit in ๏ธโ†’โˆž 1 + 1 ๏ธ ๏‚ต 1 = ln 1 = 0 1 = 0 since ๏ธ โ†’ 0+ and ln ๏ธ โ†’ โˆ’โˆž as ๏ธ โ†’ 0+ . = โˆ’โˆž since ๏ธ โ†’ 1 and ln ๏ธ โ†’ 0โˆ’ as ๏ธ โ†’ 1โˆ’ . (c) (b) ๏ธ ๏ฆ (๏ธ) 10,000 1085๏€บ7 100,000 8685๏€บ9 1,000,000 72,382๏€บ4 It appears that lim ๏ฆ(๏ธ) = โˆž. ๏ธโ†’โˆž c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.6 44. (a) lim ๏ฆ (๏ธ) = lim ๏ธโ†’โˆž ๏ธโ†’โˆž ๏‚ต 1 2 โˆ’ ๏ธ ln ๏ธ ๏‚ถ LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES ยค (e) =0 2 1 โ†’ 0 and โ†’ 0 as ๏ธ โ†’ โˆž. ๏ธ ln ๏ธ ๏‚ต ๏‚ถ 1 2 โˆ’ (b) lim ๏ฆ(๏ธ) = lim =โˆž ๏ธ ln ๏ธ ๏ธโ†’0+ ๏ธโ†’0+ since 1 2 โ†’ โˆž and โ†’ 0 as ๏ธ โ†’ 0+ . ๏ธ ln ๏ธ ๏‚ต ๏‚ถ 1 2 1 2 (c) lim ๏ฆ (๏ธ) = lim โˆ’ = โˆž since โ†’ 2 and โ†’ โˆ’โˆž as ๏ธ โ†’ 1โˆ’ . ๏ธ ln ๏ธ ๏ธ ln ๏ธ ๏ธโ†’1โˆ’ ๏ธโ†’1โˆ’ since (d) lim ๏ฆ(๏ธ) = lim ๏ธโ†’1+ ๏ธโ†’1+ ๏‚ต 1 2 โˆ’ ๏ธ ln ๏ธ ๏‚ถ = โˆ’โˆž since 1 2 โ†’ 2 and โ†’ โˆž as ๏ธ โ†’ 1+ . ๏ธ ln ๏ธ (b) 45. (a) ๏ธ ๏ฆ (๏ธ) โˆ’10,000 โˆ’0๏€บ499 962 5 โˆ’1,000,000 โˆ’0๏€บ499 999 6 โˆ’100,000 From the graph of ๏ฆ (๏ธ) = โˆš ๏ธ2 + ๏ธ + 1 + ๏ธ, we โˆ’0๏€บ499 996 2 From the table, we estimate the limit to be โˆ’0๏€บ5. estimate the value of lim ๏ฆ (๏ธ) to be โˆ’0๏€บ5. ๏ธโ†’โˆ’โˆž ๏‚ก 2 ๏‚ข ๏‚ทโˆš 2 ๏‚ธ ๏‚กโˆš ๏‚กโˆš ๏‚ข ๏‚ข ๏ธ + ๏ธ + 1 โˆ’ ๏ธ2 ๏ธ +๏ธ+1โˆ’๏ธ ๏ธ2 + ๏ธ + 1 + ๏ธ = lim ๏ธ2 + ๏ธ + 1 + ๏ธ โˆš = lim โˆš ๏ธโ†’โˆ’โˆž ๏ธโ†’โˆ’โˆž ๏ธโ†’โˆ’โˆž ๏ธ2 + ๏ธ + 1 โˆ’ ๏ธ ๏ธ2 + ๏ธ + 1 โˆ’ ๏ธ (c) lim (๏ธ + 1)(1๏€ฝ๏ธ) 1 + (1๏€ฝ๏ธ) ๏ฐ ๏‚ข = lim = lim ๏‚กโˆš ๏ธโ†’โˆ’โˆž ๏ธ2 + ๏ธ + 1 โˆ’ ๏ธ (1๏€ฝ๏ธ) ๏ธโ†’โˆ’โˆž โˆ’ 1 + (1๏€ฝ๏ธ) + (1๏€ฝ๏ธ2 ) โˆ’ 1 = Note that for ๏ธ ๏€ผ 0, we have 1 1+0 โˆš =โˆ’ 2 โˆ’ 1+0+0โˆ’1 โˆš ๏ธ2 = |๏ธ| = โˆ’๏ธ, so when we divide the radical by ๏ธ, with ๏ธ ๏€ผ 0, we get ๏ฐ 1 โˆš 2 1โˆš 2 ๏ธ + ๏ธ + 1 = โˆ’โˆš ๏ธ + ๏ธ + 1 = โˆ’ 1 + (1๏€ฝ๏ธ) + (1๏€ฝ๏ธ2 ). 2 ๏ธ ๏ธ 46. (a) (b) From the graph of โˆš โˆš ๏ฆ (๏ธ) = 3๏ธ2 + 8๏ธ + 6 โˆ’ 3๏ธ2 + 3๏ธ + 1, we estimate ๏ธ ๏ฆ (๏ธ) 10,000 1๏€บ443 39 100,000 1๏€บ443 38 1,000,000 1๏€บ443 38 From the table, we estimate (to four decimal places) the limit to be 1๏€บ4434. (to one decimal place) the value of lim ๏ฆ (๏ธ) to be 1๏€บ4. ๏ธโ†’โˆž c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 115 116 ยค CHAPTER 2 LIMITS AND DERIVATIVES โˆš โˆš ๏‚กโˆš ๏‚ข๏‚กโˆš ๏‚ข 3๏ธ2 + 8๏ธ + 6 โˆ’ 3๏ธ2 + 3๏ธ + 1 3๏ธ2 + 8๏ธ + 6 + 3๏ธ2 + 3๏ธ + 1 โˆš โˆš ๏ธโ†’โˆž 3๏ธ2 + 8๏ธ + 6 + 3๏ธ2 + 3๏ธ + 1 ๏‚ก 2 ๏‚ข ๏‚ก 2 ๏‚ข 3๏ธ + 8๏ธ + 6 โˆ’ 3๏ธ + 3๏ธ + 1 (5๏ธ + 5)(1๏€ฝ๏ธ) โˆš โˆš ๏‚ข = lim โˆš = lim ๏‚กโˆš ๏ธโ†’โˆž ๏ธโ†’โˆž 3๏ธ2 + 8๏ธ + 6 + 3๏ธ2 + 3๏ธ + 1 3๏ธ2 + 8๏ธ + 6 + 3๏ธ2 + 3๏ธ + 1 (1๏€ฝ๏ธ) โˆš 5 5 5 3 5 + 5๏€ฝ๏ธ ๏ฐ โˆš = โˆš = = lim ๏ฐ โ‰ˆ 1๏€บ443376 = โˆš ๏ธโ†’โˆž 6 3+ 3 2 3 3 + 8๏€ฝ๏ธ + 6๏€ฝ๏ธ2 + 3 + 3๏€ฝ๏ธ + 1๏€ฝ๏ธ2 (c) lim ๏ฆ (๏ธ) = lim ๏ธโ†’โˆž 47. lim ๏ธโ†’ยฑโˆž 0+4 5 + 4๏ธ (5 + 4๏ธ)๏€ฝ๏ธ 5๏€ฝ๏ธ + 4 = lim = lim = = 4, so ๏ธโ†’ยฑโˆž (๏ธ + 3)๏€ฝ๏ธ ๏ธโ†’ยฑโˆž 1 + 3๏€ฝ๏ธ ๏ธ+3 1+0 ๏น = 4 is a horizontal asymptote. ๏น = ๏ฆ (๏ธ) = 5 + 4๏ธ , so lim ๏ฆ (๏ธ) = โˆ’โˆž ๏ธ+3 ๏ธโ†’โˆ’3+ since 5 + 4๏ธ โ†’ โˆ’7 and ๏ธ + 3 โ†’ 0+ as ๏ธ โ†’ โˆ’3+ . Thus, ๏ธ = โˆ’3 is a vertical asymptote. The graph con๏ฌrms our work. 48. lim 2๏ธ2 + 1 ๏ธโ†’ยฑโˆž 3๏ธ2 + 2๏ธ โˆ’ 1 (2๏ธ2 + 1)๏€ฝ๏ธ2 ๏ธโ†’ยฑโˆž (3๏ธ2 + 2๏ธ โˆ’ 1)๏€ฝ๏ธ2 = lim 2 + 1๏€ฝ๏ธ2 2 = ๏ธโ†’ยฑโˆž 3 + 2๏€ฝ๏ธ โˆ’ 1๏€ฝ๏ธ2 3 = lim so ๏น = 2๏ธ2 + 1 2๏ธ2 + 1 2 is a horizontal asymptote. ๏น = ๏ฆ (๏ธ) = 2 = . 3 3๏ธ + 2๏ธ โˆ’ 1 (3๏ธ โˆ’ 1)(๏ธ + 1) The denominator is zero when ๏ธ = 13 and โˆ’1, but the numerator is nonzero, so ๏ธ = 13 and ๏ธ = โˆ’1 are vertical asymptotes. The graph con๏ฌrms our work. ๏‚ต ๏‚ถ 1 1 1 1 2๏ธ2 + ๏ธ โˆ’ 1 2 + โˆ’ lim 2+ โˆ’ 2 ๏ธ ๏ธ2 2๏ธ2 + ๏ธ โˆ’ 1 ๏ธ2 ๏ธ ๏ธ = ๏ธโ†’ยฑโˆž ๏‚ต ๏‚ถ = lim 49. lim = lim 2 2 2 1 ๏ธโ†’ยฑโˆž ๏ธ + ๏ธ โˆ’ 2 ๏ธโ†’ยฑโˆž ๏ธ + ๏ธ โˆ’ 2 ๏ธโ†’ยฑโˆž 1 2 1+ โˆ’ 2 1+ โˆ’ 2 lim ๏ธ ๏ธ ๏ธโ†’ยฑโˆž ๏ธ ๏ธ ๏ธ2 1 1 lim 2 + lim โˆ’ lim 2+0โˆ’0 ๏ธโ†’ยฑโˆž ๏ธโ†’ยฑโˆž ๏ธ ๏ธโ†’ยฑโˆž ๏ธ2 = 2, so ๏น = 2 is a horizontal asymptote. = = 1 1 1 + 0 โˆ’ 2(0) โˆ’ 2 lim lim 1 + lim ๏ธโ†’ยฑโˆž ๏ธโ†’ยฑโˆž ๏ธ ๏ธโ†’ยฑโˆž ๏ธ2 ๏น = ๏ฆ (๏ธ) = (2๏ธ โˆ’ 1)(๏ธ + 1) 2๏ธ2 + ๏ธ โˆ’ 1 = , so lim ๏ฆ(๏ธ) = โˆž, ๏ธ2 + ๏ธ โˆ’ 2 (๏ธ + 2)(๏ธ โˆ’ 1) ๏ธโ†’โˆ’2โˆ’ lim ๏ฆ (๏ธ) = โˆ’โˆž, lim ๏ฆ (๏ธ) = โˆ’โˆž, and lim ๏ฆ (๏ธ) = โˆž. Thus, ๏ธ = โˆ’2 ๏ธโ†’1โˆ’ ๏ธโ†’โˆ’2+ ๏ธโ†’1+ and ๏ธ = 1 are vertical asymptotes. The graph con๏ฌrms our work. ๏‚ถ ๏‚ต 1 1 1 + ๏ธ4 1 + 1 lim lim + lim 1 +1 4 4 ๏ธโ†’ยฑโˆž 4 4 ๏ธ 1 + ๏ธ4 ๏ธโ†’ยฑโˆž ๏ธโ†’ยฑโˆž ๏ธ ๏ธ ๏‚ถ = ๏‚ต 50. lim = lim = lim ๏ธ = 2 4 2 4 1 ๏ธโ†’ยฑโˆž ๏ธ โˆ’ ๏ธ ๏ธโ†’ยฑโˆž ๏ธ โˆ’ ๏ธ ๏ธโ†’ยฑโˆž 1 1 โˆ’1 lim โˆ’ lim 1 lim โˆ’1 ๏ธโ†’ยฑโˆž ๏ธ2 ๏ธโ†’ยฑโˆž ๏ธ2 ๏ธโ†’ยฑโˆž ๏ธ2 ๏ธ4 = 0+1 = โˆ’1, so ๏น = โˆ’1 is a horizontal asymptote. 0โˆ’1 c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.6 ๏น = ๏ฆ (๏ธ) = LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES 1 + ๏ธ4 1 + ๏ธ4 1 + ๏ธ4 = . The denominator is = ๏ธ2 โˆ’ ๏ธ4 ๏ธ2 (1 โˆ’ ๏ธ2 ) ๏ธ2 (1 + ๏ธ)(1 โˆ’ ๏ธ) zero when ๏ธ = 0, โˆ’1, and 1, but the numerator is nonzero, so ๏ธ = 0, ๏ธ = โˆ’1, and ๏ธ = 1 are vertical asymptotes. Notice that as ๏ธ โ†’ 0, the numerator and denominator are both positive, so lim ๏ฆ (๏ธ) = โˆž. The graph con๏ฌrms our work. ๏ธโ†’0 51. ๏น = ๏ฆ (๏ธ) = ๏ธ(๏ธ2 โˆ’ 1) ๏ธ(๏ธ + 1)(๏ธ โˆ’ 1) ๏ธ(๏ธ + 1) ๏ธ3 โˆ’ ๏ธ = = = = ๏ง(๏ธ) for ๏ธ 6= 1. ๏ธ2 โˆ’ 6๏ธ + 5 (๏ธ โˆ’ 1)(๏ธ โˆ’ 5) (๏ธ โˆ’ 1)(๏ธ โˆ’ 5) ๏ธโˆ’5 The graph of ๏ง is the same as the graph of ๏ฆ with the exception of a hole in the graph of ๏ฆ at ๏ธ = 1. By long division, ๏ง(๏ธ) = ๏ธ2 + ๏ธ 30 =๏ธ+6+ . ๏ธโˆ’5 ๏ธโˆ’5 As ๏ธ โ†’ ยฑโˆž, ๏ง(๏ธ) โ†’ ยฑโˆž, so there is no horizontal asymptote. The denominator of ๏ง is zero when ๏ธ = 5. lim ๏ง(๏ธ) = โˆ’โˆž and lim ๏ง(๏ธ) = โˆž, so ๏ธ = 5 is a ๏ธโ†’5โˆ’ ๏ธโ†’5+ vertical asymptote. The graph con๏ฌrms our work. 52. lim 2๏ฅ๏ธ ๏ธโ†’โˆž ๏ฅ๏ธ โˆ’ 5 = lim 2๏ฅ๏ธ ๏ธโ†’โˆž ๏ฅ๏ธ โˆ’ 5 2๏ฅ๏ธ ยท 1๏€ฝ๏ฅ๏ธ 2 2 = = 2, so ๏น = 2 is a horizontal asymptote. = lim ๏ธโ†’โˆž 1 โˆ’ (5๏€ฝ๏ฅ๏ธ ) 1๏€ฝ๏ฅ๏ธ 1โˆ’0 2(0) = 0, so ๏น = 0 is a horizontal asymptote. The denominator is zero (and the numerator isnโ€™t) 0โˆ’5 when ๏ฅ๏ธ โˆ’ 5 = 0 โ‡’ ๏ฅ๏ธ = 5 โ‡’ ๏ธ = ln 5. lim ๏ธโ†’โˆ’โˆž ๏ฅ๏ธ โˆ’ 5 lim ๏ธโ†’(ln 5)+ = 2๏ฅ๏ธ = โˆž since the numerator approaches 10 and the denominator ๏ฅ๏ธ โˆ’ 5 approaches 0 through positive values as ๏ธ โ†’ (ln 5)+ . Similarly, 2๏ฅ๏ธ = โˆ’โˆž. Thus, ๏ธ = ln 5 is a vertical asymptote. The graph ๏ธ ๏ธโ†’(ln 5)โˆ’ ๏ฅ โˆ’ 5 lim con๏ฌrms our work. 53. From the graph, it appears ๏น = 1 is a horizontal asymptote. 3๏ธ3 + 500๏ธ2 3๏ธ3 + 500๏ธ2 ๏ธ3 = lim lim ๏ธโ†’ยฑโˆž ๏ธ3 + 500๏ธ2 + 100๏ธ + 2000 ๏ธโ†’ยฑโˆž ๏ธ3 + 500๏ธ2 + 100๏ธ + 2000 ๏ธ3 = lim 3 + (500๏€ฝ๏ธ) ๏ธโ†’ยฑโˆž 1 + (500๏€ฝ๏ธ) + (100๏€ฝ๏ธ2 ) + (2000๏€ฝ๏ธ3 ) = 3+0 = 3, so ๏น = 3 is a horizontal asymptote. 1+0+0+0 The discrepancy can be explained by the choice of the viewing window. Try [โˆ’100,000๏€ป 100,000] by [โˆ’1๏€ป 4] to get a graph that lends credibility to our calculation that ๏น = 3 is a horizontal asymptote. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยค 117 118 ยค CHAPTER 2 LIMITS AND DERIVATIVES 54. (a) From the graph, it appears at ๏ฌrst that there is only one horizontal asymptote, at ๏น โ‰ˆ 0๏€ป and a vertical asymptote at ๏ธ โ‰ˆ 1๏€บ7. However, if we graph the function with a wider and shorter viewing rectangle, we see that in fact there seem to be two horizontal asymptotes: one at ๏น โ‰ˆ 0๏€บ5 and one at ๏น โ‰ˆ โˆ’0๏€บ5. So we estimate that โˆš 2๏ธ2 + 1 โ‰ˆ 0๏€บ5 ๏ธโ†’โˆž 3๏ธ โˆ’ 5 โˆš 2๏ธ2 + 1 โ‰ˆ โˆ’0๏€บ5 ๏ธโ†’โˆ’โˆž 3๏ธ โˆ’ 5 โˆš 2๏ธ2 + 1 โ‰ˆ 0๏€บ47. (b) ๏ฆ (1000) โ‰ˆ 0๏€บ4722 and ๏ฆ(10,000) โ‰ˆ 0๏€บ4715, so we estimate that lim ๏ธโ†’โˆž 3๏ธ โˆ’ 5 โˆš 2๏ธ2 + 1 ๏ฆ (โˆ’1000) โ‰ˆ โˆ’0๏€บ4706 and ๏ฆ(โˆ’10,000) โ‰ˆ โˆ’0๏€บ4713, so we estimate that lim โ‰ˆ โˆ’0๏€บ47. ๏ธโ†’โˆ’โˆž 3๏ธ โˆ’ 5 lim and lim ๏ฐ โˆš โˆš โˆš 2 + 1๏€ฝ๏ธ2 2๏ธ2 + 1 2 2 (c) lim = lim [since ๏ธ = ๏ธ for ๏ธ ๏€พ 0] = โ‰ˆ 0๏€บ471404. ๏ธโ†’โˆž 3๏ธ โˆ’ 5 ๏ธโ†’โˆž 3 โˆ’ 5๏€ฝ๏ธ 3 โˆš For ๏ธ ๏€ผ 0, we have ๏ธ2 = |๏ธ| = โˆ’๏ธ, so when we divide the numerator by ๏ธ, with ๏ธ ๏€ผ 0, we ๏ฐ 1 โˆš 2 1โˆš 2 2๏ธ + 1 = โˆ’ โˆš 2๏ธ + 1 = โˆ’ 2 + 1๏€ฝ๏ธ2 . Therefore, 2 ๏ธ ๏ธ ๏ฐ โˆš โˆš โˆ’ 2 + 1๏€ฝ๏ธ2 2๏ธ2 + 1 2 lim = lim =โˆ’ โ‰ˆ โˆ’0๏€บ471404. ๏ธโ†’โˆ’โˆž 3๏ธ โˆ’ 5 ๏ธโ†’โˆ’โˆž 3 โˆ’ 5๏€ฝ๏ธ 3 get 55. Divide the numerator and the denominator by the highest power of ๏ธ in ๏‘(๏ธ). (a) If deg ๏ ๏€ผ deg ๏‘, then the numerator โ†’ 0 but the denominator doesnโ€™t. So lim [๏ (๏ธ)๏€ฝ๏‘(๏ธ)] = 0. ๏ธโ†’โˆž (b) If deg ๏ ๏€พ deg ๏‘, then the numerator โ†’ ยฑโˆž but the denominator doesnโ€™t, so lim [๏ (๏ธ)๏€ฝ๏‘(๏ธ)] = ยฑโˆž ๏ธโ†’โˆž (depending on the ratio of the leading coef๏ฌcients of ๏ and ๏‘). 56. (i) ๏ฎ = 0 (ii) ๏ฎ ๏€พ 0 (๏ฎ odd) (iii) ๏ฎ ๏€พ 0 (๏ฎ even) From these sketches we see that ๏€ธ 1 if ๏ฎ = 0 ๏€พ ๏€ผ ๏ฎ (a) lim ๏ธ = 0 if ๏ฎ ๏€พ 0 ๏€พ ๏ธโ†’0+ ๏€บ โˆž if ๏ฎ ๏€ผ 0 (b) lim ๏ธ๏ฎ = ๏ธโ†’0โˆ’ (iv) ๏ฎ ๏€ผ 0 (๏ฎ odd) ๏€ธ ๏€พ ๏€พ ๏€พ ๏€พ ๏€ผ (v) ๏ฎ ๏€ผ 0 (๏ฎ even) 1 if ๏ฎ = 0 0 if ๏ฎ ๏€พ 0 ๏€พ โˆ’โˆž if ๏ฎ ๏€ผ 0, ๏ฎ odd ๏€พ ๏€พ ๏€พ ๏€บ โˆž if ๏ฎ ๏€ผ 0, ๏ฎ even c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.6 ๏€ธ 1 if ๏ฎ = 0 ๏€พ ๏€ผ (c) lim ๏ธ๏ฎ = โˆž if ๏ฎ ๏€พ 0 ๏ธโ†’โˆž ๏€พ ๏€บ 0 if ๏ฎ ๏€ผ 0 (d) lim ๏ธ๏ฎ = ๏ธโ†’โˆ’โˆž 57. Letโ€™s look for a rational function. (1) LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES ยค 119 ๏€ธ 1 if ๏ฎ = 0 ๏€พ ๏€พ ๏€พ ๏€พ ๏€ผโˆ’โˆž if ๏ฎ ๏€พ 0, ๏ฎ odd ๏€พ โˆž if ๏ฎ ๏€พ 0, ๏ฎ even ๏€พ ๏€พ ๏€พ ๏€บ 0 if ๏ฎ ๏€ผ 0 lim ๏ฆ(๏ธ) = 0 โ‡’ degree of numerator ๏€ผ degree of denominator ๏ธโ†’ยฑโˆž (2) lim ๏ฆ (๏ธ) = โˆ’โˆž โ‡’ there is a factor of ๏ธ2 in the denominator (not just ๏ธ, since that would produce a sign ๏ธโ†’0 change at ๏ธ = 0), and the function is negative near ๏ธ = 0. (3) lim ๏ฆ (๏ธ) = โˆž and lim ๏ฆ(๏ธ) = โˆ’โˆž โ‡’ vertical asymptote at ๏ธ = 3; there is a factor of (๏ธ โˆ’ 3) in the ๏ธโ†’3โˆ’ ๏ธโ†’3+ denominator. (4) ๏ฆ (2) = 0 โ‡’ 2 is an ๏ธ-intercept; there is at least one factor of (๏ธ โˆ’ 2) in the numerator. Combining all of this information and putting in a negative sign to give us the desired left- and right-hand limits gives us ๏ฆ (๏ธ) = 2โˆ’๏ธ as one possibility. ๏ธ2 (๏ธ โˆ’ 3) 58. Since the function has vertical asymptotes ๏ธ = 1 and ๏ธ = 3, the denominator of the rational function we are looking for must have factors (๏ธ โˆ’ 1) and (๏ธ โˆ’ 3). Because the horizontal asymptote is ๏น = 1, the degree of the numerator must equal the degree of the denominator, and the ratio of the leading coef๏ฌcients must be 1. One possibility is ๏ฆ (๏ธ) = ๏ธ2 . (๏ธ โˆ’ 1)(๏ธ โˆ’ 3) 59. (a) We must ๏ฌrst ๏ฌnd the function ๏ฆ . Since ๏ฆ has a vertical asymptote ๏ธ = 4 and ๏ธ-intercept ๏ธ = 1, ๏ธ โˆ’ 4 is a factor of the denominator and ๏ธ โˆ’ 1 is a factor of the numerator. There is a removable discontinuity at ๏ธ = โˆ’1, so ๏ธ โˆ’ (โˆ’1) = ๏ธ + 1 is a factor of both the numerator and denominator. Thus, ๏ฆ now looks like this: ๏ฆ (๏ธ) = be determined. Then lim ๏ฆ (๏ธ) = lim ๏ธโ†’โˆ’1 ๏ก = 5. Thus ๏ฆ (๏ธ) = ๏ฆ (0) = ๏ก(โˆ’1 โˆ’ 1) 2 2 ๏ก(๏ธ โˆ’ 1)(๏ธ + 1) ๏ก(๏ธ โˆ’ 1) = lim = = ๏ก, so ๏ก = 2, and ๏ธโ†’โˆ’1 ๏ธ โˆ’ 4 (๏ธ โˆ’ 4)(๏ธ + 1) (โˆ’1 โˆ’ 4) 5 5 5(๏ธ โˆ’ 1)(๏ธ + 1) is a ratio of quadratic functions satisfying all the given conditions and (๏ธ โˆ’ 4)(๏ธ + 1) 5(โˆ’1)(1) 5 = . (โˆ’4)(1) 4 (b) lim ๏ฆ (๏ธ) = 5 lim ๏ธโ†’โˆž ๏ธโ†’โˆ’1 ๏ก(๏ธ โˆ’ 1)(๏ธ + 1) , where ๏ก is still to (๏ธ โˆ’ 4)(๏ธ + 1) ๏ธ2 โˆ’ 1 ๏ธโ†’โˆž ๏ธ2 โˆ’ 3๏ธ โˆ’ 4 60. ๏น = ๏ฆ (๏ธ) = 2๏ธ3 โˆ’ ๏ธ4 = ๏ธ3 (2 โˆ’ ๏ธ). = 5 lim (๏ธ2 ๏€ฝ๏ธ2 ) โˆ’ (1๏€ฝ๏ธ2 ) ๏ธโ†’โˆž (๏ธ2 ๏€ฝ๏ธ2 ) โˆ’ (3๏ธ๏€ฝ๏ธ2 ) โˆ’ (4๏€ฝ๏ธ2 ) =5 1โˆ’0 = 5(1) = 5 1โˆ’0โˆ’0 The ๏น-intercept is ๏ฆ(0) = 0. The ๏ธ-intercepts are 0 and 2. There are sign changes at 0 and 2 (odd exponents on ๏ธ and 2 โˆ’ ๏ธ). As ๏ธ โ†’ โˆž, ๏ฆ (๏ธ) โ†’ โˆ’โˆž because ๏ธ3 โ†’ โˆž and 2 โˆ’ ๏ธ โ†’ โˆ’โˆž. As ๏ธ โ†’ โˆ’โˆž, ๏ฆ (๏ธ) โ†’ โˆ’โˆž because ๏ธ3 โ†’ โˆ’โˆž and 2 โˆ’ ๏ธ โ†’ โˆž. Note that the graph of ๏ฆ near ๏ธ = 0 ๏ฌ‚attens out (looks like ๏น = ๏ธ3 ). c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 120 ยค CHAPTER 2 LIMITS AND DERIVATIVES 61. ๏น = ๏ฆ (๏ธ) = ๏ธ4 โˆ’ ๏ธ6 = ๏ธ4 (1 โˆ’ ๏ธ2 ) = ๏ธ4 (1 + ๏ธ)(1 โˆ’ ๏ธ). The ๏น-intercept is ๏ฆ (0) = 0. The ๏ธ-intercepts are 0, โˆ’1, and 1 [found by solving ๏ฆ (๏ธ) = 0 for ๏ธ]. Since ๏ธ4 ๏€พ 0 for ๏ธ 6= 0, ๏ฆ doesnโ€™t change sign at ๏ธ = 0. The function does change sign at ๏ธ = โˆ’1 and ๏ธ = 1. As ๏ธ โ†’ ยฑโˆž, ๏ฆ (๏ธ) = ๏ธ4 (1 โˆ’ ๏ธ2 ) approaches โˆ’โˆž because ๏ธ4 โ†’ โˆž and (1 โˆ’ ๏ธ2 ) โ†’ โˆ’โˆž. 62. ๏น = ๏ฆ (๏ธ) = ๏ธ3 (๏ธ + 2)2 (๏ธ โˆ’ 1). The ๏น-intercept is ๏ฆ (0) = 0. The ๏ธ-intercepts are 0, โˆ’2, and 1. There are sign changes at 0 and 1 (odd exponents on ๏ธ and ๏ธ โˆ’ 1). There is no sign change at โˆ’2. Also, ๏ฆ (๏ธ) โ†’ โˆž as ๏ธ โ†’ โˆž because all three factors are large. And ๏ฆ (๏ธ) โ†’ โˆž as ๏ธ โ†’ โˆ’โˆž because ๏ธ3 โ†’ โˆ’โˆž, (๏ธ + 2)2 โ†’ โˆž, and (๏ธ โˆ’ 1) โ†’ โˆ’โˆž. Note that the graph of ๏ฆ at ๏ธ = 0 ๏ฌ‚attens out (looks like ๏น = โˆ’๏ธ3 ). 63. ๏น = ๏ฆ (๏ธ) = (3 โˆ’ ๏ธ)(1 + ๏ธ)2 (1 โˆ’ ๏ธ)4 . The ๏น-intercept is ๏ฆ (0) = 3(1)2 (1)4 = 3. The ๏ธ-intercepts are 3, โˆ’1, and 1. There is a sign change at 3, but not at โˆ’1 and 1. When ๏ธ is large positive, 3 โˆ’ ๏ธ is negative and the other factors are positive, so lim ๏ฆ (๏ธ) = โˆ’โˆž. When ๏ธ is large negative, 3 โˆ’ ๏ธ is positive, so ๏ธโ†’โˆž lim ๏ฆ(๏ธ) = โˆž. ๏ธโ†’โˆ’โˆž 64. ๏น = ๏ฆ (๏ธ) = ๏ธ2 (๏ธ2 โˆ’ 1)2 (๏ธ + 2) = ๏ธ2 (๏ธ + 1)2 (๏ธ โˆ’ 1)2 (๏ธ + 2). The ๏น-intercept is ๏ฆ (0) = 0. The ๏ธ-intercepts are 0, โˆ’1, 1๏€ป and โˆ’2. There is a sign change at โˆ’2, but not at 0, โˆ’1, and 1. When ๏ธ is large positive, all the factors are positive, so lim ๏ฆ (๏ธ) = โˆž. When ๏ธ is large negative, only ๏ธ + 2 is negative, so ๏ธโ†’โˆž lim ๏ฆ(๏ธ) = โˆ’โˆž. ๏ธโ†’โˆ’โˆž sin ๏ธ 1 1 โ‰ค โ‰ค for ๏ธ ๏€พ 0. As ๏ธ โ†’ โˆž, โˆ’1๏€ฝ๏ธ โ†’ 0 and 1๏€ฝ๏ธ โ†’ 0, so by the Squeeze ๏ธ ๏ธ ๏ธ sin ๏ธ Theorem, (sin ๏ธ)๏€ฝ๏ธ โ†’ 0. Thus, lim = 0. ๏ธโ†’โˆž ๏ธ 65. (a) Since โˆ’1 โ‰ค sin ๏ธ โ‰ค 1 for all ๏ธ๏€ป โˆ’ (b) From part (a), the horizontal asymptote is ๏น = 0. The function ๏น = (sin ๏ธ)๏€ฝ๏ธ crosses the horizontal asymptote whenever sin ๏ธ = 0; that is, at ๏ธ = ๏‚ผ๏ฎ for every integer ๏ฎ. Thus, the graph crosses the asymptote an infinite number of times. 66. (a) In both viewing rectangles, lim ๏ (๏ธ) = lim ๏‘(๏ธ) = โˆž and ๏ธโ†’โˆž ๏ธโ†’โˆž lim ๏ (๏ธ) = lim ๏‘(๏ธ) = โˆ’โˆž. ๏ธโ†’โˆ’โˆž ๏ธโ†’โˆ’โˆž In the larger viewing rectangle, ๏ and ๏‘ become less distinguishable. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.6 LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES ยค 121 ๏‚ต ๏‚ถ 5 1 2 1 ๏ (๏ธ) 3๏ธ5 โˆ’ 5๏ธ3 + 2๏ธ 1 โˆ’ = 1 โˆ’ 53 (0) + 23 (0) = 1 โ‡’ = lim ยท ยท (b) lim = lim + ๏ธโ†’โˆž ๏‘(๏ธ) ๏ธโ†’โˆž ๏ธโ†’โˆž 3๏ธ5 3 ๏ธ2 3 ๏ธ4 ๏ and ๏‘ have the same end behavior. โˆš โˆš 1๏€ฝ ๏ธ 5 5 ๏ธ 5 ยท โˆš = lim ๏ฐ = 5 and = โˆš ๏ธโ†’โˆž ๏ธ โˆ’ 1 1๏€ฝ ๏ธ 1โˆ’0 1 โˆ’ (1๏€ฝ๏ธ) 67. lim โˆš ๏ธโ†’โˆž โˆš 10 โˆ’ 0 10๏ฅ๏ธ โˆ’ 21 5 ๏ธ 10๏ฅ๏ธ โˆ’ 21 1๏€ฝ๏ฅ๏ธ 10 โˆ’ (21๏€ฝ๏ฅ๏ธ ) โˆš lim , = = 5. Since ยท = lim ๏€ผ ๏ฆ (๏ธ) ๏€ผ ๏ธโ†’โˆž ๏ธโ†’โˆž 2๏ฅ๏ธ 1๏€ฝ๏ฅ๏ธ 2 2 2๏ฅ๏ธ ๏ธโˆ’1 we have lim ๏ฆ(๏ธ) = 5 by the Squeeze Theorem. ๏ธโ†’โˆž 68. (a) After ๏ด minutes, 25๏ด liters of brine with 30 g of salt per liter has been pumped into the tank, so it contains (5000 + 25๏ด) liters of water and 25๏ด ยท 30 = 750๏ด grams of salt. Therefore, the salt concentration at time ๏ด will be ๏ƒ(๏ด) = 750๏ด 30๏ด g = . 5000 + 25๏ด 200 + ๏ด L (b) lim ๏ƒ(๏ด) = lim 30๏ด ๏ดโ†’โˆž 200 + ๏ด ๏ดโ†’โˆž = lim 30๏ด๏€ฝ๏ด ๏ดโ†’โˆž 200๏€ฝ๏ด + ๏ด๏€ฝ๏ด = 30 = 30. So the salt concentration approaches that of the brine 0+1 being pumped into the tank. ๏‚ณ ๏‚ด โˆ— = ๏ถ โˆ— (1 โˆ’ 0) = ๏ถ โˆ— 69. (a) lim ๏ถ(๏ด) = lim ๏ถ โˆ— 1 โˆ’ ๏ฅโˆ’๏ง๏ด๏€ฝ๏ถ ๏ดโ†’โˆž ๏ดโ†’โˆž (b) We graph ๏ถ(๏ด) = 1 โˆ’ ๏ฅโˆ’9๏€บ8๏ด and ๏ถ(๏ด) = 0๏€บ99๏ถ โˆ— , or in this case, ๏ถ(๏ด) = 0๏€บ99. Using an intersect feature or zooming in on the point of intersection, we ๏ฌnd that ๏ด โ‰ˆ 0๏€บ47 s. 70. (a) ๏น = ๏ฅโˆ’๏ธ๏€ฝ10 and ๏น = 0๏€บ1 intersect at ๏ธ1 โ‰ˆ 23๏€บ03. If ๏ธ ๏€พ ๏ธ1 , then ๏ฅโˆ’๏ธ๏€ฝ10 ๏€ผ 0๏€บ1. (b) ๏ฅโˆ’๏ธ๏€ฝ10 ๏€ผ 0๏€บ1 โ‡’ โˆ’๏ธ๏€ฝ10 ๏€ผ ln 0๏€บ1 โ‡’ 1 = โˆ’10 ln 10โˆ’1 = 10 ln 10 โ‰ˆ 23๏€บ03 ๏ธ ๏€พ โˆ’10 ln 10 71. Let ๏ง(๏ธ) = 3๏ธ2 + 1 and ๏ฆ (๏ธ) = |๏ง(๏ธ) โˆ’ 1๏€บ5|. Note that 2๏ธ2 + ๏ธ + 1 lim ๏ง(๏ธ) = 32 and lim ๏ฆ(๏ธ) = 0. We are interested in ๏ฌnding the ๏ธโ†’โˆž ๏ธโ†’โˆž ๏ธ-value at which ๏ฆ (๏ธ) ๏€ผ 0๏€บ05. From the graph, we ๏ฌnd that ๏ธ โ‰ˆ 14๏€บ804, so we choose ๏Ž = 15 (or any larger number). 72. We want to ๏ฌnd a value of ๏Ž such that ๏ธ ๏€พ ๏Ž ๏‚ฏ ๏‚ฏ ๏‚ฏ ๏‚ฏ 1 โˆ’ 3๏ธ โˆ’ (โˆ’3)๏‚ฏ๏‚ฏ ๏€ผ ๏€ข, or equivalently, โ‡’ ๏‚ฏ๏‚ฏ โˆš 2 ๏ธ +1 1 โˆ’ 3๏ธ 1 โˆ’ 3๏ธ โˆ’3 โˆ’ ๏€ข ๏€ผ โˆš ๏€ผ โˆ’3 + ๏€ข. When ๏€ข = 0๏€บ1, we graph ๏น = ๏ฆ (๏ธ) = โˆš , ๏น = โˆ’3๏€บ1, and ๏น = โˆ’2๏€บ9. From the graph, 2 ๏ธ +1 ๏ธ2 + 1 c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 122 ยค CHAPTER 2 LIMITS AND DERIVATIVES we ๏ฌnd that ๏ฆ(๏ธ) = โˆ’2๏€บ9 at about ๏ธ = 11๏€บ283, so we choose ๏Ž = 12 (or any larger number). Similarly for ๏€ข = 0๏€บ05, we ๏ฌnd that ๏ฆ(๏ธ) = โˆ’2๏€บ95 at about ๏ธ = 21๏€บ379, so we choose ๏Ž = 22 (or any larger number). ๏‚ฏ ๏‚ฏ 1 โˆ’ 3๏ธ ๏‚ฏ ๏‚ฏ 1 โˆ’ 3๏ธ โˆ’ 3๏‚ฏ๏‚ฏ ๏€ผ ๏€ข, or equivalently, 3 โˆ’ ๏€ข ๏€ผ โˆš ๏€ผ 3 + ๏€ข. When ๏€ข = 0๏€บ1, ๏ธ2 + 1 ๏ธ2 + 1 73. We want a value of ๏Ž such that ๏ธ ๏€ผ ๏Ž โ‡’ ๏‚ฏ๏‚ฏ โˆš 1 โˆ’ 3๏ธ we graph ๏น = ๏ฆ (๏ธ) = โˆš , ๏น = 3๏€บ1, and ๏น = 2๏€บ9. From the graph, we ๏ฌnd that ๏ฆ (๏ธ) = 3๏€บ1 at about ๏ธ = โˆ’8๏€บ092, so we ๏ธ2 + 1 choose ๏Ž = โˆ’9 (or any lesser number). Similarly for ๏€ข = 0๏€บ05, we ๏ฌnd that ๏ฆ (๏ธ) = 3๏€บ05 at about ๏ธ = โˆ’18๏€บ338, so we choose ๏Ž = โˆ’19 (or any lesser number). 74. We want to ๏ฌnd a value of ๏Ž such that ๏ธ ๏€พ ๏Ž We graph ๏น = ๏ฆ (๏ธ) = โ‡’ โˆš ๏ธ ln ๏ธ ๏€พ 100. โˆš ๏ธ ln ๏ธ and ๏น = 100. From the graph, we ๏ฌnd that ๏ฆ(๏ธ) = 100 at about ๏ธ = 1382๏€บ773, so we choose ๏Ž = 1383 (or any larger number). 75. (a) 1๏€ฝ๏ธ2 ๏€ผ 0๏€บ0001 โ‡” ๏ธ2 ๏€พ 1๏€ฝ0๏€บ0001 = 10 000 โ‡” ๏ธ ๏€พ 100 (๏ธ ๏€พ 0) โˆš โˆš (b) If ๏€ข ๏€พ 0 is given, then 1๏€ฝ๏ธ2 ๏€ผ ๏€ข โ‡” ๏ธ2 ๏€พ 1๏€ฝ๏€ข โ‡” ๏ธ ๏€พ 1๏€ฝ ๏€ข. Let ๏Ž = 1๏€ฝ ๏€ข. ๏‚ฏ ๏‚ฏ ๏‚ฏ1 ๏‚ฏ 1 1 1 โ‡’ ๏‚ฏ๏‚ฏ 2 โˆ’ 0๏‚ฏ๏‚ฏ = 2 ๏€ผ ๏€ข, so lim 2 = 0. Then ๏ธ ๏€พ ๏Ž โ‡’ ๏ธ ๏€พ โˆš ๏ธโ†’โˆž ๏ธ ๏ธ ๏ธ ๏€ข โˆš โˆš 76. (a) 1๏€ฝ ๏ธ ๏€ผ 0๏€บ0001 โ‡” ๏ธ ๏€พ 1๏€ฝ0๏€บ0001 = 104 โ‡” ๏ธ ๏€พ 108 โˆš โˆš (b) If ๏€ข ๏€พ 0 is given, then 1๏€ฝ ๏ธ ๏€ผ ๏€ข โ‡” ๏ธ ๏€พ 1๏€ฝ๏€ข โ‡” ๏ธ ๏€พ 1๏€ฝ๏€ข2 . Let ๏Ž = 1๏€ฝ๏€ข2 . ๏‚ฏ ๏‚ฏ ๏‚ฏ ๏‚ฏ 1 1 1 1 Then ๏ธ ๏€พ ๏Ž โ‡’ ๏ธ ๏€พ 2 โ‡’ ๏‚ฏ๏‚ฏ โˆš โˆ’ 0๏‚ฏ๏‚ฏ = โˆš ๏€ผ ๏€ข, so lim โˆš = 0. ๏ธโ†’โˆž ๏€ข ๏ธ ๏ธ ๏ธ 77. For ๏ธ ๏€ผ 0, |1๏€ฝ๏ธ โˆ’ 0| = โˆ’1๏€ฝ๏ธ. If ๏€ข ๏€พ 0 is given, then โˆ’1๏€ฝ๏ธ ๏€ผ ๏€ข Take ๏Ž = โˆ’1๏€ฝ๏€ข. Then ๏ธ ๏€ผ ๏Ž โ‡’ ๏ธ ๏€ผ โˆ’1๏€ฝ๏€ข โ‡’ |(1๏€ฝ๏ธ) โˆ’ 0| = โˆ’1๏€ฝ๏ธ ๏€ผ ๏€ข, so lim (1๏€ฝ๏ธ) = 0. ๏ธโ†’โˆ’โˆž 78. Given ๏ ๏€พ 0, we need ๏Ž ๏€พ 0 such that ๏ธ ๏€พ ๏Ž โˆš ๏ธ๏€พ๏Ž = 3๏ โ‡” ๏ธ ๏€ผ โˆ’1๏€ฝ๏€ข. โ‡’ ๏ธ3 ๏€พ ๏. Now ๏ธ3 ๏€พ ๏ โˆš โˆš โ‡” ๏ธ ๏€พ 3 ๏, so take ๏Ž = 3 ๏. Then โ‡’ ๏ธ3 ๏€พ ๏, so lim ๏ธ3 = โˆž. ๏ธโ†’โˆž c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.7 79. Given ๏ ๏€พ 0, we need ๏Ž ๏€พ 0 such that ๏ธ ๏€พ ๏Ž DERIVATIVES AND RATES OF CHANGE โ‡’ ๏ฅ๏ธ ๏€พ ๏. Now ๏ฅ๏ธ ๏€พ ๏ ยค 123 โ‡” ๏ธ ๏€พ ln ๏, so take ๏Ž = max(1๏€ป ln ๏). (This ensures that ๏Ž ๏€พ 0.) Then ๏ธ ๏€พ ๏Ž = max(1๏€ป ln ๏) โ‡’ ๏ฅ๏ธ ๏€พ max(๏ฅ๏€ป ๏) โ‰ฅ ๏, so lim ๏ฅ๏ธ = โˆž. ๏ธโ†’โˆž 80. De๏ฌnition Let ๏ฆ be a function de๏ฌned on some interval (โˆ’โˆž๏€ป ๏ก). Then lim ๏ฆ(๏ธ) = โˆ’โˆž means that for every negative ๏ธโ†’โˆ’โˆž number ๏ there is a corresponding negative number ๏Ž such that ๏ฆ (๏ธ) ๏€ผ ๏ whenever ๏ธ ๏€ผ ๏Ž. Now we use the de๏ฌnition to ๏‚ก ๏‚ข prove that lim 1 + ๏ธ3 = โˆ’โˆž. Given a negative number ๏, we need a negative number ๏Ž such that ๏ธ ๏€ผ ๏Ž โ‡’ ๏ธโ†’โˆ’โˆž โˆš โˆš โ‡” ๏ธ3 ๏€ผ ๏ โˆ’ 1 โ‡” ๏ธ ๏€ผ 3 ๏ โˆ’ 1. Thus, we take ๏Ž = 3 ๏ โˆ’ 1 and ๏ฌnd that ๏‚ก ๏‚ข โ‡’ 1 + ๏ธ3 ๏€ผ ๏. This proves that lim 1 + ๏ธ3 = โˆ’โˆž. 1 + ๏ธ3 ๏€ผ ๏. Now 1 + ๏ธ3 ๏€ผ ๏ ๏ธ๏€ผ๏Ž ๏ธโ†’โˆ’โˆž 81. (a) Suppose that lim ๏ฆ (๏ธ) = ๏Œ. Then for every ๏€ข ๏€พ 0 there is a corresponding positive number ๏Ž such that |๏ฆ (๏ธ) โˆ’ ๏Œ| ๏€ผ ๏€ข ๏ธโ†’โˆž whenever ๏ธ ๏€พ ๏Ž. If ๏ด = 1๏€ฝ๏ธ, then ๏ธ ๏€พ ๏Ž โ‡” 0 ๏€ผ 1๏€ฝ๏ธ ๏€ผ 1๏€ฝ๏Ž โ‡” 0 ๏€ผ ๏ด ๏€ผ 1๏€ฝ๏Ž. Thus, for every ๏€ข ๏€พ 0 there is a corresponding ๏‚ฑ ๏€พ 0 (namely 1๏€ฝ๏Ž) such that |๏ฆ (1๏€ฝ๏ด) โˆ’ ๏Œ| ๏€ผ ๏€ข whenever 0 ๏€ผ ๏ด ๏€ผ ๏‚ฑ. This proves that lim ๏ฆ(1๏€ฝ๏ด) = ๏Œ = lim ๏ฆ(๏ธ). ๏ธโ†’โˆž ๏ดโ†’0+ Now suppose that lim ๏ฆ(๏ธ) = ๏Œ. Then for every ๏€ข ๏€พ 0 there is a corresponding negative number ๏Ž such that ๏ธโ†’โˆ’โˆž |๏ฆ (๏ธ) โˆ’ ๏Œ| ๏€ผ ๏€ข whenever ๏ธ ๏€ผ ๏Ž. If ๏ด = 1๏€ฝ๏ธ, then ๏ธ ๏€ผ ๏Ž โ‡” 1๏€ฝ๏Ž ๏€ผ 1๏€ฝ๏ธ ๏€ผ 0 โ‡” 1๏€ฝ๏Ž ๏€ผ ๏ด ๏€ผ 0. Thus, for every ๏€ข ๏€พ 0 there is a corresponding ๏‚ฑ ๏€พ 0 (namely โˆ’1๏€ฝ๏Ž) such that |๏ฆ (1๏€ฝ๏ด) โˆ’ ๏Œ| ๏€ผ ๏€ข whenever โˆ’๏‚ฑ ๏€ผ ๏ด ๏€ผ 0. This proves that lim ๏ฆ (1๏€ฝ๏ด) = ๏Œ = lim ๏ฆ (๏ธ). ๏ธโ†’โˆ’โˆž ๏ดโ†’0โˆ’ (b) lim ๏ธ sin ๏ธโ†’0+ 1 1 = lim ๏ด sin ๏ธ ๏ดโ†’0+ ๏ด = lim 1 ๏นโ†’โˆž ๏น = lim ๏ธโ†’โˆž =0 sin ๏น sin ๏ธ ๏ธ [let ๏ธ = ๏ด] [part (a) with ๏น = 1๏€ฝ๏ด] [let ๏น = ๏ธ] [by Exercise 65] 2.7 Derivatives and Rates of Change 1. (a) This is just the slope of the line through two points: ๏ญ๏ ๏‘ = โˆ†๏น ๏ฆ (๏ธ) โˆ’ ๏ฆ (3) = . โˆ†๏ธ ๏ธโˆ’3 (b) This is the limit of the slope of the secant line ๏ ๏‘ as ๏‘ approaches ๏ : ๏ญ = lim ๏ธโ†’3 ๏ฆ(๏ธ) โˆ’ ๏ฆ (3) . ๏ธโˆ’3 2. The curve looks more like a line as the viewing rectangle gets smaller. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 124 ยค CHAPTER 2 LIMITS AND DERIVATIVES 3. (a) (i) Using De๏ฌnition 1 with ๏ฆ (๏ธ) = 4๏ธ โˆ’ ๏ธ2 and ๏ (1๏€ป 3), ๏ญ = lim ๏ธโ†’๏ก ๏ฆ (๏ธ) โˆ’ ๏ฆ (๏ก) (4๏ธ โˆ’ ๏ธ2 ) โˆ’ 3 โˆ’(๏ธ2 โˆ’ 4๏ธ + 3) โˆ’(๏ธ โˆ’ 1)(๏ธ โˆ’ 3) = lim = lim = lim ๏ธโ†’1 ๏ธโ†’1 ๏ธโ†’1 ๏ธโˆ’๏ก ๏ธโˆ’1 ๏ธโˆ’1 ๏ธโˆ’1 = lim (3 โˆ’ ๏ธ) = 3 โˆ’ 1 = 2 ๏ธโ†’1 (ii) Using Equation 2 with ๏ฆ (๏ธ) = 4๏ธ โˆ’ ๏ธ2 and ๏ (1๏€ป 3), ๏‚ฃ ๏‚ค 4(1 + ๏จ) โˆ’ (1 + ๏จ)2 โˆ’ 3 ๏ฆ (๏ก + ๏จ) โˆ’ ๏ฆ(๏ก) ๏ฆ (1 + ๏จ) โˆ’ ๏ฆ (1) = lim = lim ๏ญ = lim ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ 4 + 4๏จ โˆ’ 1 โˆ’ 2๏จ โˆ’ ๏จ2 โˆ’ 3 โˆ’๏จ2 + 2๏จ ๏จ(โˆ’๏จ + 2) = lim = lim = lim (โˆ’๏จ + 2) = 2 ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ = lim (b) An equation of the tangent line is ๏น โˆ’ ๏ฆ(๏ก) = ๏ฆ 0 (๏ก)(๏ธ โˆ’ ๏ก) โ‡’ ๏น โˆ’ ๏ฆ (1) = ๏ฆ 0 (1)(๏ธ โˆ’ 1) โ‡’ ๏น โˆ’ 3 = 2(๏ธ โˆ’ 1), or ๏น = 2๏ธ + 1. The graph of ๏น = 2๏ธ + 1 is tangent to the graph of ๏น = 4๏ธ โˆ’ ๏ธ2 at the (c) point (1๏€ป 3). Now zoom in toward the point (1๏€ป 3) until the parabola and the tangent line are indistiguishable. 4. (a) (i) Using De๏ฌnition 1 with ๏ฆ (๏ธ) = ๏ธ โˆ’ ๏ธ3 and ๏ (1๏€ป 0), ๏ฆ (๏ธ) โˆ’ 0 ๏ธ โˆ’ ๏ธ3 ๏ธ(1 โˆ’ ๏ธ2 ) ๏ธ(1 + ๏ธ)(1 โˆ’ ๏ธ) = lim = lim = lim ๏ธโ†’1 ๏ธ โˆ’ 1 ๏ธโ†’1 ๏ธ โˆ’ 1 ๏ธโ†’1 ๏ธโ†’1 ๏ธโˆ’1 ๏ธโˆ’1 ๏ญ = lim = lim [โˆ’๏ธ(1 + ๏ธ)] = โˆ’1(2) = โˆ’2 ๏ธโ†’1 (ii) Using Equation 2 with ๏ฆ (๏ธ) = ๏ธ โˆ’ ๏ธ3 and ๏ (1๏€ป 0), ๏‚ฃ ๏‚ค (1 + ๏จ) โˆ’ (1 + ๏จ)3 โˆ’ 0 ๏ฆ (๏ก + ๏จ) โˆ’ ๏ฆ (๏ก) ๏ฆ(1 + ๏จ) โˆ’ ๏ฆ(1) = lim = lim ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ ๏ญ = lim 1 + ๏จ โˆ’ (1 + 3๏จ + 3๏จ2 + ๏จ3 ) โˆ’๏จ3 โˆ’ 3๏จ2 โˆ’ 2๏จ ๏จ(โˆ’๏จ2 โˆ’ 3๏จ โˆ’ 2) = lim = lim ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ = lim = lim (โˆ’๏จ2 โˆ’ 3๏จ โˆ’ 2) = โˆ’2 ๏จโ†’0 (b) An equation of the tangent line is ๏น โˆ’ ๏ฆ (๏ก) = ๏ฆ 0 (๏ก)(๏ธ โˆ’ ๏ก) โ‡’ ๏น โˆ’ ๏ฆ (1) = ๏ฆ 0 (1)(๏ธ โˆ’ 1) โ‡’ ๏น โˆ’ 0 = โˆ’2(๏ธ โˆ’ 1), or ๏น = โˆ’2๏ธ + 2. (c) The graph of ๏น = โˆ’2๏ธ + 2 is tangent to the graph of ๏น = ๏ธ โˆ’ ๏ธ3 at the point (1๏€ป 0). Now zoom in toward the point (1๏€ป 0) until the cubic and the tangent line are indistinguishable. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.7 DERIVATIVES AND RATES OF CHANGE 5. Using (1) with ๏ฆ (๏ธ) = 4๏ธ โˆ’ 3๏ธ2 and ๏ (2๏€ป โˆ’4) [we could also use (2)], ๏‚ก ๏‚ข 4๏ธ โˆ’ 3๏ธ2 โˆ’ (โˆ’4) ๏ฆ (๏ธ) โˆ’ ๏ฆ (๏ก) โˆ’3๏ธ2 + 4๏ธ + 4 ๏ญ = lim = lim = lim ๏ธโ†’๏ก ๏ธโ†’2 ๏ธโ†’2 ๏ธโˆ’๏ก ๏ธโˆ’2 ๏ธโˆ’2 = lim ๏ธโ†’2 (โˆ’3๏ธ โˆ’ 2)(๏ธ โˆ’ 2) = lim (โˆ’3๏ธ โˆ’ 2) = โˆ’3(2) โˆ’ 2 = โˆ’8 ๏ธโ†’2 ๏ธโˆ’2 Tangent line: ๏น โˆ’ (โˆ’4) = โˆ’8(๏ธ โˆ’ 2) โ‡” ๏น + 4 = โˆ’8๏ธ + 16 โ‡” ๏น = โˆ’8๏ธ + 12. 6. Using (2) with ๏ฆ (๏ธ) = ๏ธ3 โˆ’ 3๏ธ + 1 and ๏ (2๏€ป 3), ๏ญ = lim ๏ฆ (๏ก + ๏จ) โˆ’ ๏ฆ (๏ก) ๏ฆ (2 + ๏จ) โˆ’ ๏ฆ (2) (2 + ๏จ)3 โˆ’ 3(2 + ๏จ) + 1 โˆ’ 3 = lim = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ = lim ๏จ(9 + 6๏จ + ๏จ2 ) 8 + 12๏จ + 6๏จ2 + ๏จ3 โˆ’ 6 โˆ’ 3๏จ โˆ’ 2 9๏จ + 6๏จ2 + ๏จ3 = lim = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ ๏จโ†’0 ๏จโ†’0 = lim (9 + 6๏จ + ๏จ2 ) = 9 ๏จโ†’0 Tangent line: ๏น โˆ’ 3 = 9(๏ธ โˆ’ 2) โ‡” ๏น โˆ’ 3 = 9๏ธ โˆ’ 18 โ‡” ๏น = 9๏ธ โˆ’ 15 โˆš โˆš โˆš โˆš 1 ๏ธโˆ’ 1 ( ๏ธ โˆ’ 1)( ๏ธ + 1) ๏ธโˆ’1 1 โˆš โˆš = lim = lim โˆš = . = lim ๏ธโ†’1 ๏ธโ†’1 (๏ธ โˆ’ 1)( ๏ธ + 1) ๏ธโ†’1 (๏ธ โˆ’ 1)( ๏ธ + 1) ๏ธโ†’1 ๏ธโˆ’1 2 ๏ธ+1 7. Using (1), ๏ญ = lim Tangent line: ๏น โˆ’ 1 = 12 (๏ธ โˆ’ 1) โ‡” 8. Using (1) with ๏ฆ (๏ธ) = ๏น = 12 ๏ธ + 12 2๏ธ + 1 and ๏ (1๏€ป 1), ๏ธ+2 2๏ธ + 1 2๏ธ + 1 โˆ’ (๏ธ + 2) โˆ’1 ๏ฆ (๏ธ) โˆ’ ๏ฆ (๏ก) ๏ธโˆ’1 ๏ธ + 2 ๏ธ+2 ๏ญ = lim = lim = lim = lim ๏ธโ†’๏ก ๏ธโ†’1 ๏ธโ†’1 ๏ธโ†’1 (๏ธ โˆ’ 1)(๏ธ + 2) ๏ธโˆ’๏ก ๏ธโˆ’1 ๏ธโˆ’1 = lim 1 ๏ธโ†’1 ๏ธ + 2 = 1 1 = 1+2 3 Tangent line: ๏น โˆ’ 1 = 13 (๏ธ โˆ’ 1) โ‡” ๏น โˆ’ 1 = 13 ๏ธ โˆ’ 13 โ‡” ๏น = 13 ๏ธ + 23 9. (a) Using (2) with ๏น = ๏ฆ (๏ธ) = 3 + 4๏ธ2 โˆ’ 2๏ธ3 , ๏ฆ (๏ก + ๏จ) โˆ’ ๏ฆ (๏ก) 3 + 4(๏ก + ๏จ)2 โˆ’ 2(๏ก + ๏จ)3 โˆ’ (3 + 4๏ก2 โˆ’ 2๏ก3 ) = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏ญ = lim 3 + 4(๏ก2 + 2๏ก๏จ + ๏จ2 ) โˆ’ 2(๏ก3 + 3๏ก2 ๏จ + 3๏ก๏จ2 + ๏จ3 ) โˆ’ 3 โˆ’ 4๏ก2 + 2๏ก3 ๏จโ†’0 ๏จ = lim 3 + 4๏ก2 + 8๏ก๏จ + 4๏จ2 โˆ’ 2๏ก3 โˆ’ 6๏ก2 ๏จ โˆ’ 6๏ก๏จ2 โˆ’ 2๏จ3 โˆ’ 3 โˆ’ 4๏ก2 + 2๏ก3 ๏จโ†’0 ๏จ = lim = lim ๏จโ†’0 8๏ก๏จ + 4๏จ2 โˆ’ 6๏ก2 ๏จ โˆ’ 6๏ก๏จ2 โˆ’ 2๏จ3 ๏จ(8๏ก + 4๏จ โˆ’ 6๏ก2 โˆ’ 6๏ก๏จ โˆ’ 2๏จ2 ) = lim ๏จโ†’0 ๏จ ๏จ = lim (8๏ก + 4๏จ โˆ’ 6๏ก2 โˆ’ 6๏ก๏จ โˆ’ 2๏จ2 ) = 8๏ก โˆ’ 6๏ก2 ๏จโ†’0 (b) At (1๏€ป 5): ๏ญ = 8(1) โˆ’ 6(1)2 = 2, so an equation of the tangent line (c) is ๏น โˆ’ 5 = 2(๏ธ โˆ’ 1) โ‡” ๏น = 2๏ธ + 3. At (2๏€ป 3): ๏ญ = 8(2) โˆ’ 6(2)2 = โˆ’8, so an equation of the tangent line is ๏น โˆ’ 3 = โˆ’8(๏ธ โˆ’ 2) โ‡” ๏น = โˆ’8๏ธ + 19. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยค 125 126 ยค CHAPTER 2 LIMITS AND DERIVATIVES 10. (a) Using (1), 1 1 โˆš โˆ’โˆš ๏ธ ๏ก = lim ๏ญ = lim ๏ธโ†’๏ก ๏ธโ†’๏ก ๏ธโˆ’๏ก โˆš โˆš ๏กโˆ’ ๏ธ โˆš โˆš โˆš โˆš โˆš ( ๏ก โˆ’ ๏ธ)( ๏ก + ๏ธ) ๏กโˆ’๏ธ ๏ก๏ธ โˆš โˆš โˆš โˆš = lim โˆš = lim โˆš ๏ธโ†’๏ก ๏ธโˆ’๏ก ๏ก๏ธ (๏ธ โˆ’ ๏ก) ( ๏ก + ๏ธ ) ๏ธโ†’๏ก ๏ก๏ธ (๏ธ โˆ’ ๏ก) ( ๏ก + ๏ธ ) 1 โˆ’1 1 โˆ’1 โˆš โˆš = โˆ’ 3๏€ฝ2 or โˆ’ ๏กโˆ’3๏€ฝ2 [๏ก ๏€พ 0] = โˆš = lim โˆš โˆš ๏ธโ†’๏ก 2 2๏ก ๏ก๏ธ ( ๏ก + ๏ธ ) ๏ก2 (2 ๏ก ) (b) At (1๏€ป 1): ๏ญ = โˆ’ 12 , so an equation of the tangent line is ๏น โˆ’ 1 = โˆ’ 12 (๏ธ โˆ’ 1) โ‡” (c) ๏น = โˆ’ 12 ๏ธ + 32 . ๏‚ก ๏‚ข 1 At 4๏€ป 12 : ๏ญ = โˆ’ 16 , so an equation of the tangent line 1 1 is ๏น โˆ’ 12 = โˆ’ 16 (๏ธ โˆ’ 4) โ‡” ๏น = โˆ’ 16 ๏ธ + 34 . 11. (a) The particle is moving to the right when ๏ณ is increasing; that is, on the intervals (0๏€ป 1) and (4๏€ป 6). The particle is moving to the left when ๏ณ is decreasing; that is, on the interval (2๏€ป 3). The particle is standing still when ๏ณ is constant; that is, on the intervals (1๏€ป 2) and (3๏€ป 4). (b) The velocity of the particle is equal to the slope of the tangent line of the graph. Note that there is no slope at the corner points on the graph. On the interval (0๏€ป 1)๏€ป the slope is 3โˆ’0 = 3. On the interval (2๏€ป 3), the slope is 1โˆ’0 3โˆ’1 1โˆ’3 = โˆ’2. On the interval (4๏€ป 6), the slope is = 1. 3โˆ’2 6โˆ’4 12. (a) Runner A runs the entire 100-meter race at the same velocity since the slope of the position function is constant. Runner B starts the race at a slower velocity than runner A, but ๏ฌnishes the race at a faster velocity. (b) The distance between the runners is the greatest at the time when the largest vertical line segment ๏ฌts between the two graphsโ€”this appears to be somewhere between 9 and 10 seconds. (c) The runners had the same velocity when the slopes of their respective position functions are equalโ€”this also appears to be at about 9๏€บ5 s. Note that the answers for parts (b) and (c) must be the same for these graphs because as soon as the velocity for runner B overtakes the velocity for runner A, the distance between the runners starts to decrease. 13. Let ๏ณ(๏ด) = 40๏ด โˆ’ 16๏ด2 . ๏‚ก ๏‚ข ๏‚ก ๏‚ข 40๏ด โˆ’ 16๏ด2 โˆ’ 16 โˆ’8 2๏ด2 โˆ’ 5๏ด + 2 ๏ณ(๏ด) โˆ’ ๏ณ(2) โˆ’16๏ด2 + 40๏ด โˆ’ 16 = lim = lim = lim ๏ถ(2) = lim ๏ดโ†’2 ๏ดโ†’2 ๏ดโ†’2 ๏ดโ†’2 ๏ดโˆ’2 ๏ดโˆ’2 ๏ดโˆ’2 ๏ดโˆ’2 = lim ๏ดโ†’2 โˆ’8(๏ด โˆ’ 2)(2๏ด โˆ’ 1) = โˆ’8 lim (2๏ด โˆ’ 1) = โˆ’8(3) = โˆ’24 ๏ดโ†’2 ๏ดโˆ’2 Thus, the instantaneous velocity when ๏ด = 2 is โˆ’24 ft๏€ฝs. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.7 DERIVATIVES AND RATES OF CHANGE ยค 127 14. (a) Let ๏ˆ(๏ด) = 10๏ด โˆ’ 1๏€บ86๏ด2 . ๏‚ฃ ๏‚ค 10(1 + ๏จ) โˆ’ 1๏€บ86(1 + ๏จ)2 โˆ’ (10 โˆ’ 1๏€บ86) ๏ˆ(1 + ๏จ) โˆ’ ๏ˆ(1) = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏ถ(1) = lim 10 + 10๏จ โˆ’ 1๏€บ86(1 + 2๏จ + ๏จ2 ) โˆ’ 10 + 1๏€บ86 ๏จโ†’0 ๏จ = lim 10 + 10๏จ โˆ’ 1๏€บ86 โˆ’ 3๏€บ72๏จ โˆ’ 1๏€บ86๏จ2 โˆ’ 10 + 1๏€บ86 ๏จโ†’0 ๏จ = lim 6๏€บ28๏จ โˆ’ 1๏€บ86๏จ2 = lim (6๏€บ28 โˆ’ 1๏€บ86๏จ) = 6๏€บ28 ๏จโ†’0 ๏จโ†’0 ๏จ = lim The velocity of the rock after one second is 6๏€บ28 m๏€ฝs. ๏‚ฃ ๏‚ค 10(๏ก + ๏จ) โˆ’ 1๏€บ86(๏ก + ๏จ)2 โˆ’ (10๏ก โˆ’ 1๏€บ86๏ก2 ) ๏ˆ(๏ก + ๏จ) โˆ’ ๏ˆ(๏ก) (b) ๏ถ(๏ก) = lim = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ = lim 10๏ก + 10๏จ โˆ’ 1๏€บ86(๏ก2 + 2๏ก๏จ + ๏จ2 ) โˆ’ 10๏ก + 1๏€บ86๏ก2 ๏จ = lim 10๏ก + 10๏จ โˆ’ 1๏€บ86๏ก2 โˆ’ 3๏€บ72๏ก๏จ โˆ’ 1๏€บ86๏จ2 โˆ’ 10๏ก + 1๏€บ86๏ก2 10๏จ โˆ’ 3๏€บ72๏ก๏จ โˆ’ 1๏€บ86๏จ2 = lim ๏จโ†’0 ๏จ ๏จ = lim ๏จ(10 โˆ’ 3๏€บ72๏ก โˆ’ 1๏€บ86๏จ) = lim (10 โˆ’ 3๏€บ72๏ก โˆ’ 1๏€บ86๏จ) = 10 โˆ’ 3๏€บ72๏ก ๏จโ†’0 ๏จ ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 The velocity of the rock when ๏ด = ๏ก is (10 โˆ’ 3๏€บ72๏ก) m๏€ฝs๏€บ (c) The rock will hit the surface when ๏ˆ = 0 โ‡” 10๏ด โˆ’ 1๏€บ86๏ด2 = 0 โ‡” ๏ด(10 โˆ’ 1๏€บ86๏ด) = 0 โ‡” ๏ด = 0 or 1๏€บ86๏ด = 10. The rock hits the surface when ๏ด = 10๏€ฝ1๏€บ86 โ‰ˆ 5๏€บ4 s. ๏‚ก 10 ๏‚ข ๏‚ก 10 ๏‚ข (d) The velocity of the rock when it hits the surface is ๏ถ 1๏€บ86 = 10 โˆ’ 3๏€บ72 1๏€บ86 = 10 โˆ’ 20 = โˆ’10 m๏€ฝs. 1 1 ๏ก2 โˆ’ (๏ก + ๏จ)2 โˆ’ 2 2 ๏ณ(๏ก + ๏จ) โˆ’ ๏ณ(๏ก) (๏ก + ๏จ) ๏ก ๏ก2 (๏ก + ๏จ)2 ๏ก2 โˆ’ (๏ก2 + 2๏ก๏จ + ๏จ2 ) = lim = lim = lim 15. ๏ถ(๏ก) = lim ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ ๏จ๏ก2 (๏ก + ๏จ)2 = lim โˆ’(2๏ก๏จ + ๏จ2 ) ๏จโ†’0 ๏จ๏ก2 (๏ก + ๏จ)2 So ๏ถ (1) = = lim โˆ’๏จ(2๏ก + ๏จ) ๏จโ†’0 ๏จ๏ก2 (๏ก + ๏จ)2 = lim โˆ’(2๏ก + ๏จ) ๏จโ†’0 ๏ก2 (๏ก + ๏จ)2 = โˆ’2๏ก โˆ’2 = 3 m๏€ฝs ๏ก2 ยท ๏ก2 ๏ก โˆ’2 โˆ’2 โˆ’2 1 2 m๏€ฝs. = โˆ’2 m๏€ฝs, ๏ถ(2) = 3 = โˆ’ m๏€ฝs, and ๏ถ(3) = 3 = โˆ’ 13 2 4 3 27 16. (a) The average velocity between times ๏ด and ๏ด + ๏จ is 1 2 (๏ด + ๏จ) โˆ’ 6(๏ด + ๏จ) + 23 โˆ’ ๏ณ(๏ด + ๏จ) โˆ’ ๏ณ(๏ด) = 2 (๏ด + ๏จ) โˆ’ ๏ด ๏จ 1 2 ๏‚ก1 2 ๏‚ข 2 ๏ด โˆ’ 6๏ด + 23 ๏ด + ๏ด๏จ + 12 ๏จ2 โˆ’ 6๏ด โˆ’ 6๏จ + 23 โˆ’ 12 ๏ด2 + 6๏ด โˆ’ 23 ๏จ ๏‚ข ๏‚ก 1 1 2 ๏‚ข ๏‚ก ๏จโˆ’6 ๏จ ๏ด + ๏ด๏จ + 2 ๏จ โˆ’ 6๏จ 2 = = ๏ด + 12 ๏จ โˆ’ 6 ft๏€ฝs = ๏จ ๏จ (i) [4๏€ป 8]: ๏ด = 4, ๏จ = 8 โˆ’ 4 = 4, so the average velocity is 4 + 12 (4) โˆ’ 6 = 0 ft๏€ฝs. = 2 (ii) [6๏€ป 8]: ๏ด = 6, ๏จ = 8 โˆ’ 6 = 2, so the average velocity is 6 + 12 (2) โˆ’ 6 = 1 ft๏€ฝs. (iii) [8๏€ป 10]: ๏ด = 8, ๏จ = 10 โˆ’ 8 = 2, so the average velocity is 8 + 12 (2) โˆ’ 6 = 3 ft๏€ฝs. (iv) [8๏€ป 12]: ๏ด = 8, ๏จ = 12 โˆ’ 8 = 4, so the average velocity is 8 + 12 (4) โˆ’ 6 = 4 ft๏€ฝs. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 128 ยค CHAPTER 2 LIMITS AND DERIVATIVES ๏‚ก ๏‚ข ๏ณ(๏ด + ๏จ) โˆ’ ๏ณ(๏ด) = lim ๏ด + 12 ๏จ โˆ’ 6 ๏จโ†’0 ๏จ = ๏ด โˆ’ 6, so ๏ถ(8) = 2 ft๏€ฝs. (b) ๏ถ(๏ด) = lim ๏จโ†’0 (c) 17. ๏ง 0 (0) is the only negative value. The slope at ๏ธ = 4 is smaller than the slope at ๏ธ = 2 and both are smaller than the slope at ๏ธ = โˆ’2. Thus, ๏ง0 (0) ๏€ผ 0 ๏€ผ ๏ง0 (4) ๏€ผ ๏ง 0 (2) ๏€ผ ๏ง 0 (โˆ’2). 18. (a) On [20๏€ป 60]: 700 โˆ’ 300 400 ๏ฆ (60) โˆ’ ๏ฆ (20) = = = 10 60 โˆ’ 20 40 40 (b) Pick any interval that has the same ๏น-value at its endpoints. [0๏€ป 57] is such an interval since ๏ฆ (0) = 600 and ๏ฆ (57) = 600. (c) On [40๏€ป 60]: 700 โˆ’ 200 500 ๏ฆ (60) โˆ’ ๏ฆ (40) = = = 25 60 โˆ’ 40 20 20 On [40๏€ป 70]: ๏ฆ (70) โˆ’ ๏ฆ (40) 900 โˆ’ 200 700 = = = 23 13 70 โˆ’ 40 30 30 Since 25 ๏€พ 23 13 , the average rate of change on [40๏€ป 60] is larger. (d) 200 โˆ’ 400 โˆ’200 ๏ฆ (40) โˆ’ ๏ฆ (10) = = = โˆ’6 23 40 โˆ’ 10 30 30 This value represents the slope of the line segment from (10๏€ป ๏ฆ(10)) to (40๏€ป ๏ฆ(40)). 19. (a) The tangent line at ๏ธ = 50 appears to pass through the points (43๏€ป 200) and (60๏€ป 640), so ๏ฆ 0 (50) โ‰ˆ 440 640 โˆ’ 200 = โ‰ˆ 26. 60 โˆ’ 43 17 (b) The tangent line at ๏ธ = 10 is steeper than the tangent line at ๏ธ = 30, so it is larger in magnitude, but less in numerical value, that is, ๏ฆ 0 (10) ๏€ผ ๏ฆ 0 (30). (c) The slope of the tangent line at ๏ธ = 60, ๏ฆ 0 (60), is greater than the slope of the line through (40๏€ป ๏ฆ(40)) and (80๏€ป ๏ฆ(80)). So yes, ๏ฆ 0 (60) ๏€พ ๏ฆ(80) โˆ’ ๏ฆ (40) . 80 โˆ’ 40 20. Since ๏ง(5) = โˆ’3, the point (5๏€ป โˆ’3) is on the graph of ๏ง. Since ๏ง0 (5) = 4, the slope of the tangent line at ๏ธ = 5 is 4. Using the point-slope form of a line gives us ๏น โˆ’ (โˆ’3) = 4(๏ธ โˆ’ 5), or ๏น = 4๏ธ โˆ’ 23. 21. For the tangent line ๏น = 4๏ธ โˆ’ 5: when ๏ธ = 2, ๏น = 4(2) โˆ’ 5 = 3 and its slope is 4 (the coef๏ฌcient of ๏ธ). At the point of tangency, these values are shared with the curve ๏น = ๏ฆ (๏ธ); that is, ๏ฆ (2) = 3 and ๏ฆ 0 (2) = 4. 22. Since (4๏€ป 3) is on ๏น = ๏ฆ (๏ธ), ๏ฆ (4) = 3. The slope of the tangent line between (0๏€ป 2) and (4๏€ป 3) is 14 , so ๏ฆ 0 (4) = 14 . c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.7 DERIVATIVES AND RATES OF CHANGE 23. We begin by drawing a curve through the origin with a slope of 3 to satisfy ๏ฆ (0) = 0 and ๏ฆ 0 (0) = 3. Since ๏ฆ 0 (1) = 0, we will round off our ๏ฌgure so that there is a horizontal tangent directly over ๏ธ = 1. Last, we make sure that the curve has a slope of โˆ’1 as we pass over ๏ธ = 2. Two of the many possibilities are shown. 24. We begin by drawing a curve through the origin with a slope of 1 to satisfy ๏ง(0) = 0 and ๏ง 0 (0) = 1. We round off our ๏ฌgure at ๏ธ = 1 to satisfy ๏ง0 (1) = 0, and then pass through (2๏€ป 0) with slope โˆ’1 to satisfy ๏ง(2) = 0 and ๏ง 0 (2) = โˆ’1. We round the ๏ฌgure at ๏ธ = 3 to satisfy ๏ง 0 (3) = 0, and then pass through (4๏€ป 0) with slope 1 to satisfy ๏ง(4) = 0 and ๏ง 0 (4) = 1๏€บ Finally we extend the curve on both ends to satisfy lim ๏ง(๏ธ) = โˆž and lim ๏ง(๏ธ) = โˆ’โˆž. ๏ธโ†’โˆž ๏ธโ†’โˆ’โˆž 25. We begin by drawing a curve through (0๏€ป 1) with a slope of 1 to satisfy ๏ง(0) = 1 and ๏ง 0 (0) = 1. We round off our ๏ฌgure at ๏ธ = โˆ’2 to satisfy ๏ง 0 (โˆ’2) = 0. As ๏ธ โ†’ โˆ’5+ , ๏น โ†’ โˆž, so we draw a vertical asymptote at ๏ธ = โˆ’5. As ๏ธ โ†’ 5โˆ’ , ๏น โ†’ 3, so we draw a dot at (5๏€ป 3) [the dot could be open or closed]. 26. We begin by drawing an odd function (symmetric with respect to the origin) through the origin with slope โˆ’2 to satisfy ๏ฆ 0 (0) = โˆ’2. Now draw a curve starting at ๏ธ = 1 and increasing without bound as ๏ธ โ†’ 2โˆ’ since lim ๏ฆ (๏ธ) = โˆž. Lastly, ๏ธโ†’2โˆ’ re๏ฌ‚ect the last curve through the origin (rotate 180โ—ฆ ) since ๏ฆ is an odd function. 27. Using (4) with ๏ฆ (๏ธ) = 3๏ธ2 โˆ’ ๏ธ3 and ๏ก = 1, ๏ฆ (1 + ๏จ) โˆ’ ๏ฆ (1) [3(1 + ๏จ)2 โˆ’ (1 + ๏จ)3 ] โˆ’ 2 = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏ฆ 0 (1) = lim (3 + 6๏จ + 3๏จ2 ) โˆ’ (1 + 3๏จ + 3๏จ2 + ๏จ3 ) โˆ’ 2 3๏จ โˆ’ ๏จ3 ๏จ(3 โˆ’ ๏จ2 ) = lim = lim ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ = lim = lim (3 โˆ’ ๏จ2 ) = 3 โˆ’ 0 = 3 ๏จโ†’0 Tangent line: ๏น โˆ’ 2 = 3(๏ธ โˆ’ 1) โ‡” ๏น โˆ’ 2 = 3๏ธ โˆ’ 3 โ‡” ๏น = 3๏ธ โˆ’ 1 c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยค 129 130 ยค CHAPTER 2 LIMITS AND DERIVATIVES 28. Using (5) with ๏ง(๏ธ) = ๏ธ4 โˆ’ 2 and ๏ก = 1, ๏ง 0 (1) = lim ๏ธโ†’1 = lim ๏ธโ†’1 ๏ง(๏ธ) โˆ’ ๏ง(1) (๏ธ4 โˆ’ 2) โˆ’ (โˆ’1) ๏ธ4 โˆ’ 1 (๏ธ2 + 1)(๏ธ2 โˆ’ 1) = lim = lim = lim ๏ธโ†’1 ๏ธโ†’1 ๏ธ โˆ’ 1 ๏ธโ†’1 ๏ธโˆ’1 ๏ธโˆ’1 ๏ธโˆ’1 (๏ธ2 + 1)(๏ธ + 1)(๏ธ โˆ’ 1) = lim [(๏ธ2 + 1)(๏ธ + 1)] = 2(2) = 4 ๏ธโ†’1 ๏ธโˆ’1 Tangent line: ๏น โˆ’ (โˆ’1) = 4(๏ธ โˆ’ 1) โ‡” ๏น + 1 = 4๏ธ โˆ’ 4 โ‡” ๏น = 4๏ธ โˆ’ 5 29. (a) Using (4) with ๏† (๏ธ) = 5๏ธ๏€ฝ(1 + ๏ธ2 ) and the point (2๏€ป 2), we have (b) 5(2 + ๏จ) โˆ’2 ๏† (2 + ๏จ) โˆ’ ๏† (2) 1 + (2 + ๏จ)2 ๏† (2) = lim = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ 0 5๏จ + 10 = lim ๏จโ†’0 ๏จ2 + 4๏จ + 5 โˆ’2 ๏จ 5๏จ + 10 โˆ’ 2(๏จ2 + 4๏จ + 5) ๏จ2 + 4๏จ + 5 = lim ๏จโ†’0 ๏จ โˆ’3 โˆ’2๏จ2 โˆ’ 3๏จ ๏จ(โˆ’2๏จ โˆ’ 3) โˆ’2๏จ โˆ’ 3 = lim = lim 2 = ๏จโ†’0 ๏จ(๏จ2 + 4๏จ + 5) ๏จโ†’0 ๏จ(๏จ2 + 4๏จ + 5) ๏จโ†’0 ๏จ + 4๏จ + 5 5 = lim . So an equation of the tangent line at (2๏€ป 2) is ๏น โˆ’ 2 = โˆ’ 35 (๏ธ โˆ’ 2) or ๏น = โˆ’ 35 ๏ธ + 16 5 30. (a) Using (4) with ๏‡(๏ธ) = 4๏ธ2 โˆ’ ๏ธ3 , we have ๏‡(๏ก + ๏จ) โˆ’ ๏‡(๏ก) [4(๏ก + ๏จ)2 โˆ’ (๏ก + ๏จ)3 ] โˆ’ (4๏ก2 โˆ’ ๏ก3 ) = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏‡0 (๏ก) = lim 4๏ก2 + 8๏ก๏จ + 4๏จ2 โˆ’ (๏ก3 + 3๏ก2 ๏จ + 3๏ก๏จ2 + ๏จ3 ) โˆ’ 4๏ก2 + ๏ก3 ๏จโ†’0 ๏จ = lim 8๏ก๏จ + 4๏จ2 โˆ’ 3๏ก2 ๏จ โˆ’ 3๏ก๏จ2 โˆ’ ๏จ3 ๏จ(8๏ก + 4๏จ โˆ’ 3๏ก2 โˆ’ 3๏ก๏จ โˆ’ ๏จ2 ) = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ = lim = lim (8๏ก + 4๏จ โˆ’ 3๏ก2 โˆ’ 3๏ก๏จ โˆ’ ๏จ2 ) = 8๏ก โˆ’ 3๏ก2 ๏จโ†’0 At the point (2๏€ป 8), ๏‡0 (2) = 16 โˆ’ 12 = 4, and an equation of the (b) tangent line is ๏น โˆ’ 8 = 4(๏ธ โˆ’ 2), or ๏น = 4๏ธ. At the point (3๏€ป 9), ๏‡0 (3) = 24 โˆ’ 27 = โˆ’3, and an equation of the tangent line is ๏น โˆ’ 9 = โˆ’3(๏ธ โˆ’ 3), or ๏น = โˆ’3๏ธ + 18๏€บ 31. Use (4) with ๏ฆ (๏ธ) = 3๏ธ2 โˆ’ 4๏ธ + 1. ๏ฆ (๏ก + ๏จ) โˆ’ ๏ฆ(๏ก) [3(๏ก + ๏จ)2 โˆ’ 4(๏ก + ๏จ) + 1] โˆ’ (3๏ก2 โˆ’ 4๏ก + 1)] = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏ฆ 0 (๏ก) = lim 3๏ก2 + 6๏ก๏จ + 3๏จ2 โˆ’ 4๏ก โˆ’ 4๏จ + 1 โˆ’ 3๏ก2 + 4๏ก โˆ’ 1 6๏ก๏จ + 3๏จ2 โˆ’ 4๏จ = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ = lim = lim ๏จโ†’0 ๏จ(6๏ก + 3๏จ โˆ’ 4) = lim (6๏ก + 3๏จ โˆ’ 4) = 6๏ก โˆ’ 4 ๏จโ†’0 ๏จ c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.7 DERIVATIVES AND RATES OF CHANGE 32. Use (4) with ๏ฆ (๏ด) = 2๏ด3 + ๏ด. ๏ฆ 0 (๏ก) = lim ๏จโ†’0 ๏ฆ (๏ก + ๏จ) โˆ’ ๏ฆ (๏ก) [2(๏ก + ๏จ)3 + (๏ก + ๏จ)] โˆ’ (2๏ก3 + ๏ก) = lim ๏จโ†’0 ๏จ ๏จ = lim 2๏ก3 + 6๏ก2 ๏จ + 6๏ก๏จ2 + 2๏จ3 + ๏ก + ๏จ โˆ’ 2๏ก3 โˆ’ ๏ก 6๏ก2 ๏จ + 6๏ก๏จ2 + 2๏จ3 + ๏จ = lim ๏จโ†’0 ๏จ ๏จ = lim ๏จ(6๏ก2 + 6๏ก๏จ + 2๏จ2 + 1) = lim (6๏ก2 + 6๏ก๏จ + 2๏จ2 + 1) = 6๏ก2 + 1 ๏จโ†’0 ๏จ ๏จโ†’0 ๏จโ†’0 33. Use (4) with ๏ฆ (๏ด) = (2๏ด + 1)๏€ฝ(๏ด + 3). 2๏ก + 1 2(๏ก + ๏จ) + 1 โˆ’ ๏ฆ (๏ก + ๏จ) โˆ’ ๏ฆ (๏ก) (๏ก + ๏จ) + 3 ๏ก+3 = lim ๏ฆ (๏ก) = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ 0 = lim (2๏ก + 2๏จ + 1)(๏ก + 3) โˆ’ (2๏ก + 1)(๏ก + ๏จ + 3) ๏จ(๏ก + ๏จ + 3)(๏ก + 3) = lim (2๏ก2 + 6๏ก + 2๏ก๏จ + 6๏จ + ๏ก + 3) โˆ’ (2๏ก2 + 2๏ก๏จ + 6๏ก + ๏ก + ๏จ + 3) ๏จ(๏ก + ๏จ + 3)(๏ก + 3) ๏จโ†’0 ๏จโ†’0 = lim 5๏จ ๏จโ†’0 ๏จ(๏ก + ๏จ + 3)(๏ก + 3) = lim 5 ๏จโ†’0 (๏ก + ๏จ + 3)(๏ก + 3) = 5 (๏ก + 3)2 34. Use (4) with ๏ฆ (๏ธ) = ๏ธโˆ’2 = 1๏€ฝ๏ธ2 . 1 1 ๏ก2 โˆ’ (๏ก + ๏จ)2 โˆ’ ๏ฆ (๏ก + ๏จ) โˆ’ ๏ฆ (๏ก) (๏ก + ๏จ)2 ๏ก2 ๏ก2 (๏ก + ๏จ)2 = lim = lim ๏ฆ 0 (๏ก) = lim ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ ๏ก2 โˆ’ (๏ก2 + 2๏ก๏จ + ๏จ2 ) โˆ’2๏ก๏จ โˆ’ ๏จ2 ๏จ(โˆ’2๏ก โˆ’ ๏จ) = lim = lim 2 2 ๏จโ†’0 ๏จโ†’0 ๏จ๏ก2 (๏ก + ๏จ)2 ๏จโ†’0 ๏จ๏ก2 (๏ก + ๏จ)2 ๏จ๏ก (๏ก + ๏จ) = lim = lim โˆ’2๏ก โˆ’ ๏จ ๏จโ†’0 ๏ก2 (๏ก + ๏จ)2 35. Use (4) with ๏ฆ (๏ธ) = = โˆ’2 โˆ’2๏ก = 3 ๏ก2 (๏ก2 ) ๏ก โˆš 1 โˆ’ 2๏ธ. ๏ฐ โˆš 1 โˆ’ 2(๏ก + ๏จ) โˆ’ 1 โˆ’ 2๏ก ๏ฆ (๏ก + ๏จ) โˆ’ ๏ฆ (๏ก) = lim ๏ฆ (๏ก) = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏ฐ ๏ฐ โˆš โˆš 1 โˆ’ 2(๏ก + ๏จ) โˆ’ 1 โˆ’ 2๏ก 1 โˆ’ 2(๏ก + ๏จ) + 1 โˆ’ 2๏ก ยท๏ฐ = lim โˆš ๏จโ†’0 ๏จ 1 โˆ’ 2(๏ก + ๏จ) + 1 โˆ’ 2๏ก ๏‚ณ๏ฐ ๏‚ด2 ๏‚กโˆš ๏‚ข2 1 โˆ’ 2(๏ก + ๏จ) โˆ’ 1 โˆ’ 2๏ก (1 โˆ’ 2๏ก โˆ’ 2๏จ) โˆ’ (1 โˆ’ 2๏ก) ๏‚ณ๏ฐ ๏‚ด = lim ๏‚ณ๏ฐ ๏‚ด = lim โˆš โˆš ๏จโ†’0 ๏จโ†’0 ๏จ 1 โˆ’ 2(๏ก + ๏จ) + 1 โˆ’ 2๏ก ๏จ 1 โˆ’ 2(๏ก + ๏จ) + 1 โˆ’ 2๏ก 0 = lim ๏จโ†’0 โˆ’2๏จ โˆ’2 ๏‚ณ๏ฐ ๏‚ด = lim ๏ฐ โˆš โˆš ๏จโ†’0 1 โˆ’ 2(๏ก + ๏จ) + 1 โˆ’ 2๏ก ๏จ 1 โˆ’ 2(๏ก + ๏จ) + 1 โˆ’ 2๏ก โˆ’2 โˆ’1 โˆ’2 โˆš = โˆš = โˆš = โˆš 1 โˆ’ 2๏ก + 1 โˆ’ 2๏ก 2 1 โˆ’ 2๏ก 1 โˆ’ 2๏ก c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยค 131 132 ยค CHAPTER 2 LIMITS AND DERIVATIVES 4 . 1โˆ’๏ธ 36. Use (4) with ๏ฆ (๏ธ) = โˆš 4 4 ๏ฐ โˆ’โˆš 1 โˆ’๏ก 1 โˆ’ (๏ก + ๏จ) ๏ฆ (๏ก + ๏จ) โˆ’ ๏ฆ (๏ก) ๏ฆ 0 (๏ก) = lim = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ โˆš โˆš 1โˆ’๏กโˆ’ 1โˆ’๏กโˆ’๏จ โˆš โˆš โˆš โˆš 1โˆ’๏กโˆ’ 1โˆ’๏กโˆ’๏จ 1โˆ’๏กโˆ’๏จ 1โˆ’๏ก = 4 lim โˆš = 4 lim โˆš ๏จโ†’0 ๏จโ†’0 ๏จ 1 โˆ’ ๏ก โˆ’ ๏จ ๏จ 1โˆ’๏ก โˆš โˆš โˆš โˆš โˆš โˆš 1โˆ’๏กโˆ’ 1โˆ’๏กโˆ’๏จ 1โˆ’๏ก+ 1โˆ’๏กโˆ’๏จ ( 1 โˆ’ ๏ก)2 โˆ’ ( 1 โˆ’ ๏ก โˆ’ ๏จ)2 โˆš โˆš = 4 lim โˆš ยทโˆš = 4 lim โˆš โˆš โˆš โˆš ๏จโ†’0 ๏จ 1 โˆ’ ๏ก โˆ’ ๏จ ๏จโ†’0 ๏จ 1 โˆ’ ๏ก โˆ’ ๏จ 1โˆ’๏ก 1โˆ’๏ก+ 1โˆ’๏กโˆ’๏จ 1 โˆ’ ๏ก( 1 โˆ’ ๏ก + 1 โˆ’ ๏ก โˆ’ ๏จ) (1 โˆ’ ๏ก) โˆ’ (1 โˆ’ ๏ก โˆ’ ๏จ) ๏จ โˆš โˆš โˆš = 4 lim โˆš โˆš โˆš โˆš โˆš ๏จโ†’0 ๏จ 1 โˆ’ ๏ก โˆ’ ๏จ 1 โˆ’ ๏ก โˆ’ ๏จ 1 โˆ’ ๏ก( 1 โˆ’ ๏ก + 1 โˆ’ ๏ก โˆ’ ๏จ) 1 โˆ’ ๏ก( 1 โˆ’ ๏ก + 1 โˆ’ ๏ก โˆ’ ๏จ) = 4 lim ๏จโ†’0 ๏จ 1 1 โˆš โˆš โˆš โˆš =4ยท โˆš = 4 lim โˆš โˆš โˆš ๏จโ†’0 1 โˆ’ ๏ก 1 โˆ’ ๏ก( 1 โˆ’ ๏ก + 1 โˆ’ ๏ก) 1 โˆ’ ๏ก โˆ’ ๏จ 1 โˆ’ ๏ก( 1 โˆ’ ๏ก + 1 โˆ’ ๏ก โˆ’ ๏จ) = 2 4 2 โˆš = = 1 (1 โˆ’ ๏ก)1๏€ฝ2 (1 โˆ’ ๏ก) (1 โˆ’ ๏ก)3๏€ฝ2 (1 โˆ’ ๏ก)(2 1 โˆ’ ๏ก) โˆš โˆš 9+๏จโˆ’3 = ๏ฆ 0 (9), where ๏ฆ (๏ธ) = ๏ธ and ๏ก = 9. ๏จโ†’0 ๏จ 37. By (4), lim ๏ฅโˆ’2+๏จ โˆ’ ๏ฅโˆ’2 = ๏ฆ 0 (โˆ’2), where ๏ฆ(๏ธ) = ๏ฅ๏ธ and ๏ก = โˆ’2. ๏จโ†’0 ๏จ 38. By (4), lim ๏ธ6 โˆ’ 64 = ๏ฆ 0 (2), where ๏ฆ (๏ธ) = ๏ธ6 and ๏ก = 2. ๏ธโ†’2 ๏ธ โˆ’ 2 39. By Equation 5, lim 1 โˆ’4 1 1 ๏ธ = ๏ฆ 0 (4), where ๏ฆ (๏ธ) = and ๏ก = . 40. By Equation 5, lim 1 ๏ธโ†’1๏€ฝ4 ๏ธ 4 ๏ธโˆ’ 4 41. By (4), lim ๏จโ†’0 cos(๏‚ผ + ๏จ) + 1 = ๏ฆ 0 (๏‚ผ), where ๏ฆ (๏ธ) = cos ๏ธ and ๏ก = ๏‚ผ. ๏จ Or: By (4), lim ๏จโ†’0 cos(๏‚ผ + ๏จ) + 1 = ๏ฆ 0 (0), where ๏ฆ (๏ธ) = cos(๏‚ผ + ๏ธ) and ๏ก = 0. ๏จ ๏‚ณ ๏‚ด sin ๏‚ต โˆ’ 12 ๏‚ผ 0 ๏‚ผ = ๏ฆ , where ๏ฆ (๏‚ต) = sin ๏‚ต and ๏ก = . ๏‚ผ ๏‚ตโ†’๏‚ผ๏€ฝ6 ๏‚ต โˆ’ 6 6 6 42. By Equation 5, lim ๏‚ฃ ๏‚ค ๏‚ฃ ๏‚ค 80(4 + ๏จ) โˆ’ 6(4 + ๏จ)2 โˆ’ 80(4) โˆ’ 6(4)2 ๏ฆ (4 + ๏จ) โˆ’ ๏ฆ (4) = lim 43. ๏ถ(4) = ๏ฆ (4) = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ 0 = lim (320 + 80๏จ โˆ’ 96 โˆ’ 48๏จ โˆ’ 6๏จ2 ) โˆ’ (320 โˆ’ 96) 32๏จ โˆ’ 6๏จ2 = lim ๏จโ†’0 ๏จ ๏จ = lim ๏จ(32 โˆ’ 6๏จ) = lim (32 โˆ’ 6๏จ) = 32 m/s ๏จโ†’0 ๏จ ๏จโ†’0 ๏จโ†’0 The speed when ๏ด = 4 is |32| = 32 m๏€ฝs. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.7 ๏ฆ (4 + ๏จ) โˆ’ ๏ฆ (4) = lim 44. ๏ถ(4) = ๏ฆ (4) = lim ๏จโ†’0 ๏จโ†’0 ๏จ 0 ๏‚ต 10 + 45 4+๏จ+1 ๏‚ถ ๏จ DERIVATIVES AND RATES OF CHANGE ๏‚ต ๏‚ถ 45 โˆ’ 10 + 4+1 ยค 133 45 โˆ’9 5 = lim + ๏จ ๏จโ†’0 ๏จ 45 โˆ’ 9(5 + ๏จ) 9 โˆ’9๏จ โˆ’9 = lim = lim = โˆ’ m/s. ๏จโ†’0 ๏จ(5 + ๏จ) ๏จโ†’0 5 + ๏จ ๏จ(5 + ๏จ) 5 ๏‚ฏ ๏‚ฏ The speed when ๏ด = 4 is ๏‚ฏโˆ’ 95 ๏‚ฏ = 95 m๏€ฝs. = lim ๏จโ†’0 45. The sketch shows the graph for a room temperature of 72โ—ฆ and a refrigerator temperature of 38โ—ฆ . The initial rate of change is greater in magnitude than the rate of change after an hour. 46. The slope of the tangent (that is, the rate of change of temperature with respect to time) at ๏ด = 1 h seems to be about 47. (a) (i) [1๏€บ0๏€ป 2๏€บ0]: 75 โˆ’ 168 โ‰ˆ โˆ’0๏€บ7 โ—ฆ F๏€ฝmin. 132 โˆ’ 0 0๏€บ18 โˆ’ 0๏€บ33 mg/mL ๏ƒ(2) โˆ’ ๏ƒ(1) = = โˆ’0๏€บ15 2โˆ’1 1 h (ii) [1๏€บ5๏€ป 2๏€บ0]: 0๏€บ18 โˆ’ 0๏€บ24 โˆ’0๏€บ06 mg/mL ๏ƒ(2) โˆ’ ๏ƒ(1๏€บ5) = = = โˆ’0๏€บ12 2 โˆ’ 1๏€บ5 0๏€บ5 0๏€บ5 h (iii) [2๏€บ0๏€ป 2๏€บ5]: 0๏€บ12 โˆ’ 0๏€บ18 โˆ’0๏€บ06 mg/mL ๏ƒ(2๏€บ5) โˆ’ ๏ƒ(2) = = = โˆ’0๏€บ12 2๏€บ5 โˆ’ 2 0๏€บ5 0๏€บ5 h (iv) [2๏€บ0๏€ป 3๏€บ0]: 0๏€บ07 โˆ’ 0๏€บ18 mg/mL ๏ƒ(3) โˆ’ ๏ƒ(2) = = โˆ’0๏€บ11 3โˆ’2 1 h (b) We estimate the instantaneous rate of change at ๏ด = 2 by averaging the average rates of change for [1๏€บ5๏€ป 2๏€บ0] and [2๏€บ0๏€ป 2๏€บ5]: mg/mL โˆ’0๏€บ12 + (โˆ’0๏€บ12) = โˆ’0๏€บ12 . After 2 hours, the BAC is decreasing at a rate of 0๏€บ12 (mg๏€ฝmL)๏€ฝh. 2 h 48. (a) (i) [2006๏€ป 2008]: (ii) [2008๏€ป 2010]: 16,680 โˆ’ 12,440 4240 ๏Ž(2008) โˆ’ ๏Ž(2006) = = = 2120 locations๏€ฝyear 2008 โˆ’ 2006 2 2 16,858 โˆ’ 16,680 178 ๏Ž(2010) โˆ’ ๏Ž(2008) = = = 89 locations๏€ฝyear. 2010 โˆ’ 2008 2 2 The rate of growth decreased over the period from 2006 to 2010. (b) [2010๏€ป 2012]: ๏Ž(2012) โˆ’ ๏Ž(2010) 18,066 โˆ’ 16,858 1208 = = = 604 locations๏€ฝyear. 2012 โˆ’ 2010 2 2 Using that value and the value from part (a)(ii), we have 693 89 + 604 = = 346๏€บ5 locations๏€ฝyear. 2 2 c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 134 ยค CHAPTER 2 LIMITS AND DERIVATIVES (c) The tangent segment has endpoints (2008๏€ป 16,250) and (2012๏€ป 17,500). An estimate of the instantaneous rate of growth in 2010 is 17,500 โˆ’ 16,250 1250 = = 312๏€บ5 locations/year. 2012 โˆ’ 2008 4 49. (a) [1990๏€ป 2005]: 17,544 84,077 โˆ’ 66,533 = = 1169๏€บ6 thousands of barrels per day per year. This means that oil 2005 โˆ’ 1990 15 consumption rose by an average of 1169๏€บ6 thousands of barrels per day each year from 1990 to 2005. (b) [1995๏€ป 2000]: [2000๏€ป 2005]: 6685 76,784 โˆ’ 70,099 = = 1337 2000 โˆ’ 1995 5 7293 84,077 โˆ’ 76,784 = = 1458๏€บ6 2005 โˆ’ 2000 5 An estimate of the instantaneous rate of change in 2000 is 12 (1337 + 1458๏€บ6) = 1397๏€บ8 thousands of barrels per day per year. 50. (a) (i) [4๏€ป 11]: 9๏€บ4 โˆ’ 53 โˆ’43๏€บ6 RNA copies๏€ฝmL ๏– (11) โˆ’ ๏– (4) = = โ‰ˆ โˆ’6๏€บ23 11 โˆ’ 4 7 7 day (ii) [8๏€ป 11]: 9๏€บ4 โˆ’ 18 โˆ’8๏€บ6 RNA copies๏€ฝmL ๏– (11) โˆ’ ๏– (8) = = โ‰ˆ โˆ’2๏€บ87 11 โˆ’ 8 3 3 day (iii) [11๏€ป 15]: 5๏€บ2 โˆ’ 9๏€บ4 โˆ’4๏€บ2 RNA copies๏€ฝmL ๏– (15) โˆ’ ๏– (11) = = = โˆ’1๏€บ05 15 โˆ’ 11 4 4 day (iv) [11๏€ป 22]: 3๏€บ6 โˆ’ 9๏€บ4 โˆ’5๏€บ8 RNA copies๏€ฝmL ๏– (22) โˆ’ ๏– (11) = = โ‰ˆ โˆ’0๏€บ53 22 โˆ’ 11 11 11 day (b) An estimate of ๏– 0 (11) is the average of the answers from part (a)(ii) and (iii). ๏– 0 (11) โ‰ˆ 12 [โˆ’2๏€บ87 + (โˆ’1๏€บ05)] = โˆ’1๏€บ96 RNA copies๏€ฝmL . day ๏– 0 (11) measures the instantaneous rate of change of patient 303โ€™s viral load 11 days after ABT-538 treatment began. 51. (a) (i) ๏ƒ(105) โˆ’ ๏ƒ(100) 6601๏€บ25 โˆ’ 6500 โˆ†๏ƒ = = = $20๏€บ25๏€ฝunit. โˆ†๏ธ 105 โˆ’ 100 5 (ii) ๏ƒ(101) โˆ’ ๏ƒ(100) 6520๏€บ05 โˆ’ 6500 โˆ†๏ƒ = = = $20๏€บ05๏€ฝunit. โˆ†๏ธ 101 โˆ’ 100 1 (b) ๏‚ค ๏‚ฃ 5000 + 10(100 + ๏จ) + 0๏€บ05(100 + ๏จ)2 โˆ’ 6500 ๏ƒ(100 + ๏จ) โˆ’ ๏ƒ(100) 20๏จ + 0๏€บ05๏จ2 = = ๏จ ๏จ ๏จ = 20 + 0๏€บ05๏จ, ๏จ 6= 0 So the instantaneous rate of change is lim ๏จโ†’0 ๏ƒ(100 + ๏จ) โˆ’ ๏ƒ(100) = lim (20 + 0๏€บ05๏จ) = $20๏€ฝunit. ๏จโ†’0 ๏จ c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.7 DERIVATIVES AND RATES OF CHANGE ยค 135 ๏‚ถ2 ๏‚ถ2 ๏‚ต ๏‚ต ๏ด+๏จ ๏ด 52. โˆ†๏– = ๏– (๏ด + ๏จ) โˆ’ ๏– (๏ด) = 100,000 1 โˆ’ โˆ’ 100,000 1 โˆ’ 60 60 ๏‚ต ๏‚ถ๏‚ธ ๏‚ต ๏‚ถ ๏‚ท๏‚ต 2๏‚ถ (๏ด + ๏จ) ๏ด ๏ด2 ๏จ 2๏ด๏จ ๏จ2 ๏ด+๏จ + โˆ’ 1โˆ’ + = 100,000 โˆ’ + + = 100,000 1 โˆ’ 30 3600 30 3600 30 3600 3600 = 250 100,000 ๏จ (โˆ’120 + 2๏ด + ๏จ) = ๏จ (โˆ’120 + 2๏ด + ๏จ) 3600 9 (๏ด โˆ’ 60) gal๏€ฝmin. Dividing โˆ†๏– by ๏จ and then letting ๏จ โ†’ 0, we see that the instantaneous rate of change is 500 9 ๏ด Flow rate (gal๏€ฝmin) Water remaining ๏– (๏ด) (gal) 0 โˆ’3333๏€บ3 100๏€ป 000 โˆ’2222๏€บ2 44๏€ป 444๏€บ4 โˆ’1111๏€บ1 11๏€ป 111๏€บ1 10 20 30 40 50 60 โˆ’2777๏€บ7 69๏€ป 444๏€บ4 โˆ’1666๏€บ6 25๏€ป 000 โˆ’ 555๏€บ5 2๏€ป 777๏€บ7 0 0 The magnitude of the ๏ฌ‚ow rate is greatest at the beginning and gradually decreases to 0. 53. (a) ๏ฆ 0 (๏ธ) is the rate of change of the production cost with respect to the number of ounces of gold produced. Its units are dollars per ounce. (b) After 800 ounces of gold have been produced, the rate at which the production cost is increasing is $17๏€ฝounce. So the cost of producing the 800th (or 801st) ounce is about $17. (c) In the short term, the values of ๏ฆ 0 (๏ธ) will decrease because more ef๏ฌcient use is made of start-up costs as ๏ธ increases. But eventually ๏ฆ 0 (๏ธ) might increase due to large-scale operations. 54. (a) ๏ฆ 0 (5) is the rate of growth of the bacteria population when ๏ด = 5 hours. Its units are bacteria per hour. (b) With unlimited space and nutrients, ๏ฆ 0 should increase as ๏ด increases; so ๏ฆ 0 (5) ๏€ผ ๏ฆ 0 (10). If the supply of nutrients is limited, the growth rate slows down at some point in time, and the opposite may be true. 55. (a) ๏ˆ 0 (58) is the rate at which the daily heating cost changes with respect to temperature when the outside temperature is 58 โ—ฆ F. The units are dollars๏€ฝ โ—ฆ F. (b) If the outside temperature increases, the building should require less heating, so we would expect ๏ˆ 0 (58) to be negative. 56. (a) ๏ฆ 0 (8) is the rate of change of the quantity of coffee sold with respect to the price per pound when the price is $8 per pound. The units for ๏ฆ 0 (8) are pounds๏€ฝ(dollars๏€ฝpound). (b) ๏ฆ 0 (8) is negative since the quantity of coffee sold will decrease as the price charged for it increases. People are generally less willing to buy a product when its price increases. 57. (a) ๏“ 0 (๏” ) is the rate at which the oxygen solubility changes with respect to the water temperature. Its units are (mg๏€ฝL)๏€ฝโ—ฆ C. (b) For ๏” = 16โ—ฆ C, it appears that the tangent line to the curve goes through the points (0๏€ป 14) and (32๏€ป 6). So ๏“ 0 (16) โ‰ˆ 8 6 โˆ’ 14 =โˆ’ = โˆ’0๏€บ25 (mg๏€ฝL)๏€ฝโ—ฆ C. This means that as the temperature increases past 16โ—ฆ C, the oxygen 32 โˆ’ 0 32 solubility is decreasing at a rate of 0๏€บ25 (mg๏€ฝL)๏€ฝโ—ฆ C. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 136 ยค CHAPTER 2 LIMITS AND DERIVATIVES 58. (a) ๏“ 0 (๏” ) is the rate of change of the maximum sustainable speed of Coho salmon with respect to the temperature. Its units are (cm๏€ฝs)๏€ฝโ—ฆ C. (b) For ๏” = 15โ—ฆ C, it appears the tangent line to the curve goes through the points (10๏€ป 25) and (20๏€ป 32). So ๏“ 0 (15) โ‰ˆ 32 โˆ’ 25 = 0๏€บ7 (cm๏€ฝs)๏€ฝโ—ฆ C. This tells us that at ๏” = 15โ—ฆ C, the maximum sustainable speed of Coho salmon is 20 โˆ’ 10 changing at a rate of 0.7 (cm๏€ฝs)๏€ฝโ—ฆ C. In a similar fashion for ๏” = 25โ—ฆ C, we can use the points (20๏€ป 35) and (25๏€ป 25) to obtain ๏“ 0 (25) โ‰ˆ 25 โˆ’ 35 = โˆ’2 (cm๏€ฝs)๏€ฝโ—ฆ C. As it gets warmer than 20โ—ฆ C, the maximum sustainable speed decreases 25 โˆ’ 20 rapidly. 59. Since ๏ฆ (๏ธ) = ๏ธ sin(1๏€ฝ๏ธ) when ๏ธ 6= 0 and ๏ฆ (0) = 0, we have ๏ฆ 0 (0) = lim ๏จโ†’0 ๏ฆ (0 + ๏จ) โˆ’ ๏ฆ (0) ๏จ sin(1๏€ฝ๏จ) โˆ’ 0 = lim = lim sin(1๏€ฝ๏จ). This limit does not exist since sin(1๏€ฝ๏จ) takes the ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ values โˆ’1 and 1 on any interval containing 0. (Compare with Example 2.2.4.) 60. Since ๏ฆ(๏ธ) = ๏ธ2 sin(1๏€ฝ๏ธ) when ๏ธ 6= 0 and ๏ฆ (0) = 0, we have 1 ๏ฆ (0 + ๏จ) โˆ’ ๏ฆ (0) ๏จ2 sin(1๏€ฝ๏จ) โˆ’ 0 = lim = lim ๏จ sin(1๏€ฝ๏จ). Since โˆ’1 โ‰ค sin โ‰ค 1, we have ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ ๏ฆ 0 (0) = lim 1 1 โ‰ค |๏จ| โ‡’ โˆ’ |๏จ| โ‰ค ๏จ sin โ‰ค |๏จ|. Because lim (โˆ’ |๏จ|) = 0 and lim |๏จ| = 0, we know that ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏‚ต ๏‚ถ 1 = 0 by the Squeeze Theorem. Thus, ๏ฆ 0 (0) = 0. lim ๏จ sin ๏จโ†’0 ๏จ โˆ’ |๏จ| โ‰ค |๏จ| sin 61. (a) The slope at the origin appears to be 1. (b) The slope at the origin still appears to be 1. (c) Yes, the slope at the origin now appears to be 0. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.8 THE DERIVATIVE AS A FUNCTION ยค 137 2.8 The Derivative as a Function 1. It appears that ๏ฆ is an odd function, so ๏ฆ 0 will be an even functionโ€”that is, ๏ฆ 0 (โˆ’๏ก) = ๏ฆ 0 (๏ก). (a) ๏ฆ 0 (โˆ’3) โ‰ˆ โˆ’0๏€บ2 (b) ๏ฆ 0 (โˆ’2) โ‰ˆ 0 (c) ๏ฆ 0 (โˆ’1) โ‰ˆ 1 (d) ๏ฆ 0 (0) โ‰ˆ 2 (e) ๏ฆ 0 (1) โ‰ˆ 1 (f) ๏ฆ 0 (2) โ‰ˆ 0 (g) ๏ฆ 0 (3) โ‰ˆ โˆ’0๏€บ2 2. Your answers may vary depending on your estimates. (a) Note: By estimating the slopes of tangent lines on the graph of ๏ฆ , it appears that ๏ฆ 0 (0) โ‰ˆ 6. (b) ๏ฆ 0 (1) โ‰ˆ 0 (c) ๏ฆ 0 (2) โ‰ˆ โˆ’1๏€บ5 (d) ๏ฆ 0 (3) โ‰ˆ โˆ’1๏€บ3 (e) ๏ฆ 0 (4) โ‰ˆ โˆ’0๏€บ8 (f) ๏ฆ 0 (5) โ‰ˆ โˆ’0๏€บ3 (g) ๏ฆ 0 (6) โ‰ˆ 0 (h) ๏ฆ 0 (7) โ‰ˆ 0๏€บ2 3. (a)0 = II, since from left to right, the slopes of the tangents to graph (a) start out negative, become 0, then positive, then 0, then negative again. The actual function values in graph II follow the same pattern. (b) = IV, since from left to right, the slopes of the tangents to graph (b) start out at a ๏ฌxed positive quantity, then suddenly 0 become negative, then positive again. The discontinuities in graph IV indicate sudden changes in the slopes of the tangents. (c) = I, since the slopes of the tangents to graph (c) are negative for ๏ธ ๏€ผ 0 and positive for ๏ธ ๏€พ 0, as are the function values of 0 graph I. (d) = III, since from left to right, the slopes of the tangents to graph (d) are positive, then 0, then negative, then 0, then 0 positive, then 0, then negative again, and the function values in graph III follow the same pattern. Hints for Exercises 4 โ€“11: First plot ๏ธ-intercepts on the graph of ๏ฆ 0 for any horizontal tangents on the graph of ๏ฆ . Look for any corners on the graph of ๏ฆ โ€” there will be a discontinuity on the graph of ๏ฆ 0 . On any interval where ๏ฆ has a tangent with positive (or negative) slope, the graph of ๏ฆ 0 will be positive (or negative). If the graph of the function is linear, the graph of ๏ฆ 0 will be a horizontal line. 4. 5. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 138 ยค CHAPTER 2 LIMITS AND DERIVATIVES 6. 7. 8. 9. 10. 11. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.8 THE DERIVATIVE AS A FUNCTION 12. The slopes of the tangent lines on the graph of ๏น = ๏ (๏ด) are always positive, so the ๏น-values of ๏น = ๏ 0(๏ด) are always positive. These values start out relatively small and keep increasing, reaching a maximum at about ๏ด = 6. Then the ๏น-values of ๏น = ๏ 0(๏ด) decrease and get close to zero. The graph of ๏ 0 tells us that the yeast culture grows most rapidly after 6 hours and then the growth rate declines. 13. (a) ๏ƒ 0 (๏ด) is the instantaneous rate of change of percentage of full capacity with respect to elapsed time in hours. (b) The graph of ๏ƒ 0 (๏ด) tells us that the rate of change of percentage of full capacity is decreasing and approaching 0. 14. (a) ๏† 0 (๏ถ) is the instantaneous rate of change of fuel economy with respect to speed. (b) Graphs will vary depending on estimates of ๏† 0 , but will change from positive to negative at about ๏ถ = 50. (c) To save on gas, drive at the speed where ๏† is a maximum and ๏† 0 is 0, which is about 50 mi๏€ฝ h. 15. It appears that there are horizontal tangents on the graph of ๏ for ๏ด = 1963 and ๏ด = 1971. Thus, there are zeros for those values of ๏ด on the graph of ๏ 0 . The derivative is negative for the years 1963 to 1971. 16. See Figure 3.3.1. 17. The slope at 0 appears to be 1 and the slope at 1 appears to be 2๏€บ7. As ๏ธ decreases, the slope gets closer to 0. Since the graphs are so similar, we might guess that ๏ฆ 0 (๏ธ) = ๏ฅ๏ธ . c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยค 139 140 ยค CHAPTER 2 LIMITS AND DERIVATIVES 18. As ๏ธ increases toward 1, ๏ฆ 0 (๏ธ) decreases from very large numbers to 1. As ๏ธ becomes large, ๏ฆ 0 (๏ธ) gets closer to 0. As a guess, ๏ฆ 0 (๏ธ) = 1๏€ฝ๏ธ2 or ๏ฆ 0 (๏ธ) = 1๏€ฝ๏ธ makes sense. ๏‚ก ๏‚ข 19. (a) By zooming in, we estimate that ๏ฆ 0 (0) = 0, ๏ฆ 0 12 = 1, ๏ฆ 0 (1) = 2, and ๏ฆ 0 (2) = 4. ๏‚ก ๏‚ข (b) By symmetry, ๏ฆ 0 (โˆ’๏ธ) = โˆ’๏ฆ 0 (๏ธ). So ๏ฆ 0 โˆ’ 12 = โˆ’1, ๏ฆ 0 (โˆ’1) = โˆ’2, and ๏ฆ 0 (โˆ’2) = โˆ’4. (c) It appears that ๏ฆ 0 (๏ธ) is twice the value of ๏ธ, so we guess that ๏ฆ 0 (๏ธ) = 2๏ธ. ๏ฆ (๏ธ + ๏จ) โˆ’ ๏ฆ (๏ธ) (๏ธ + ๏จ)2 โˆ’ ๏ธ2 = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏‚ก 2 ๏‚ข ๏ธ + 2๏จ๏ธ + ๏จ2 โˆ’ ๏ธ2 2๏จ๏ธ + ๏จ2 ๏จ(2๏ธ + ๏จ) = lim = lim = lim = lim (2๏ธ + ๏จ) = 2๏ธ ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ (d) ๏ฆ 0 (๏ธ) = lim ๏‚ก ๏‚ข 20. (a) By zooming in, we estimate that ๏ฆ 0 (0) = 0, ๏ฆ 0 12 โ‰ˆ 0๏€บ75, ๏ฆ 0 (1) โ‰ˆ 3, ๏ฆ 0 (2) โ‰ˆ 12, and ๏ฆ 0 (3) โ‰ˆ 27. ๏‚ก ๏‚ข (b) By symmetry, ๏ฆ 0 (โˆ’๏ธ) = ๏ฆ 0 (๏ธ). So ๏ฆ 0 โˆ’ 12 โ‰ˆ 0๏€บ75, ๏ฆ 0 (โˆ’1) โ‰ˆ 3, ๏ฆ 0 (โˆ’2) โ‰ˆ 12, and ๏ฆ 0 (โˆ’3) โ‰ˆ 27. (c) (d) Since ๏ฆ 0 (0) = 0, it appears that ๏ฆ 0 may have the form ๏ฆ 0 (๏ธ) = ๏ก๏ธ2 . Using ๏ฆ 0 (1) = 3, we have ๏ก = 3, so ๏ฆ 0 (๏ธ) = 3๏ธ2 . ๏ฆ (๏ธ + ๏จ) โˆ’ ๏ฆ (๏ธ) (๏ธ + ๏จ)3 โˆ’ ๏ธ3 (๏ธ3 + 3๏ธ2 ๏จ + 3๏ธ๏จ2 + ๏จ3 ) โˆ’ ๏ธ3 = lim = lim ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ (e) ๏ฆ 0 (๏ธ) = lim 3๏ธ2 ๏จ + 3๏ธ๏จ2 + ๏จ3 ๏จ(3๏ธ2 + 3๏ธ๏จ + ๏จ2 ) = lim = lim (3๏ธ2 + 3๏ธ๏จ + ๏จ2 ) = 3๏ธ2 ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ = lim c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.8 21. ๏ฆ 0 (๏ธ) = lim ๏จโ†’0 = lim ๏จโ†’0 THE DERIVATIVE AS A FUNCTION ยค ๏ฆ(๏ธ + ๏จ) โˆ’ ๏ฆ (๏ธ) [3(๏ธ + ๏จ) โˆ’ 8] โˆ’ (3๏ธ โˆ’ 8) 3๏ธ + 3๏จ โˆ’ 8 โˆ’ 3๏ธ + 8 = lim = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ 3๏จ = lim 3 = 3 ๏จโ†’0 ๏จ Domain of ๏ฆ = domain of ๏ฆ 0 = R. 22. ๏ฆ 0 (๏ธ) = lim ๏จโ†’0 ๏ฆ(๏ธ + ๏จ) โˆ’ ๏ฆ (๏ธ) [๏ญ(๏ธ + ๏จ) + ๏ข] โˆ’ (๏ญ๏ธ + ๏ข) ๏ญ๏ธ + ๏ญ๏จ + ๏ข โˆ’ ๏ญ๏ธ โˆ’ ๏ข = lim = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ ๏ญ๏จ = lim ๏ญ = ๏ญ ๏จโ†’0 ๏จ Domain of ๏ฆ = domain of ๏ฆ 0 = R. = lim ๏จโ†’0 ๏‚ฃ ๏‚ค ๏‚ก ๏‚ข 2๏€บ5(๏ด + ๏จ)2 + 6(๏ด + ๏จ) โˆ’ 2๏€บ5๏ด2 + 6๏ด ๏ฆ (๏ด + ๏จ) โˆ’ ๏ฆ(๏ด) = lim 23. ๏ฆ (๏ด) = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ 0 = lim 2๏€บ5(๏ด2 + 2๏ด๏จ + ๏จ2 ) + 6๏ด + 6๏จ โˆ’ 2๏€บ5๏ด2 โˆ’ 6๏ด 2๏€บ5๏ด2 + 5๏ด๏จ + 2๏€บ5๏จ2 + 6๏จ โˆ’ 2๏€บ5๏ด2 = lim ๏จโ†’0 ๏จ ๏จ = lim ๏จ (5๏ด + 2๏€บ5๏จ + 6) 5๏ด๏จ + 2๏€บ5๏จ2 + 6๏จ = lim = lim (5๏ด + 2๏€บ5๏จ + 6) ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จโ†’0 ๏จโ†’0 = 5๏ด + 6 Domain of ๏ฆ = domain of ๏ฆ 0 = R. ๏‚ฃ ๏‚ค 4 + 8(๏ธ + ๏จ) โˆ’ 5(๏ธ + ๏จ)2 โˆ’ (4 + 8๏ธ โˆ’ 5๏ธ2 ) ๏ฆ(๏ธ + ๏จ) โˆ’ ๏ฆ (๏ธ) = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ 24. ๏ฆ 0 (๏ธ) = lim = lim 4 + 8๏ธ + 8๏จ โˆ’ 5(๏ธ2 + 2๏ธ๏จ + ๏จ2 ) โˆ’ 4 โˆ’ 8๏ธ + 5๏ธ2 8๏จ โˆ’ 5๏ธ2 โˆ’ 10๏ธ๏จ โˆ’ 5๏จ2 + 5๏ธ2 = lim ๏จโ†’0 ๏จ ๏จ = lim 8๏จ โˆ’ 10๏ธ๏จ โˆ’ 5๏จ2 ๏จ(8 โˆ’ 10๏ธ โˆ’ 5๏จ) = lim = lim (8 โˆ’ 10๏ธ โˆ’ 5๏จ) ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จโ†’0 ๏จโ†’0 = 8 โˆ’ 10๏ธ Domain of ๏ฆ = domain of ๏ฆ 0 = R. 25. ๏ฆ 0 (๏ธ) = lim ๏จโ†’0 = lim ๏จโ†’0 ๏ฆ(๏ธ + ๏จ) โˆ’ ๏ฆ (๏ธ) [(๏ธ + ๏จ)2 โˆ’ 2(๏ธ + ๏จ)3 ] โˆ’ (๏ธ2 โˆ’ 2๏ธ3 ) = lim ๏จโ†’0 ๏จ ๏จ ๏ธ2 + 2๏ธ๏จ + ๏จ2 โˆ’ 2๏ธ3 โˆ’ 6๏ธ2 ๏จ โˆ’ 6๏ธ๏จ2 โˆ’ 2๏จ3 โˆ’ ๏ธ2 + 2๏ธ3 ๏จ 2๏ธ๏จ + ๏จ2 โˆ’ 6๏ธ2 ๏จ โˆ’ 6๏ธ๏จ2 โˆ’ 2๏จ3 ๏จ(2๏ธ + ๏จ โˆ’ 6๏ธ2 โˆ’ 6๏ธ๏จ โˆ’ 2๏จ2 ) = lim ๏จโ†’0 ๏จ ๏จ 2 2 2 = lim (2๏ธ + ๏จ โˆ’ 6๏ธ โˆ’ 6๏ธ๏จ โˆ’ 2๏จ ) = 2๏ธ โˆ’ 6๏ธ = lim ๏จโ†’0 ๏จโ†’0 Domain of ๏ฆ = domain of ๏ฆ 0 = R. โˆš โˆš ๏ดโˆ’ ๏ด+๏จ 1 1 โˆš โˆš โˆš ๏‚ตโˆš ๏‚ถ โˆš โˆš โˆš โˆ’โˆš ๏ง(๏ด + ๏จ) โˆ’ ๏ง(๏ด) ๏ดโˆ’ ๏ด+๏จ ๏ด+ ๏ด+๏จ ๏ด+๏จ ๏ด+๏จ ๏ด ๏ด โˆš ยทโˆš โˆš โˆš = lim = lim = lim 26. ๏ง0 (๏ด) = lim ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ ๏จ ๏ด+๏จ ๏ด ๏ด+ ๏ด+๏จ = lim ๏จโ†’0 ๏จ ๏ด โˆ’ (๏ด + ๏จ) โˆ’๏จ โˆ’1 โˆš ๏‚กโˆš โˆš ๏‚กโˆš โˆš ๏‚กโˆš โˆš โˆš ๏‚ข = lim โˆš โˆš ๏‚ข = lim โˆš โˆš ๏‚ข ๏จโ†’0 ๏จ ๏จโ†’0 ๏ด+๏จ ๏ด ๏ด+ ๏ด+๏จ ๏ด+๏จ ๏ด ๏ด+ ๏ด+๏จ ๏ด+๏จ ๏ด ๏ด+ ๏ด+๏จ โˆ’1 1 โˆ’1 โˆš ๏‚ข = ๏‚ก โˆš ๏‚ข = โˆ’ 3๏€ฝ2 = โˆš โˆš ๏‚กโˆš 2๏ด ๏ด ๏ด ๏ด+ ๏ด ๏ด 2 ๏ด Domain of ๏ง = domain of ๏ง0 = (0๏€ป โˆž). c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 141 142 ยค CHAPTER 2 LIMITS AND DERIVATIVES ๏ง(๏ธ + ๏จ) โˆ’ ๏ง(๏ธ) = lim 27. ๏ง (๏ธ) = lim ๏จโ†’0 ๏จโ†’0 ๏จ 0 = lim ๏จโ†’0 ๏€ฃ ๏€ข๏ฐ ๏ฐ โˆš โˆš 9 โˆ’ (๏ธ + ๏จ) โˆ’ 9 โˆ’ ๏ธ 9 โˆ’ (๏ธ + ๏จ) + 9 โˆ’ ๏ธ ๏ฐ โˆš ๏จ 9 โˆ’ (๏ธ + ๏จ) + 9 โˆ’ ๏ธ [9 โˆ’ (๏ธ + ๏จ)] โˆ’ (9 โˆ’ ๏ธ) โˆ’๏จ ๏จ๏ฐ ๏ฉ = lim ๏จ๏ฐ ๏ฉ โˆš โˆš ๏จโ†’0 ๏จ 9 โˆ’ (๏ธ + ๏จ) + 9 โˆ’ ๏ธ ๏จ 9 โˆ’ (๏ธ + ๏จ) + 9 โˆ’ ๏ธ โˆ’1 โˆ’1 = lim ๏ฐ = โˆš โˆš ๏จโ†’0 2 9โˆ’๏ธ 9 โˆ’ (๏ธ + ๏จ) + 9 โˆ’ ๏ธ Domain of ๏ง = (โˆ’โˆž๏€ป 9], domain of ๏ง0 = (โˆ’โˆž๏€ป 9). (๏ธ + ๏จ)2 โˆ’ 1 ๏ธ2 โˆ’ 1 โˆ’ ๏ฆ(๏ธ + ๏จ) โˆ’ ๏ฆ (๏ธ) 2(๏ธ + ๏จ) โˆ’ 3 2๏ธ โˆ’ 3 = lim 28. ๏ฆ 0 (๏ธ) = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ [(๏ธ + ๏จ)2 โˆ’ 1](2๏ธ โˆ’ 3) โˆ’ [2(๏ธ + ๏จ) โˆ’ 3](๏ธ2 โˆ’ 1) [2(๏ธ + ๏จ) โˆ’ 3](2๏ธ โˆ’ 3) = lim ๏จโ†’0 ๏จ (๏ธ2 + 2๏ธ๏จ + ๏จ2 โˆ’ 1)(2๏ธ โˆ’ 3) โˆ’ (2๏ธ + 2๏จ โˆ’ 3)(๏ธ2 โˆ’ 1) ๏จโ†’0 ๏จ[2(๏ธ + ๏จ) โˆ’ 3](2๏ธ โˆ’ 3) = lim (2๏ธ3 + 4๏ธ2 ๏จ + 2๏ธ๏จ2 โˆ’ 2๏ธ โˆ’ 3๏ธ2 โˆ’ 6๏ธ๏จ โˆ’ 3๏จ2 + 3) โˆ’ (2๏ธ3 + 2๏ธ2 ๏จ โˆ’ 3๏ธ2 โˆ’ 2๏ธ โˆ’ 2๏จ + 3) ๏จโ†’0 ๏จ(2๏ธ + 2๏จ โˆ’ 3)(2๏ธ โˆ’ 3) = lim 4๏ธ2 ๏จ + 2๏ธ๏จ2 โˆ’ 6๏ธ๏จ โˆ’ 3๏จ2 โˆ’ 2๏ธ2 ๏จ + 2๏จ ๏จ(2๏ธ2 + 2๏ธ๏จ โˆ’ 6๏ธ โˆ’ 3๏จ + 2) = lim ๏จโ†’0 ๏จโ†’0 ๏จ(2๏ธ + 2๏จ โˆ’ 3)(2๏ธ โˆ’ 3) ๏จ(2๏ธ + 2๏จ โˆ’ 3)(2๏ธ โˆ’ 3) = lim 2๏ธ2 โˆ’ 6๏ธ + 2 2๏ธ2 + 2๏ธ๏จ โˆ’ 6๏ธ โˆ’ 3๏จ + 2 = ๏จโ†’0 (2๏ธ + 2๏จ โˆ’ 3)(2๏ธ โˆ’ 3) (2๏ธ โˆ’ 3)2 = lim Domain of ๏ฆ = domain of ๏ฆ 0 = (โˆ’โˆž๏€ป 32 ) โˆช ( 32 ๏€ป โˆž). 1 โˆ’ 2๏ด 1 โˆ’ 2(๏ด + ๏จ) โˆ’ ๏‡(๏ด + ๏จ) โˆ’ ๏‡(๏ด) 3 + (๏ด + ๏จ) 3+๏ด = lim 29. ๏‡ (๏ด) = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ 0 [1 โˆ’ 2(๏ด + ๏จ)](3 + ๏ด) โˆ’ [3 + (๏ด + ๏จ)](1 โˆ’ 2๏ด) [3 + (๏ด + ๏จ)](3 + ๏ด) = lim ๏จโ†’0 ๏จ = lim ๏จโ†’0 = lim 3 + ๏ด โˆ’ 6๏ด โˆ’ 2๏ด2 โˆ’ 6๏จ โˆ’ 2๏จ๏ด โˆ’ (3 โˆ’ 6๏ด + ๏ด โˆ’ 2๏ด2 + ๏จ โˆ’ 2๏จ๏ด) โˆ’6๏จ โˆ’ ๏จ = lim ๏จโ†’0 ๏จ(3 + ๏ด + ๏จ)(3 + ๏ด) ๏จ[3 + (๏ด + ๏จ)](3 + ๏ด) โˆ’7๏จ ๏จโ†’0 ๏จ(3 + ๏ด + ๏จ)(3 + ๏ด) = lim โˆ’7 ๏จโ†’0 (3 + ๏ด + ๏จ)(3 + ๏ด) = โˆ’7 (3 + ๏ด)2 Domain of ๏‡ = domain of ๏‡0 = (โˆ’โˆž๏€ป โˆ’3) โˆช (โˆ’3๏€ป โˆž). ๏ฆ(๏ธ + ๏จ) โˆ’ ๏ฆ (๏ธ) (๏ธ + ๏จ)3๏€ฝ2 โˆ’ ๏ธ3๏€ฝ2 [(๏ธ + ๏จ)3๏€ฝ2 โˆ’ ๏ธ3๏€ฝ2 ][(๏ธ + ๏จ)3๏€ฝ2 + ๏ธ3๏€ฝ2 ] = lim = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ [(๏ธ + ๏จ)3๏€ฝ2 + ๏ธ3๏€ฝ2 ] ๏‚ข ๏‚ก ๏จ 3๏ธ2 + 3๏ธ๏จ + ๏จ2 (๏ธ + ๏จ)3 โˆ’ ๏ธ3 ๏ธ3 + 3๏ธ2 ๏จ + 3๏ธ๏จ2 + ๏จ3 โˆ’ ๏ธ3 = lim = lim = lim ๏จโ†’0 ๏จ[(๏ธ + ๏จ)3๏€ฝ2 + ๏ธ3๏€ฝ2 ] ๏จโ†’0 ๏จโ†’0 ๏จ[(๏ธ + ๏จ)3๏€ฝ2 + ๏ธ3๏€ฝ2 ] ๏จ[(๏ธ + ๏จ)3๏€ฝ2 + ๏ธ3๏€ฝ2 ] 30. ๏ฆ 0 (๏ธ) = lim ๏จโ†’0 3๏ธ2 3๏ธ2 + 3๏ธ๏จ + ๏จ2 = 3๏€ฝ2 = 32 ๏ธ1๏€ฝ2 3๏€ฝ2 3๏€ฝ2 ๏จโ†’0 (๏ธ + ๏จ) +๏ธ 2๏ธ = lim Domain of ๏ฆ = domain of ๏ฆ 0 = [0๏€ป โˆž). Strictly speaking, the domain of ๏ฆ 0 is (0๏€ป โˆž) because the limit that de๏ฌnes ๏ฆ 0 (0) does c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.8 THE DERIVATIVE AS A FUNCTION ยค 143 not exist (as a two-sided limit). But the right-hand derivative (in the sense of Exercise 64) does exist at 0, so in that sense one could regard the domain of ๏ฆ 0 to be [0๏€ป โˆž). ๏‚ก 4 ๏‚ข ๏ธ + 4๏ธ3 ๏จ + 6๏ธ2 ๏จ2 + 4๏ธ๏จ3 + ๏จ4 โˆ’ ๏ธ4 ๏ฆ(๏ธ + ๏จ) โˆ’ ๏ฆ (๏ธ) (๏ธ + ๏จ)4 โˆ’ ๏ธ4 = lim = lim 31. ๏ฆ (๏ธ) = lim ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ ๏‚ก 3 ๏‚ข 4๏ธ3 ๏จ + 6๏ธ2 ๏จ2 + 4๏ธ๏จ3 + ๏จ4 = lim = lim 4๏ธ + 6๏ธ2 ๏จ + 4๏ธ๏จ2 + ๏จ3 = 4๏ธ3 ๏จโ†’0 ๏จโ†’0 ๏จ 0 Domain of ๏ฆ = domain of ๏ฆ 0 = R. 32. (a) (b) Note that the third graph in part (a) has small negative values for its slope, ๏ฆ 0 ; but as ๏ธ โ†’ 6โˆ’ , ๏ฆ 0 โ†’ โˆ’โˆž. See the graph in part (d). ๏ฆ(๏ธ + ๏จ) โˆ’ ๏ฆ (๏ธ) ๏จ ๏€ฃ ๏€ข๏ฐ ๏ฐ โˆš โˆš 6 โˆ’ (๏ธ + ๏จ) โˆ’ 6 โˆ’ ๏ธ 6 โˆ’ (๏ธ + ๏จ) + 6 โˆ’ ๏ธ ๏ฐ = lim โˆš ๏จโ†’0 ๏จ 6 โˆ’ (๏ธ + ๏จ) + 6 โˆ’ ๏ธ (c) ๏ฆ 0 (๏ธ) = lim ๏จโ†’0 = lim ๏จโ†’0 (d) [6 โˆ’ (๏ธ + ๏จ)] โˆ’ (6 โˆ’ ๏ธ) โˆ’๏จ ๏จ๏ฐ ๏ฉ = lim ๏‚กโˆš ๏‚ข โˆš โˆš ๏จโ†’0 ๏จ 6 โˆ’ ๏ธ โˆ’ ๏จ+ 6โˆ’๏ธ ๏จ 6 โˆ’ (๏ธ + ๏จ) + 6 โˆ’ ๏ธ โˆ’1 โˆ’1 = โˆš = lim โˆš โˆš ๏จโ†’0 2 6โˆ’๏ธ 6โˆ’๏ธโˆ’๏จ+ 6โˆ’๏ธ Domain of ๏ฆ = (โˆ’โˆž๏€ป 6], domain of ๏ฆ 0 = (โˆ’โˆž๏€ป 6). ๏ฆ(๏ธ + ๏จ) โˆ’ ๏ฆ (๏ธ) [(๏ธ + ๏จ)4 + 2(๏ธ + ๏จ)] โˆ’ (๏ธ4 + 2๏ธ) = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ 33. (a) ๏ฆ 0 (๏ธ) = lim ๏ธ4 + 4๏ธ3 ๏จ + 6๏ธ2 ๏จ2 + 4๏ธ๏จ3 + ๏จ4 + 2๏ธ + 2๏จ โˆ’ ๏ธ4 โˆ’ 2๏ธ ๏จโ†’0 ๏จ = lim = lim ๏จโ†’0 4๏ธ3 ๏จ + 6๏ธ2 ๏จ2 + 4๏ธ๏จ3 + ๏จ4 + 2๏จ ๏จ(4๏ธ3 + 6๏ธ2 ๏จ + 4๏ธ๏จ2 + ๏จ3 + 2) = lim ๏จโ†’0 ๏จ ๏จ = lim (4๏ธ3 + 6๏ธ2 ๏จ + 4๏ธ๏จ2 + ๏จ3 + 2) = 4๏ธ3 + 2 ๏จโ†’0 (b) Notice that ๏ฆ 0 (๏ธ) = 0 when ๏ฆ has a horizontal tangent, ๏ฆ 0 (๏ธ) is positive when the tangents have positive slope, and ๏ฆ 0 (๏ธ) is negative when the tangents have negative slope. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 144 ยค CHAPTER 2 LIMITS AND DERIVATIVES ๏ฆ (๏ธ + ๏จ) โˆ’ ๏ฆ (๏ธ) [(๏ธ + ๏จ) + 1๏€ฝ(๏ธ + ๏จ)] โˆ’ (๏ธ + 1๏€ฝ๏ธ) = lim = lim 34. (a) ๏ฆ 0 (๏ธ) = lim ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏ธ2 + 1 (๏ธ + ๏จ)2 + 1 โˆ’ ๏ธ+๏จ ๏ธ ๏จ ๏ธ[(๏ธ + ๏จ)2 + 1] โˆ’ (๏ธ + ๏จ)(๏ธ2 + 1) (๏ธ3 + 2๏จ๏ธ2 + ๏ธ๏จ2 + ๏ธ) โˆ’ (๏ธ3 + ๏ธ + ๏จ๏ธ2 + ๏จ) = lim ๏จโ†’0 ๏จโ†’0 ๏จ(๏ธ + ๏จ)๏ธ ๏จ(๏ธ + ๏จ)๏ธ = lim ๏ธ2 โˆ’ 1 1 ๏จ๏ธ2 + ๏ธ๏จ2 โˆ’ ๏จ ๏จ(๏ธ2 + ๏ธ๏จ โˆ’ 1) ๏ธ2 + ๏ธ๏จ โˆ’ 1 = lim = lim = , or 1 โˆ’ 2 ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ(๏ธ + ๏จ)๏ธ ๏จ(๏ธ + ๏จ)๏ธ (๏ธ + ๏จ)๏ธ ๏ธ2 ๏ธ = lim (b) Notice that ๏ฆ 0 (๏ธ) = 0 when ๏ฆ has a horizontal tangent, ๏ฆ 0 (๏ธ) is positive when the tangents have positive slope, and ๏ฆ 0 (๏ธ) is negative when the tangents have negative slope. Both functions are discontinuous at ๏ธ = 0. 35. (a) ๏• 0 (๏ด) is the rate at which the unemployment rate is changing with respect to time. Its units are percent unemployed per year. (b) To ๏ฌnd ๏• 0 (๏ด), we use lim ๏จโ†’0 For 2003: ๏• 0 (2003) โ‰ˆ ๏•(๏ด + ๏จ) โˆ’ ๏• (๏ด) ๏• (๏ด + ๏จ) โˆ’ ๏•(๏ด) โ‰ˆ for small values of ๏จ. ๏จ ๏จ 5๏€บ5 โˆ’ 6๏€บ0 ๏• (2004) โˆ’ ๏•(2003) = = โˆ’0๏€บ5 2004 โˆ’ 2003 1 For 2004: We estimate ๏• 0 (2004) by using ๏จ = โˆ’1 and ๏จ = 1, and then average the two results to obtain a ๏ฌnal estimate. ๏จ = โˆ’1 โ‡’ ๏• 0 (2004) โ‰ˆ ๏จ = 1 โ‡’ ๏• 0 (2004) โ‰ˆ 6๏€บ0 โˆ’ 5๏€บ5 ๏• (2003) โˆ’ ๏• (2004) = = โˆ’0๏€บ5; 2003 โˆ’ 2004 โˆ’1 ๏• (2005) โˆ’ ๏• (2004) 5๏€บ1 โˆ’ 5๏€บ5 = = โˆ’0๏€บ4. 2005 โˆ’ 2004 1 So we estimate that ๏• 0 (2004) โ‰ˆ 12 [โˆ’0๏€บ5 + (โˆ’0๏€บ4)] = โˆ’0๏€บ45. Other values for ๏• 0 (๏ด) are calculated in a similar fashion. ๏ด 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 0 โˆ’0๏€บ50 โˆ’0๏€บ45 โˆ’0๏€บ45 โˆ’0๏€บ25 0๏€บ60 2๏€บ35 1๏€บ90 โˆ’0๏€บ20 โˆ’0๏€บ75 โˆ’0๏€บ80 ๏• (๏ด) 36. (a) ๏Ž 0 (๏ด) is the rate at which the number of minimally invasive cosmetic surgery procedures performed in the United States is changing with respect to time. Its units are thousands of surgeries per year. (b) To ๏ฌnd ๏Ž 0 (๏ด), we use lim ๏จโ†’0 For 2000: ๏Ž 0 (2000) โ‰ˆ ๏Ž(๏ด + ๏จ) โˆ’ ๏Ž(๏ด) ๏Ž(๏ด + ๏จ) โˆ’ ๏Ž(๏ด) โ‰ˆ for small values of ๏จ. ๏จ ๏จ 4897 โˆ’ 5500 ๏Ž(2002) โˆ’ ๏Ž(2000) = = โˆ’301๏€บ5 2002 โˆ’ 2000 2 For 2002: We estimate ๏Ž 0 (2002) by using ๏จ = โˆ’2 and ๏จ = 2, and then average the two results to obtain a ๏ฌnal estimate. ๏จ = โˆ’2 โ‡’ ๏Ž 0 (2002) โ‰ˆ ๏จ = 2 โ‡’ ๏Ž 0 (2002) โ‰ˆ 5500 โˆ’ 4897 ๏Ž(2000) โˆ’ ๏Ž(2002) = = โˆ’301๏€บ5 2000 โˆ’ 2002 โˆ’2 7470 โˆ’ 4897 ๏Ž(2004) โˆ’ ๏Ž(2002) = = 1286๏€บ5 2004 โˆ’ 2002 2 So we estimate that ๏Ž 0 (2002) โ‰ˆ 12 [โˆ’301๏€บ5 + 1286๏€บ5] = 492๏€บ5. ๏ด 2000 2002 2004 2006 2008 2010 2012 0 โˆ’301๏€บ5 492๏€บ5 1060๏€บ25 856๏€บ75 605๏€บ75 534๏€บ5 737 ๏Ž (๏ด) c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.8 (c) THE DERIVATIVE AS A FUNCTION ยค 145 (d) We could get more accurate values for ๏Ž 0 (๏ด) by obtaining data for more values of ๏ด. 37. As in Exercise 35, we use one-sided difference quotients for the ๏ฌrst and last values, and average two difference quotients for all other values. ๏ด 14 21 28 35 42 49 ๏ˆ(๏ด) 41 54 64 72 78 83 ๏ˆ 0 (๏ด) 13 7 23 14 18 14 14 14 11 14 5 7 38. As in Exercise 35, we use one-sided difference quotients for the ๏ฌrst and last values, and average two difference quotients for all other values. The units for ๏— 0 (๏ธ) are grams per degree (g๏€ฝโ—ฆ C). ๏ธ 15๏€บ5 17๏€บ7 20๏€บ0 22๏€บ4 24๏€บ4 ๏— (๏ธ) 37๏€บ2 31๏€บ0 19๏€บ8 9๏€บ7 0 โˆ’9๏€บ8 โˆ’2๏€บ82 โˆ’3๏€บ87 โˆ’4๏€บ53 โˆ’6๏€บ73 โˆ’9๏€บ75 ๏— (๏ธ) 39. (a) ๏ค๏๏€ฝ๏ค๏ด is the rate at which the percentage of the cityโ€™s electrical power produced by solar panels changes with respect to time ๏ด, measured in percentage points per year. (b) 2 years after January 1, 2000 (January 1, 2002), the percentage of electrical power produced by solar panels was increasing at a rate of 3.5 percentage points per year. 40. ๏ค๏Ž๏€ฝ๏ค๏ฐ is the rate at which the number of people who travel by car to another state for a vacation changes with respect to the price of gasoline. If the price of gasoline goes up, we would expect fewer people to travel, so we would expect ๏ค๏Ž๏€ฝ๏ค๏ฐ to be negative. 41. ๏ฆ is not differentiable at ๏ธ = โˆ’4, because the graph has a corner there, and at ๏ธ = 0, because there is a discontinuity there. 42. ๏ฆ is not differentiable at ๏ธ = โˆ’1, because there is a discontinuity there, and at ๏ธ = 2, because the graph has a corner there. 43. ๏ฆ is not differentiable at ๏ธ = 1, because ๏ฆ is not de๏ฌned there, and at ๏ธ = 5, because the graph has a vertical tangent there. 44. ๏ฆ is not differentiable at ๏ธ = โˆ’2 and ๏ธ = 3, because the graph has corners there, and at ๏ธ = 1, because there is a discontinuity there. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 146 ยค CHAPTER 2 LIMITS AND DERIVATIVES 45. As we zoom in toward (โˆ’1๏€ป 0), the curve appears more and more like a straight line, so ๏ฆ (๏ธ) = ๏ธ + ๏ฐ |๏ธ| is differentiable at ๏ธ = โˆ’1. But no matter how much we zoom in toward the origin, the curve doesnโ€™t straighten outโ€”we canโ€™t eliminate the sharp point (a cusp). So ๏ฆ is not differentiable at ๏ธ = 0. 46. As we zoom in toward (0๏€ป 1), the curve appears more and more like a straight line, so ๏ง(๏ธ) = (๏ธ2 โˆ’ 1)2๏€ฝ3 is differentiable at ๏ธ = 0. But no matter how much we zoom in toward (1๏€ป 0) or (โˆ’1๏€ป 0), the curve doesnโ€™t straighten outโ€”we canโ€™t eliminate the sharp point (a cusp). So ๏ง is not differentiable at ๏ธ = ยฑ1. 47. Call the curve with the positive ๏น-intercept ๏ง and the other curve ๏จ. Notice that ๏ง has a maximum (horizontal tangent) at ๏ธ = 0, but ๏จ 6= 0, so ๏จ cannot be the derivative of ๏ง. Also notice that where ๏ง is positive, ๏จ is increasing. Thus, ๏จ = ๏ฆ and ๏ง = ๏ฆ 0 . Now ๏ฆ 0 (โˆ’1) is negative since ๏ฆ 0 is below the ๏ธ-axis there and ๏ฆ 00 (1) is positive since ๏ฆ is concave upward at ๏ธ = 1. Therefore, ๏ฆ 00 (1) is greater than ๏ฆ 0 (โˆ’1). 48. Call the curve with the smallest positive ๏ธ-intercept ๏ง and the other curve ๏จ. Notice that where ๏ง is positive in the ๏ฌrst quadrant, ๏จ is increasing. Thus, ๏จ = ๏ฆ and ๏ง = ๏ฆ 0 . Now ๏ฆ 0 (โˆ’1) is positive since ๏ฆ 0 is above the ๏ธ-axis there and ๏ฆ 00 (1) appears to be zero since ๏ฆ has an in๏ฌ‚ection point at ๏ธ = 1. Therefore, ๏ฆ 0 (1) is greater than ๏ฆ 00 (โˆ’1). 49. ๏ก = ๏ฆ , ๏ข = ๏ฆ 0 , ๏ฃ = ๏ฆ 00 . We can see this because where ๏ก has a horizontal tangent, ๏ข = 0, and where ๏ข has a horizontal tangent, ๏ฃ = 0. We can immediately see that ๏ฃ can be neither ๏ฆ nor ๏ฆ 0 , since at the points where ๏ฃ has a horizontal tangent, neither ๏ก nor ๏ข is equal to 0. 50. Where ๏ค has horizontal tangents, only ๏ฃ is 0, so ๏ค0 = ๏ฃ. ๏ฃ has negative tangents for ๏ธ ๏€ผ 0 and ๏ข is the only graph that is negative for ๏ธ ๏€ผ 0, so ๏ฃ0 = ๏ข. ๏ข has positive tangents on R (except at ๏ธ = 0), and the only graph that is positive on the same domain is ๏ก, so ๏ข0 = ๏ก. We conclude that ๏ค = ๏ฆ , ๏ฃ = ๏ฆ 0 , ๏ข = ๏ฆ 00 , and ๏ก = ๏ฆ 000 . 51. We can immediately see that ๏ก is the graph of the acceleration function, since at the points where ๏ก has a horizontal tangent, neither ๏ฃ nor ๏ข is equal to 0. Next, we note that ๏ก = 0 at the point where ๏ข has a horizontal tangent, so ๏ข must be the graph of the velocity function, and hence, ๏ข0 = ๏ก. We conclude that ๏ฃ is the graph of the position function. 52. ๏ก must be the jerk since none of the graphs are 0 at its high and low points. ๏ก is 0 where ๏ข has a maximum, so ๏ข0 = ๏ก. ๏ข is 0 where ๏ฃ has a maximum, so ๏ฃ0 = ๏ข. We conclude that ๏ค is the position function, ๏ฃ is the velocity, ๏ข is the acceleration, and ๏ก is the jerk. ๏ฆ(๏ธ + ๏จ) โˆ’ ๏ฆ (๏ธ) [3(๏ธ + ๏จ)2 + 2(๏ธ + ๏จ) + 1] โˆ’ (3๏ธ2 + 2๏ธ + 1) = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ 53. ๏ฆ 0 (๏ธ) = lim (3๏ธ2 + 6๏ธ๏จ + 3๏จ2 + 2๏ธ + 2๏จ + 1) โˆ’ (3๏ธ2 + 2๏ธ + 1) 6๏ธ๏จ + 3๏จ2 + 2๏จ = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ = lim = lim ๏จโ†’0 ๏จ(6๏ธ + 3๏จ + 2) = lim (6๏ธ + 3๏จ + 2) = 6๏ธ + 2 ๏จโ†’0 ๏จ c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.8 THE DERIVATIVE AS A FUNCTION ยค ๏ฆ 0 (๏ธ + ๏จ) โˆ’ ๏ฆ 0 (๏ธ) [6(๏ธ + ๏จ) + 2] โˆ’ (6๏ธ + 2) (6๏ธ + 6๏จ + 2) โˆ’ (6๏ธ + 2) = lim = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ ๏ฆ 00 (๏ธ) = lim ๏จโ†’0 6๏จ = lim 6 = 6 ๏จโ†’0 ๏จ = lim ๏จโ†’0 We see from the graph that our answers are reasonable because the graph of ๏ฆ 0 is that of a linear function and the graph of ๏ฆ 00 is that of a constant function. ๏ฆ(๏ธ + ๏จ) โˆ’ ๏ฆ (๏ธ) [(๏ธ + ๏จ)3 โˆ’ 3(๏ธ + ๏จ)] โˆ’ (๏ธ3 โˆ’ 3๏ธ) = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ (๏ธ3 + 3๏ธ2 ๏จ + 3๏ธ๏จ2 + ๏จ3 โˆ’ 3๏ธ โˆ’ 3๏จ) โˆ’ (๏ธ3 โˆ’ 3๏ธ) 3๏ธ2 ๏จ + 3๏ธ๏จ2 + ๏จ3 โˆ’ 3๏จ = lim = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ 54. ๏ฆ 0 (๏ธ) = lim = lim ๏จโ†’0 ๏จ(3๏ธ2 + 3๏ธ๏จ + ๏จ2 โˆ’ 3) = lim (3๏ธ2 + 3๏ธ๏จ + ๏จ2 โˆ’ 3) = 3๏ธ2 โˆ’ 3 ๏จโ†’0 ๏จ ๏ฆ 0 (๏ธ + ๏จ) โˆ’ ๏ฆ 0 (๏ธ) [3(๏ธ + ๏จ)2 โˆ’ 3] โˆ’ (3๏ธ2 โˆ’ 3) (3๏ธ2 + 6๏ธ๏จ + 3๏จ2 โˆ’ 3) โˆ’ (3๏ธ2 โˆ’ 3) = lim = lim ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ ๏ฆ 00 (๏ธ) = lim 6๏ธ๏จ + 3๏จ2 ๏จ(6๏ธ + 3๏จ) = lim = lim (6๏ธ + 3๏จ) = 6๏ธ ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ = lim We see from the graph that our answers are reasonable because the graph of ๏ฆ 0 is that of an even function (๏ฆ is an odd function) and the graph of ๏ฆ 00 is that of an odd function. Furthermore, ๏ฆ 0 = 0 when ๏ฆ has a horizontal tangent and ๏ฆ 00 = 0 when ๏ฆ 0 has a horizontal tangent. ๏‚ฃ ๏‚ค 2(๏ธ + ๏จ)2 โˆ’ (๏ธ + ๏จ)3 โˆ’ (2๏ธ2 โˆ’ ๏ธ3 ) ๏ฆ (๏ธ + ๏จ) โˆ’ ๏ฆ (๏ธ) = lim 55. ๏ฆ (๏ธ) = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ 0 ๏จ(4๏ธ + 2๏จ โˆ’ 3๏ธ2 โˆ’ 3๏ธ๏จ โˆ’ ๏จ2 ) = lim (4๏ธ + 2๏จ โˆ’ 3๏ธ2 โˆ’ 3๏ธ๏จ โˆ’ ๏จ2 ) = 4๏ธ โˆ’ 3๏ธ2 ๏จโ†’0 ๏จโ†’0 ๏จ ๏‚ฃ ๏‚ค 4(๏ธ + ๏จ) โˆ’ 3(๏ธ + ๏จ)2 โˆ’ (4๏ธ โˆ’ 3๏ธ2 ) ๏ฆ 0 (๏ธ + ๏จ) โˆ’ ๏ฆ 0 (๏ธ) ๏จ(4 โˆ’ 6๏ธ โˆ’ 3๏จ) 00 = lim = lim ๏ฆ (๏ธ) = lim ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ = lim = lim (4 โˆ’ 6๏ธ โˆ’ 3๏จ) = 4 โˆ’ 6๏ธ ๏จโ†’0 ๏ฆ 00 (๏ธ + ๏จ) โˆ’ ๏ฆ 00 (๏ธ) [4 โˆ’ 6(๏ธ + ๏จ)] โˆ’ (4 โˆ’ 6๏ธ) โˆ’6๏จ = lim = lim = lim (โˆ’6) = โˆ’6 ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จโ†’0 ๏จ ๏จ ๏ฆ 000 (๏ธ) = lim ๏ฆ 000 (๏ธ + ๏จ) โˆ’ ๏ฆ 000 (๏ธ) โˆ’6 โˆ’ (โˆ’6) 0 = lim = lim = lim (0) = 0 ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จโ†’0 ๏จ ๏จ ๏ฆ (4) (๏ธ) = lim The graphs are consistent with the geometric interpretations of the derivatives because ๏ฆ 0 has zeros where ๏ฆ has a local minimum and a local maximum, ๏ฆ 00 has a zero where ๏ฆ 0 has a local maximum, and ๏ฆ 000 is a constant function equal to the slope of ๏ฆ 00 . c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 147 148 ยค CHAPTER 2 LIMITS AND DERIVATIVES 56. (a) Since we estimate the velocity to be a maximum at ๏ด = 10, the acceleration is 0 at ๏ด = 10. (b) Drawing a tangent line at ๏ด = 10 on the graph of ๏ก, ๏ก appears to decrease by 10 ft๏€ฝs2 over a period of 20 s. So at ๏ด = 10 s, the jerk is approximately โˆ’10๏€ฝ20 = โˆ’0๏€บ5 (ft๏€ฝs2 )๏€ฝs or ft๏€ฝs3 . 57. (a) Note that we have factored ๏ธ โˆ’ ๏ก as the difference of two cubes in the third step. ๏ฆ (๏ธ) โˆ’ ๏ฆ (๏ก) ๏ธ1๏€ฝ3 โˆ’ ๏ก1๏€ฝ3 ๏ธ1๏€ฝ3 โˆ’ ๏ก1๏€ฝ3 = lim = lim 1๏€ฝ3 ๏ธโ†’๏ก ๏ธโ†’๏ก ๏ธโ†’๏ก (๏ธ ๏ธโˆ’๏ก ๏ธโˆ’๏ก โˆ’ ๏ก1๏€ฝ3 )(๏ธ2๏€ฝ3 + ๏ธ1๏€ฝ3 ๏ก1๏€ฝ3 + ๏ก2๏€ฝ3 ) ๏ฆ 0(๏ก) = lim 1 = lim ๏ธโ†’๏ก ๏ธ2๏€ฝ3 + ๏ธ1๏€ฝ3 ๏ก1๏€ฝ3 + ๏ก2๏€ฝ3 = 1 or 13 ๏กโˆ’2๏€ฝ3 3๏ก2๏€ฝ3 โˆš 3 ๏ฆ(0 + ๏จ) โˆ’ ๏ฆ(0) ๏จโˆ’0 1 = lim = lim 2๏€ฝ3 . This function increases without bound, so the limit does not ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ (b) ๏ฆ 0(0) = lim exist, and therefore ๏ฆ 0(0) does not exist. (c) lim |๏ฆ 0 (๏ธ)| = lim 1 ๏ธโ†’0 3๏ธ2๏€ฝ3 ๏ธโ†’0 = โˆž and ๏ฆ is continuous at ๏ธ = 0 (root function), so ๏ฆ has a vertical tangent at ๏ธ = 0. ๏ง(๏ธ) โˆ’ ๏ง(0) ๏ธ2๏€ฝ3 โˆ’ 0 1 = lim = lim 1๏€ฝ3 , which does not exist. ๏ธโ†’0 ๏ธโ†’0 ๏ธโ†’0 ๏ธ ๏ธโˆ’0 ๏ธ 58. (a) ๏ง 0(0) = lim ๏ง(๏ธ) โˆ’ ๏ง(๏ก) ๏ธ2๏€ฝ3 โˆ’ ๏ก2๏€ฝ3 (๏ธ1๏€ฝ3 โˆ’ ๏ก1๏€ฝ3 )(๏ธ1๏€ฝ3 + ๏ก1๏€ฝ3 ) = lim = lim 1๏€ฝ3 ๏ธโ†’๏ก ๏ธโ†’๏ก ๏ธโ†’๏ก (๏ธ ๏ธโˆ’๏ก ๏ธโˆ’๏ก โˆ’ ๏ก1๏€ฝ3 )(๏ธ2๏€ฝ3 + ๏ธ1๏€ฝ3 ๏ก1๏€ฝ3 + ๏ก2๏€ฝ3 ) (b) ๏ง 0(๏ก) = lim ๏ธ1๏€ฝ3 + ๏ก1๏€ฝ3 = lim ๏ธโ†’๏ก ๏ธ2๏€ฝ3 + ๏ธ1๏€ฝ3 ๏ก1๏€ฝ3 + ๏ก2๏€ฝ3 = 2๏ก1๏€ฝ3 2 = 1๏€ฝ3 or 23 ๏กโˆ’1๏€ฝ3 3๏ก2๏€ฝ3 3๏ก (c) ๏ง(๏ธ) = ๏ธ2๏€ฝ3 is continuous at ๏ธ = 0 and lim |๏ง0(๏ธ)| = lim ๏ธโ†’0 2 ๏ธโ†’0 3 |๏ธ|1๏€ฝ3 (d) = โˆž. This shows that ๏ง has a vertical tangent line at ๏ธ = 0. 59. ๏ฆ (๏ธ) = |๏ธ โˆ’ 6| = ๏€จ ๏ธโˆ’6 โˆ’(๏ธ โˆ’ 6) if ๏ธ โˆ’ 6 ๏€ผ 0 So the right-hand limit is lim ๏ธโ†’6+ is lim ๏ธโ†’6โˆ’ if ๏ธ โˆ’ 6 โ‰ฅ 6 = ๏€จ ๏ธ โˆ’ 6 if ๏ธ โ‰ฅ 6 6 โˆ’ ๏ธ if ๏ธ ๏€ผ 6 ๏ฆ (๏ธ) โˆ’ ๏ฆ (6) |๏ธ โˆ’ 6| โˆ’ 0 ๏ธโˆ’6 = lim = lim = lim 1 = 1, and the left-hand limit ๏ธโˆ’6 ๏ธโˆ’6 ๏ธโ†’6+ ๏ธโ†’6+ ๏ธ โˆ’ 6 ๏ธโ†’6+ ๏ฆ(๏ธ) โˆ’ ๏ฆ(6) |๏ธ โˆ’ 6| โˆ’ 0 6โˆ’๏ธ = lim = lim = lim (โˆ’1) = โˆ’1. Since these limits are not equal, ๏ธโˆ’6 ๏ธโˆ’6 ๏ธโ†’6โˆ’ ๏ธโ†’6โˆ’ ๏ธ โˆ’ 6 ๏ธโ†’6โˆ’ c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ SECTION 2.8 THE DERIVATIVE AS A FUNCTION ๏ฆ (๏ธ) โˆ’ ๏ฆ (6) does not exist and ๏ฆ is not differentiable at 6. ๏ธโˆ’6 ๏€จ 1 if ๏ธ ๏€พ 6 0 0 However, a formula for ๏ฆ is ๏ฆ (๏ธ) = โˆ’1 if ๏ธ ๏€ผ 6 ๏ฆ 0 (6) = lim ๏ธโ†’6 Another way of writing the formula is ๏ฆ 0 (๏ธ) = ๏ธโˆ’6 . |๏ธ โˆ’ 6| 60. ๏ฆ (๏ธ) = [[๏ธ]] is not continuous at any integer ๏ฎ, so ๏ฆ is not differentiable at ๏ฎ by the contrapositive of Theorem 4. If ๏ก is not an integer, then ๏ฆ is constant on an open interval containing ๏ก, so ๏ฆ 0(๏ก) = 0. Thus, ๏ฆ 0(๏ธ) = 0, ๏ธ not an integer. ๏€จ 2 ๏ธ if ๏ธ โ‰ฅ 0 61. (a) ๏ฆ (๏ธ) = ๏ธ |๏ธ| = 2 โˆ’๏ธ if ๏ธ ๏€ผ 0 (b) Since ๏ฆ (๏ธ) = ๏ธ2 for ๏ธ โ‰ฅ 0, we have ๏ฆ 0 (๏ธ) = 2๏ธ for ๏ธ ๏€พ 0. [See Exercise 19(d).] Similarly, since ๏ฆ (๏ธ) = โˆ’๏ธ2 for ๏ธ ๏€ผ 0, we have ๏ฆ 0 (๏ธ) = โˆ’2๏ธ for ๏ธ ๏€ผ 0. At ๏ธ = 0, we have ๏ฆ 0 (0) = lim ๏ธโ†’0 ๏ฆ (๏ธ) โˆ’ ๏ฆ (0) ๏ธ |๏ธ| = lim = lim |๏ธ| = 0๏€บ ๏ธโ†’0 ๏ธ ๏ธโ†’0 ๏ธโˆ’0 So ๏ฆ is differentiable at 0. Thus, ๏ฆ is differentiable for all ๏ธ. 0 ๏€จ 2๏ธ if ๏ธ โ‰ฅ 0 (c) From part (b), we have ๏ฆ (๏ธ) = 62. (a) |๏ธ| = ๏€จ 2๏ธ if ๏ธ โ‰ฅ 0 โˆ’2๏ธ if ๏ธ ๏€ผ 0 ๏€ฉ = 2 |๏ธ|. if ๏ธ โ‰ฅ 0 ๏ธ โˆ’๏ธ if ๏ธ ๏€ผ 0 ๏€จ so ๏ง(๏ธ) = ๏ธ + |๏ธ| = 0 if ๏ธ ๏€ผ 0 . Graph the line ๏น = 2๏ธ for ๏ธ โ‰ฅ 0 and graph ๏น = 0 (the x-axis) for ๏ธ ๏€ผ 0. (b) ๏ง is not differentiable at ๏ธ = 0 because the graph has a corner there, but is differentiable at all other values; that is, ๏ง is differentiable on (โˆ’โˆž๏€ป 0) โˆช (0๏€ป โˆž). (c) ๏ง(๏ธ) = ๏€จ 2๏ธ 0 if ๏ธ โ‰ฅ 0 if ๏ธ ๏€ผ 0 0 โ‡’ ๏ง (๏ธ) = ๏€จ 2 if ๏ธ ๏€พ 0 0 if ๏ธ ๏€ผ 0 Another way of writing the formula is ๏ง0 (๏ธ) = 1 + sgn ๏ธ for ๏ธ 6= 0. 63. (a) If ๏ฆ is even, then ๏ฆ 0 (โˆ’๏ธ) = lim ๏จโ†’0 = lim ๏จโ†’0 ๏ฆ (โˆ’๏ธ + ๏จ) โˆ’ ๏ฆ (โˆ’๏ธ) ๏ฆ [โˆ’(๏ธ โˆ’ ๏จ)] โˆ’ ๏ฆ (โˆ’๏ธ) = lim ๏จโ†’0 ๏จ ๏จ ๏ฆ (๏ธ โˆ’ ๏จ) โˆ’ ๏ฆ(๏ธ) ๏ฆ (๏ธ โˆ’ ๏จ) โˆ’ ๏ฆ (๏ธ) = โˆ’ lim ๏จโ†’0 ๏จ โˆ’๏จ = โˆ’ lim โˆ†๏ธโ†’0 [let โˆ†๏ธ = โˆ’๏จ] ๏ฆ (๏ธ + โˆ†๏ธ) โˆ’ ๏ฆ (๏ธ) = โˆ’๏ฆ 0 (๏ธ) โˆ†๏ธ Therefore, ๏ฆ 0 is odd. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ ยค 149 150 ยค CHAPTER 2 LIMITS AND DERIVATIVES (b) If ๏ฆ is odd, then ๏ฆ 0 (โˆ’๏ธ) = lim ๏จโ†’0 = lim ๏จโ†’0 = lim ๏ฆ (โˆ’๏ธ + ๏จ) โˆ’ ๏ฆ (โˆ’๏ธ) ๏ฆ [โˆ’(๏ธ โˆ’ ๏จ)] โˆ’ ๏ฆ (โˆ’๏ธ) = lim ๏จโ†’0 ๏จ ๏จ โˆ’๏ฆ(๏ธ โˆ’ ๏จ) + ๏ฆ (๏ธ) ๏ฆ (๏ธ โˆ’ ๏จ) โˆ’ ๏ฆ(๏ธ) = lim ๏จโ†’0 ๏จ โˆ’๏จ โˆ†๏ธโ†’0 [let โˆ†๏ธ = โˆ’๏จ] ๏ฆ (๏ธ + โˆ†๏ธ) โˆ’ ๏ฆ (๏ธ) = ๏ฆ 0 (๏ธ) โˆ†๏ธ Therefore, ๏ฆ 0 is even. ๏ฆ (4 + ๏จ) โˆ’ ๏ฆ (4) 5 โˆ’ (4 + ๏จ) โˆ’ 1 = lim ๏จ ๏จ ๏จโ†’0โˆ’ โˆ’๏จ = lim = โˆ’1 ๏จโ†’0โˆ’ ๏จ (b) 0 64. (a) ๏ฆโˆ’ (4) = lim ๏จโ†’0โˆ’ and 1 โˆ’1 ๏ฆ (4 + ๏จ) โˆ’ ๏ฆ (4) 5 โˆ’ (4 + ๏จ) 0 ๏ฆ+ = lim (4) = lim ๏จ ๏จ ๏จโ†’0+ ๏จโ†’0+ 1 โˆ’ (1 โˆ’ ๏จ) 1 = lim =1 = lim ๏จโ†’0+ ๏จ(1 โˆ’ ๏จ) ๏จโ†’0+ 1 โˆ’ ๏จ ๏€ธ 0 if ๏ธ โ‰ค 0 ๏€พ ๏€ผ 5โˆ’๏ธ if 0 ๏€ผ ๏ธ ๏€ผ 4 (c) ๏ฆ (๏ธ) = ๏€พ ๏€บ 1๏€ฝ(5 โˆ’ ๏ธ) if ๏ธ โ‰ฅ 4 At 4 we have lim ๏ฆ(๏ธ) = lim (5 โˆ’ ๏ธ) = 1 and lim ๏ฆ(๏ธ) = lim ๏ธโ†’4โˆ’ ๏ธโ†’4โˆ’ ๏ธโ†’4+ ๏ธโ†’4+ 1 = 1, so lim ๏ฆ (๏ธ) = 1 = ๏ฆ (4) and ๏ฆ is ๏ธโ†’4 5โˆ’๏ธ continuous at 4. Since ๏ฆ (5) is not de๏ฌned, ๏ฆ is discontinuous at 5. These expressions show that ๏ฆ is continuous on the intervals (โˆ’โˆž๏€ป 0), (0๏€ป 4), (4๏€ป 5) and (5๏€ป โˆž). Since lim ๏ฆ (๏ธ) = lim (5 โˆ’ ๏ธ) = 5 6= 0 = lim ๏ฆ (๏ธ), lim ๏ฆ (๏ธ) does ๏ธโ†’0+ ๏ธโ†’0+ ๏ธโ†’0โˆ’ ๏ธโ†’0 not exist, so ๏ฆ is discontinuous (and therefore not differentiable) at 0. 0 0 (4) 6= ๏ฆ+ (4), and from (c), ๏ฆ is not differentiable at 0 or 5. (d) From (a), ๏ฆ is not differentiable at 4 since ๏ฆโˆ’ 65. These graphs are idealizations conveying the spirit of the problem. In reality, changes in speed are not instantaneous, so the graph in (a) would not have corners and the graph in (b) would be continuous. (a) (b) 66. (a) c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ CHAPTER 2 REVIEW (b) The initial temperature of the water is close to room temperature because of ยค 151 (c) the water that was in the pipes. When the water from the hot water tank starts coming out, ๏ค๏” ๏€ฝ๏ค๏ด is large and positive as ๏” increases to the temperature of the water in the tank. In the next phase, ๏ค๏” ๏€ฝ๏ค๏ด = 0 as the water comes out at a constant, high temperature. After some time, ๏ค๏” ๏€ฝ๏ค๏ด becomes small and negative as the contents of the hot water tank are exhausted. Finally, when the hot water has run out, ๏ค๏” ๏€ฝ๏ค๏ด is once again 0 as the water maintains its (cold) temperature. In the right triangle in the diagram, let โˆ†๏น be the side opposite angle ๏ƒ and โˆ†๏ธ 67. the side adjacent to angle ๏ƒ. Then the slope of the tangent line ๏  is ๏ญ = โˆ†๏น๏€ฝโˆ†๏ธ = tan ๏ƒ. Note that 0 ๏€ผ ๏ƒ ๏€ผ ๏‚ผ2 . We know (see Exercise 19) that the derivative of ๏ฆ(๏ธ) = ๏ธ2 is ๏ฆ 0 (๏ธ) = 2๏ธ. So the slope of the tangent to the curve at the point (1๏€ป 1) is 2. Thus, ๏ƒ is the angle between 0 and ๏‚ผ2 whose tangent is 2; that is, ๏ƒ = tanโˆ’1 2 โ‰ˆ 63โ—ฆ . 2 Review 1. False. Limit Law 2 applies only if the individual limits exist (these donโ€™t). 2. False. Limit Law 5 cannot be applied if the limit of the denominator is 0 (it is). 3. True. Limit Law 5 applies. 4. False. ๏ธ2 โˆ’ 9 is not de๏ฌned when ๏ธ = 3, but ๏ธ + 3 is. ๏ธโˆ’3 5. True. 6. True. lim ๏ธโ†’3 ๏ธ2 โˆ’ 9 (๏ธ + 3)(๏ธ โˆ’ 3) = lim = lim (๏ธ + 3) ๏ธโ†’3 ๏ธโ†’3 ๏ธโˆ’3 (๏ธ โˆ’ 3) The limit doesnโ€™t exist since ๏ฆ (๏ธ)๏€ฝ๏ง(๏ธ) doesnโ€™t approach any real number as ๏ธ approaches 5. (The denominator approaches 0 and the numerator doesnโ€™t.) 7. False. Consider lim ๏ธโ†’5 ๏ธ(๏ธ โˆ’ 5) sin(๏ธ โˆ’ 5) or lim . The ๏ฌrst limit exists and is equal to 5. By Example 2.2.3, we know that ๏ธโ†’5 ๏ธโˆ’5 ๏ธโˆ’5 the latter limit exists (and it is equal to 1). 8. False. If ๏ฆ (๏ธ) = 1๏€ฝ๏ธ, ๏ง(๏ธ) = โˆ’1๏€ฝ๏ธ, and ๏ก = 0, then lim ๏ฆ(๏ธ) does not exist, lim ๏ง(๏ธ) does not exist, but ๏ธโ†’0 ๏ธโ†’0 lim [๏ฆ(๏ธ) + ๏ง(๏ธ)] = lim 0 = 0 exists. ๏ธโ†’0 9. True. ๏ธโ†’0 Suppose that lim [๏ฆ (๏ธ) + ๏ง(๏ธ)] exists. Now lim ๏ฆ(๏ธ) exists and lim ๏ง(๏ธ) does not exist, but ๏ธโ†’๏ก ๏ธโ†’๏ก ๏ธโ†’๏ก lim ๏ง(๏ธ) = lim {[๏ฆ (๏ธ) + ๏ง(๏ธ)] โˆ’ ๏ฆ (๏ธ)} = lim [๏ฆ (๏ธ) + ๏ง(๏ธ)] โˆ’ lim ๏ฆ(๏ธ) [by Limit Law 2], which exists, and ๏ธโ†’๏ก ๏ธโ†’๏ก ๏ธโ†’๏ก ๏ธโ†’๏ก we have a contradiction. Thus, lim [๏ฆ (๏ธ) + ๏ง(๏ธ)] does not exist. ๏ธโ†’๏ก c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 152 ยค 10. False. CHAPTER 2 LIMITS AND DERIVATIVES ๏‚ท Consider lim [๏ฆ(๏ธ)๏ง(๏ธ)] = lim (๏ธ โˆ’ 6) ๏ธโ†’6 ๏ธโ†’6 so ๏ฆ (6)๏ง(6) 6= 1. 11. True. 12. False. ๏‚ธ 1 . It exists (its value is 1) but ๏ฆ (6) = 0 and ๏ง(6) does not exist, ๏ธโˆ’6 A polynomial is continuous everywhere, so lim ๏ฐ(๏ธ) exists and is equal to ๏ฐ(๏ข). ๏ธโ†’๏ข Consider lim [๏ฆ(๏ธ) โˆ’ ๏ง(๏ธ)] = lim ๏ธโ†’0 ๏ธโ†’0 approaches โˆž. ๏‚ต ๏‚ถ 1 1 . This limit is โˆ’โˆž (not 0), but each of the individual functions โˆ’ ๏ธ2 ๏ธ4 13. True. See Figure 2.6.8. 14. False. Consider ๏ฆ (๏ธ) = sin ๏ธ for ๏ธ โ‰ฅ 0. lim ๏ฆ (๏ธ) 6= ยฑโˆž and ๏ฆ has no horizontal asymptote. ๏ธโ†’โˆž ๏€จ 1๏€ฝ(๏ธ โˆ’ 1) if ๏ธ 6= 1 15. False. Consider ๏ฆ (๏ธ) = 16. False. The function ๏ฆ must be continuous in order to use the Intermediate Value Theorem. For example, let ๏€จ 1 if 0 โ‰ค ๏ธ ๏€ผ 3 ๏ฆ (๏ธ) = There is no number ๏ฃ โˆˆ [0๏€ป 3] with ๏ฆ (๏ฃ) = 0. โˆ’1 if ๏ธ = 3 17. True. Use Theorem 2.5.8 with ๏ก = 2, ๏ข = 5, and ๏ง(๏ธ) = 4๏ธ2 โˆ’ 11. Note that ๏ฆ (4) = 3 is not needed. 18. True. Use the Intermediate Value Theorem with ๏ก = โˆ’1, ๏ข = 1, and ๏Ž = ๏‚ผ, since 3 ๏€ผ ๏‚ผ ๏€ผ 4. if ๏ธ = 1 2 19. True, by the de๏ฌnition of a limit with ๏€ข = 1. 20. False. For example, let ๏ฆ (๏ธ) = ๏€จ2 ๏ธ + 1 if ๏ธ 6= 0 if ๏ธ = 0 2 ๏‚ก ๏‚ข Then ๏ฆ(๏ธ) ๏€พ 1 for all ๏ธ, but lim ๏ฆ (๏ธ) = lim ๏ธ2 + 1 = 1. ๏ธโ†’0 21. False. 22. True. 23. False. 24. True. ๏ธโ†’0 See the note after Theorem 2.8.4. ๏ฆ 0(๏ฒ) exists โ‡’ ๏ฆ is differentiable at ๏ฒ ๏ค 2๏น is the second derivative while ๏ค๏ธ2 ๏‚ต ๏‚ถ2 ๏ค 2๏น ๏ค๏น = 0, but = 1. then ๏ค๏ธ2 ๏ค๏ธ ๏‚ต ๏ค๏น ๏ค๏ธ โ‡’ ๏ฆ is continuous at ๏ฒ ๏‚ถ2 โ‡’ lim ๏ฆ (๏ธ) = ๏ฆ (๏ฒ). ๏ธโ†’๏ฒ is the ๏ฌrst derivative squared. For example, if ๏น = ๏ธ, ๏ฆ (๏ธ) = ๏ธ10 โˆ’ 10๏ธ2 + 5 is continuous on the interval [0๏€ป 2], ๏ฆ (0) = 5, ๏ฆ (1) = โˆ’4, and ๏ฆ (2) = 989. Since โˆ’4 ๏€ผ 0 ๏€ผ 5, there is a number ๏ฃ in (0๏€ป 1) such that ๏ฆ (๏ฃ) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation ๏ธ10 โˆ’ 10๏ธ2 + 5 = 0 in the interval (0๏€ป 1). Similarly, there is a root in (1๏€ป 2). 25. True. See Exercise 2.5.72(b). 26. False See Exercise 2.5.72(b). c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ CHAPTER 2 REVIEW 1. (a) (i) lim ๏ฆ (๏ธ) = 3 (ii) ๏ธโ†’2+ ยค lim ๏ฆ (๏ธ) = 0 ๏ธโ†’โˆ’3+ (iii) lim ๏ฆ (๏ธ) does not exist since the left and right limits are not equal. (The left limit is โˆ’2.) ๏ธโ†’โˆ’3 (iv) lim ๏ฆ (๏ธ) = 2 ๏ธโ†’4 (v) lim ๏ฆ (๏ธ) = โˆž (vi) lim ๏ฆ (๏ธ) = โˆ’โˆž (vii) lim ๏ฆ (๏ธ) = 4 (viii) lim ๏ฆ (๏ธ) = โˆ’1 ๏ธโ†’0 ๏ธโ†’2โˆ’ ๏ธโ†’โˆž ๏ธโ†’โˆ’โˆž (b) The equations of the horizontal asymptotes are ๏น = โˆ’1 and ๏น = 4. (c) The equations of the vertical asymptotes are ๏ธ = 0 and ๏ธ = 2. (d) ๏ฆ is discontinuous at ๏ธ = โˆ’3, 0, 2, and 4. The discontinuities are jump, in๏ฌnite, in๏ฌnite, and removable, respectively. 2. ๏ธโ†’โˆ’โˆž lim ๏ฆ(๏ธ) = โˆ’2, ๏ธโ†’โˆž lim ๏ฆ (๏ธ) = โˆ’โˆž, ๏ธโ†’3+ ๏ธโ†’3โˆ’ lim ๏ฆ (๏ธ) = 0, lim ๏ฆ (๏ธ) = โˆž, ๏ธโ†’โˆ’3 lim ๏ฆ (๏ธ) = 2, ๏ฆ is continuous from the right at 3 3 3. Since the exponential function is continuous, lim ๏ฅ๏ธ โˆ’๏ธ = ๏ฅ1โˆ’1 = ๏ฅ0 = 1. ๏ธโ†’1 4. Since rational functions are continuous, lim ๏ธ2 โˆ’ 9 ๏ธโ†’3 ๏ธ2 + 2๏ธ โˆ’ 3 = 32 โˆ’ 9 32 + 2(3) โˆ’ 3 = 0 = 0. 12 โˆ’3 โˆ’ 3 โˆ’6 3 ๏ธ2 โˆ’ 9 (๏ธ + 3)(๏ธ โˆ’ 3) ๏ธโˆ’3 = lim = lim = = = ๏ธโ†’โˆ’3 ๏ธ2 + 2๏ธ โˆ’ 3 ๏ธโ†’โˆ’3 (๏ธ + 3)(๏ธ โˆ’ 1) ๏ธโ†’โˆ’3 ๏ธ โˆ’ 1 โˆ’3 โˆ’ 1 โˆ’4 2 5. lim ๏ธ2 โˆ’ 9 ๏ธ2 โˆ’ 9 2 + + = โˆ’โˆž since ๏ธ ๏€ผ 0 for 1 ๏€ผ ๏ธ ๏€ผ 3. + 2๏ธ โˆ’ 3 โ†’ 0 as ๏ธ โ†’ 1 and ๏ธ2 + 2๏ธ โˆ’ 3 ๏ธโ†’1+ ๏ธ2 + 2๏ธ โˆ’ 3 6. lim ๏‚ข ๏‚ก 3 ๏‚ก ๏‚ข ๏จ โˆ’ 3๏จ2 + 3๏จ โˆ’ 1 + 1 (๏จ โˆ’ 1)3 + 1 ๏จ3 โˆ’ 3๏จ2 + 3๏จ = lim = lim = lim ๏จ2 โˆ’ 3๏จ + 3 = 3 ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ 7. lim Another solution: Factor the numerator as a sum of two cubes and then simplify. ๏‚ค ๏‚ฃ [(๏จ โˆ’ 1) + 1] (๏จ โˆ’ 1)2 โˆ’ 1(๏จ โˆ’ 1) + 12 (๏จ โˆ’ 1)3 + 1 (๏จ โˆ’ 1)3 + 13 = lim = lim lim ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ ๏‚ฃ ๏‚ค 2 = lim (๏จ โˆ’ 1) โˆ’ ๏จ + 2 = 1 โˆ’ 0 + 2 = 3 ๏จโ†’0 (๏ด + 2)(๏ด โˆ’ 2) 2+2 4 1 ๏ด2 โˆ’ 4 ๏ด+2 = lim = lim 2 = = = ๏ดโ†’2 ๏ด3 โˆ’ 8 ๏ดโ†’2 (๏ด โˆ’ 2)(๏ด2 + 2๏ด + 4) ๏ดโ†’2 ๏ด + 2๏ด + 4 4+4+4 12 3 8. lim โˆš โˆš ๏ฒ ๏ฒ 4 + = โˆž since (๏ฒ โˆ’ 9) โ†’ 0 as ๏ฒ โ†’ 9 and ๏€พ 0 for ๏ฒ 6= 9. ๏ฒโ†’9 (๏ฒ โˆ’ 9)4 (๏ฒ โˆ’ 9)4 9. lim c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 153 154 ยค CHAPTER 2 LIMITS AND DERIVATIVES 4โˆ’๏ถ 10. lim ๏ถโ†’4+ |4 โˆ’ ๏ถ| ๏ถโ†’4+ โˆ’(4 โˆ’ ๏ถ) ๏ต4 โˆ’ 1 11. lim 4โˆ’๏ถ = lim ๏ตโ†’1 ๏ต3 + 5๏ต2 โˆ’ 6๏ต = lim ๏ตโ†’1 = lim 1 ๏ถโ†’4+ โˆ’1 = โˆ’1 2(2) 4 (๏ต2 + 1)(๏ต2 โˆ’ 1) (๏ต2 + 1)(๏ต + 1)(๏ต โˆ’ 1) (๏ต2 + 1)(๏ต + 1) = lim = lim = = ๏ตโ†’1 ๏ตโ†’1 ๏ต(๏ต2 + 5๏ต โˆ’ 6) ๏ต(๏ต + 6)(๏ต โˆ’ 1) ๏ต(๏ต + 6) 1(7) 7 โˆš โˆš โˆš ๏‚ธ ๏‚ทโˆš ๏ธ+6โˆ’๏ธ ๏ธ+6โˆ’๏ธ ๏ธ+6+๏ธ ( ๏ธ + 6 )2 โˆ’ ๏ธ2 ๏‚กโˆš ๏‚ข โˆš = lim ยท = lim ๏ธโ†’3 ๏ธ3 โˆ’ 3๏ธ2 ๏ธโ†’3 ๏ธโ†’3 ๏ธ2 (๏ธ โˆ’ 3) ๏ธ2 (๏ธ โˆ’ 3) ๏ธ+6+๏ธ ๏ธ+6+๏ธ 12. lim ๏ธ + 6 โˆ’ ๏ธ2 โˆ’(๏ธ2 โˆ’ ๏ธ โˆ’ 6) โˆ’(๏ธ โˆ’ 3)(๏ธ + 2) ๏‚กโˆš ๏‚ข = lim ๏‚กโˆš ๏‚ข = lim ๏‚กโˆš ๏‚ข ๏ธโ†’3 ๏ธ2 (๏ธ โˆ’ 3) ๏ธโ†’3 ๏ธ2 (๏ธ โˆ’ 3) ๏ธโ†’3 ๏ธ2 (๏ธ โˆ’ 3) ๏ธ+6+๏ธ ๏ธ+6+๏ธ ๏ธ+6+๏ธ = lim = lim ๏ธโ†’3 ๏ธ2 13. Since ๏ธ is positive, 5 โˆ’(๏ธ + 2) 5 ๏‚กโˆš ๏‚ข =โˆ’ =โˆ’ 9(3 + 3) 54 ๏ธ+6+๏ธ โˆš ๏ธ2 = |๏ธ| = ๏ธ. Thus, ๏ฐ โˆš โˆš โˆš โˆš 1 โˆ’ 9๏€ฝ๏ธ2 1 ๏ธ2 โˆ’ 9 ๏ธ2 โˆ’ 9๏€ฝ ๏ธ2 1โˆ’0 = lim = lim = = lim ๏ธโ†’โˆž 2๏ธ โˆ’ 6 ๏ธโ†’โˆž (2๏ธ โˆ’ 6)๏€ฝ๏ธ ๏ธโ†’โˆž 2 โˆ’ 6๏€ฝ๏ธ 2โˆ’0 2 14. Since ๏ธ is negative, โˆš ๏ธ2 = |๏ธ| = โˆ’๏ธ. Thus, ๏ฐ โˆš โˆš โˆš โˆš 1 โˆ’ 9๏€ฝ๏ธ2 1 ๏ธ2 โˆ’ 9 ๏ธ2 โˆ’ 9๏€ฝ ๏ธ2 1โˆ’0 = lim = lim = =โˆ’ ๏ธโ†’โˆ’โˆž 2๏ธ โˆ’ 6 ๏ธโ†’โˆ’โˆž (2๏ธ โˆ’ 6)๏€ฝ(โˆ’๏ธ) ๏ธโ†’โˆ’โˆž โˆ’2 + 6๏€ฝ๏ธ โˆ’2 + 0 2 lim 15. Let ๏ด = sin ๏ธ. Then as ๏ธ โ†’ ๏‚ผโˆ’ , sin ๏ธ โ†’ 0+ , so ๏ด โ†’ 0+ . Thus, lim ln(sin ๏ธ) = lim ln ๏ด = โˆ’โˆž. ๏ธโ†’๏‚ผ โˆ’ 16. lim ๏ธโ†’โˆ’โˆž 17. lim ๏ธโ†’โˆž ๏ดโ†’0+ 0โˆ’0โˆ’1 โˆ’1 1 1 โˆ’ 2๏ธ2 โˆ’ ๏ธ4 (1 โˆ’ 2๏ธ2 โˆ’ ๏ธ4 )๏€ฝ๏ธ4 1๏€ฝ๏ธ4 โˆ’ 2๏€ฝ๏ธ2 โˆ’ 1 = = = = lim = lim 4 4 4 ๏ธโ†’โˆ’โˆž ๏ธโ†’โˆ’โˆž 5 + ๏ธ โˆ’ 3๏ธ (5 + ๏ธ โˆ’ 3๏ธ )๏€ฝ๏ธ 5๏€ฝ๏ธ4 + 1๏€ฝ๏ธ3 โˆ’ 3 0+0โˆ’3 โˆ’3 3 โˆš ๏‚ทโˆš 2 ๏‚ธ ๏ธ + 4๏ธ + 1 โˆ’ ๏ธ ๏ธ2 + 4๏ธ + 1 + ๏ธ (๏ธ2 + 4๏ธ + 1) โˆ’ ๏ธ2 ยทโˆš = lim โˆš ๏ธโ†’โˆž ๏ธโ†’โˆž 1 ๏ธ2 + 4๏ธ + 1 + ๏ธ ๏ธ2 + 4๏ธ + 1 + ๏ธ ๏จ ๏ฉ โˆš (4๏ธ + 1)๏€ฝ๏ธ divide by ๏ธ = ๏ธ2 for ๏ธ ๏€พ 0 = lim โˆš ๏ธโ†’โˆž ( ๏ธ2 + 4๏ธ + 1 + ๏ธ)๏€ฝ๏ธ ๏‚กโˆš ๏‚ข ๏ธ2 + 4๏ธ + 1 โˆ’ ๏ธ = lim 4 + 1๏€ฝ๏ธ 4 4+0 = =2 = lim ๏ฐ = โˆš ๏ธโ†’โˆž 2 1+0+0+1 1 + 4๏€ฝ๏ธ + 1๏€ฝ๏ธ2 + 1 2 18. Let ๏ด = ๏ธ โˆ’ ๏ธ2 = ๏ธ(1 โˆ’ ๏ธ). Then as ๏ธ โ†’ โˆž, ๏ด โ†’ โˆ’โˆž, and lim ๏ฅ๏ธโˆ’๏ธ = lim ๏ฅ๏ด = 0. ๏ธโ†’โˆž ๏ดโ†’โˆ’โˆž 19. Let ๏ด = 1๏€ฝ๏ธ. Then as ๏ธ โ†’ 0+ , ๏ด โ†’ โˆž , and lim tanโˆ’1 (1๏€ฝ๏ธ) = lim tanโˆ’1 ๏ด = ๏ธโ†’0+ 20. lim ๏ธโ†’1 ๏‚ต 1 1 + 2 ๏ธโˆ’1 ๏ธ โˆ’ 3๏ธ + 2 ๏‚ถ ๏ดโ†’โˆž ๏‚ผ . 2 ๏‚ท ๏‚ท ๏‚ธ ๏‚ธ 1 1 1 ๏ธโˆ’2 = lim + = lim + ๏ธโ†’1 ๏ธ โˆ’ 1 ๏ธโ†’1 (๏ธ โˆ’ 1)(๏ธ โˆ’ 2) (๏ธ โˆ’ 1)(๏ธ โˆ’ 2) (๏ธ โˆ’ 1)(๏ธ โˆ’ 2) ๏‚ท ๏‚ธ 1 1 ๏ธโˆ’1 = lim = = โˆ’1 = lim ๏ธโ†’1 (๏ธ โˆ’ 1)(๏ธ โˆ’ 2) ๏ธโ†’1 ๏ธ โˆ’ 2 1โˆ’2 c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ CHAPTER 2 REVIEW ๏‚ก ยค ๏‚ข 21. From the graph of ๏น = cos2 ๏ธ ๏€ฝ๏ธ2 , it appears that ๏น = 0 is the horizontal asymptote and ๏ธ = 0 is the vertical asymptote. Now 0 โ‰ค (cos ๏ธ)2 โ‰ค 1 โ‡’ cos2 ๏ธ 1 0 โ‰ค โ‰ค 2 2 ๏ธ ๏ธ2 ๏ธ โ‡’ 0โ‰ค cos2 ๏ธ 1 โ‰ค 2 . But lim 0 = 0 and ๏ธโ†’ยฑโˆž ๏ธ2 ๏ธ 1 cos2 ๏ธ = 0, so by the Squeeze Theorem, lim = 0. 2 ๏ธโ†’ยฑโˆž ๏ธ ๏ธโ†’ยฑโˆž ๏ธ2 lim cos2 ๏ธ = โˆž because cos2 ๏ธ โ†’ 1 and ๏ธ2 โ†’ 0+ as ๏ธ โ†’ 0, so ๏ธ = 0 is the ๏ธโ†’0 ๏ธ2 Thus, ๏น = 0 is the horizontal asymptote. lim vertical asymptote. 22. From the graph of ๏น = ๏ฆ (๏ธ) = โˆš โˆš ๏ธ2 + ๏ธ + 1 โˆ’ ๏ธ2 โˆ’ ๏ธ, it appears that there are 2 horizontal asymptotes and possibly 2 vertical asymptotes. To obtain a different form for ๏ฆ , letโ€™s multiply and divide it by its conjugate. โˆš โˆš โˆš ๏‚กโˆš ๏‚ข ๏ธ2 + ๏ธ + 1 + ๏ธ2 โˆ’ ๏ธ (๏ธ2 + ๏ธ + 1) โˆ’ (๏ธ2 โˆ’ ๏ธ) 2 2 โˆš โˆš = โˆš ๏ธ +๏ธ+1โˆ’ ๏ธ โˆ’๏ธ โˆš ๏ฆ1 (๏ธ) = ๏ธ2 + ๏ธ + 1 + ๏ธ2 โˆ’ ๏ธ ๏ธ2 + ๏ธ + 1 + ๏ธ2 โˆ’ ๏ธ 2๏ธ + 1 โˆš = โˆš ๏ธ2 + ๏ธ + 1 + ๏ธ2 โˆ’ ๏ธ Now 2๏ธ + 1 โˆš lim ๏ฆ1 (๏ธ) = lim โˆš ๏ธโ†’โˆž ๏ธ2 + ๏ธ + 1 + ๏ธ2 โˆ’ ๏ธ ๏ธโ†’โˆž 2 + (1๏€ฝ๏ธ) ๏ฐ = lim ๏ฐ ๏ธโ†’โˆž 1 + (1๏€ฝ๏ธ) + (1๏€ฝ๏ธ2 ) + 1 โˆ’ (1๏€ฝ๏ธ) = [since โˆš ๏ธ2 = ๏ธ for ๏ธ ๏€พ 0] 2 = 1, 1+1 so ๏น = 1 is a horizontal asymptote. For ๏ธ ๏€ผ 0, we have โˆš ๏ธ2 = |๏ธ| = โˆ’๏ธ, so when we divide the denominator by ๏ธ, with ๏ธ ๏€ผ 0, we get ๏€ฃ ๏€ข๏ฒ ๏ฒ โˆš โˆš โˆš โˆš 1 1 1 ๏ธ2 + ๏ธ + 1 + ๏ธ2 โˆ’ ๏ธ ๏ธ2 + ๏ธ + 1 + ๏ธ2 โˆ’ ๏ธ โˆš =โˆ’ =โˆ’ 1+ + 2 + 1โˆ’ ๏ธ ๏ธ ๏ธ ๏ธ ๏ธ2 Therefore, 2๏ธ + 1 2 + (1๏€ฝ๏ธ) ๏จ๏ฐ ๏ฉ โˆš lim ๏ฆ1 (๏ธ) = lim โˆš = lim ๏ฐ 2 2 ๏ธโ†’โˆ’โˆž ๏ธโ†’โˆž ๏ธ +๏ธ+1+ ๏ธ โˆ’๏ธ โˆ’ 1 + (1๏€ฝ๏ธ) + (1๏€ฝ๏ธ2 ) + 1 โˆ’ (1๏€ฝ๏ธ) ๏ธโ†’โˆ’โˆž = 2 = โˆ’1๏€ป โˆ’(1 + 1) so ๏น = โˆ’1 is a horizontal asymptote. The domain of ๏ฆ is (โˆ’โˆž๏€ป 0] โˆช [1๏€ป โˆž). As ๏ธ โ†’ 0โˆ’ , ๏ฆ (๏ธ) โ†’ 1, so โˆš ๏ธ = 0 is not a vertical asymptote. As ๏ธ โ†’ 1+ , ๏ฆ (๏ธ) โ†’ 3, so ๏ธ = 1 is not a vertical asymptote and hence there are no vertical asymptotes. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 155 156 ยค CHAPTER 2 LIMITS AND DERIVATIVES 23. Since 2๏ธ โˆ’ 1 โ‰ค ๏ฆ(๏ธ) โ‰ค ๏ธ2 for 0 ๏€ผ ๏ธ ๏€ผ 3 and lim (2๏ธ โˆ’ 1) = 1 = lim ๏ธ2 , we have lim ๏ฆ (๏ธ) = 1 by the Squeeze Theorem. ๏ธโ†’1 ๏ธโ†’1 ๏‚ฏ ๏‚ข ๏‚ก ๏ธโ†’1 ๏‚ข๏‚ฏ ๏‚ก 24. Let ๏ฆ(๏ธ) = โˆ’๏ธ2 , ๏ง(๏ธ) = ๏ธ2 cos 1๏€ฝ๏ธ2 and ๏จ(๏ธ) = ๏ธ2 . Then since ๏‚ฏcos 1๏€ฝ๏ธ2 ๏‚ฏ โ‰ค 1 for ๏ธ 6= 0, we have ๏ฆ (๏ธ) โ‰ค ๏ง(๏ธ) โ‰ค ๏จ(๏ธ) for ๏ธ 6= 0, and so lim ๏ฆ (๏ธ) = lim ๏จ(๏ธ) = 0 โ‡’ ๏ธโ†’0 ๏ธโ†’0 lim ๏ง(๏ธ) = 0 by the Squeeze Theorem. ๏ธโ†’0 25. Given ๏€ข ๏€พ 0, we need ๏‚ฑ ๏€พ 0 such that if 0 ๏€ผ |๏ธ โˆ’ 2| ๏€ผ ๏‚ฑ, then |(14 โˆ’ 5๏ธ) โˆ’ 4| ๏€ผ ๏€ข. But |(14 โˆ’ 5๏ธ) โˆ’ 4| ๏€ผ ๏€ข |โˆ’5๏ธ + 10| ๏€ผ ๏€ข โ‡” โ‡” |โˆ’5| |๏ธ โˆ’ 2| ๏€ผ ๏€ข โ‡” |๏ธ โˆ’ 2| ๏€ผ ๏€ข๏€ฝ5. So if we choose ๏‚ฑ = ๏€ข๏€ฝ5, then 0 ๏€ผ |๏ธ โˆ’ 2| ๏€ผ ๏‚ฑ โ‡’ |(14 โˆ’ 5๏ธ) โˆ’ 4| ๏€ผ ๏€ข. Thus, lim (14 โˆ’ 5๏ธ) = 4 by the de๏ฌnition of a limit. ๏ธโ†’2 โˆš โˆš โˆš 26. Given ๏€ข ๏€พ 0 we must ๏ฌnd ๏‚ฑ ๏€พ 0 so that if 0 ๏€ผ |๏ธ โˆ’ 0| ๏€ผ ๏‚ฑ, then | 3 ๏ธ โˆ’ 0| ๏€ผ ๏€ข. Now | 3 ๏ธ โˆ’ 0| = | 3 ๏ธ| ๏€ผ ๏€ข โ‡’ โˆš ๏ฐ โˆš โˆš 3 โ‡’ | 3 ๏ธ โˆ’ 0| = | 3 ๏ธ| = 3 |๏ธ| ๏€ผ ๏€ข3 = ๏€ข. โˆš 3 |๏ธ| = | 3 ๏ธ| ๏€ผ ๏€ข3 . So take ๏‚ฑ = ๏€ข3 . Then 0 ๏€ผ |๏ธ โˆ’ 0| = |๏ธ| ๏€ผ ๏€ข3 โˆš Therefore, by the de๏ฌnition of a limit, lim 3 ๏ธ = 0. ๏ธโ†’0 ๏‚ฏ ๏‚ฏ 27. Given ๏€ข ๏€พ 0, we need ๏‚ฑ ๏€พ 0 so that if 0 ๏€ผ |๏ธ โˆ’ 2| ๏€ผ ๏‚ฑ, then ๏‚ฏ๏ธ2 โˆ’ 3๏ธ โˆ’ (โˆ’2)๏‚ฏ ๏€ผ ๏€ข. First, note that if |๏ธ โˆ’ 2| ๏€ผ 1, then โˆ’1 ๏€ผ ๏ธ โˆ’ 2 ๏€ผ 1, so 0 ๏€ผ ๏ธ โˆ’ 1 ๏€ผ 2 โ‡’ |๏ธ โˆ’ 1| ๏€ผ 2. Now let ๏‚ฑ = min {๏€ข๏€ฝ2๏€ป 1}. Then 0 ๏€ผ |๏ธ โˆ’ 2| ๏€ผ ๏‚ฑ ๏‚ฏ 2 ๏‚ฏ ๏‚ฏ๏ธ โˆ’ 3๏ธ โˆ’ (โˆ’2)๏‚ฏ = |(๏ธ โˆ’ 2)(๏ธ โˆ’ 1)| = |๏ธ โˆ’ 2| |๏ธ โˆ’ 1| ๏€ผ (๏€ข๏€ฝ2)(2) = ๏€ข. โ‡’ Thus, lim (๏ธ2 โˆ’ 3๏ธ) = โˆ’2 by the de๏ฌnition of a limit. ๏ธโ†’2 โˆš 28. Given ๏ ๏€พ 0, we need ๏‚ฑ ๏€พ 0 such that if 0 ๏€ผ ๏ธ โˆ’ 4 ๏€ผ ๏‚ฑ, then 2๏€ฝ ๏ธ โˆ’ 4 ๏€พ ๏. This is true ๏ธ โˆ’ 4 ๏€ผ 4๏€ฝ๏ 2 . So if we choose ๏‚ฑ = 4๏€ฝ๏ 2 , then 0 ๏€ผ ๏ธ โˆ’ 4 ๏€ผ ๏‚ฑ ๏‚ก โˆš ๏‚ข lim 2๏€ฝ ๏ธ โˆ’ 4 = โˆž. โ‡” โˆš ๏ธ โˆ’ 4 ๏€ผ 2๏€ฝ๏ โ‡” โˆš โ‡’ 2๏€ฝ ๏ธ โˆ’ 4 ๏€พ ๏. So by the de๏ฌnition of a limit, ๏ธโ†’4+ 29. (a) ๏ฆ (๏ธ) = โˆš โˆ’๏ธ if ๏ธ ๏€ผ 0, ๏ฆ (๏ธ) = 3 โˆ’ ๏ธ if 0 โ‰ค ๏ธ ๏€ผ 3, ๏ฆ (๏ธ) = (๏ธ โˆ’ 3)2 if ๏ธ ๏€พ 3. โˆš โˆ’๏ธ = 0 (i) lim ๏ฆ (๏ธ) = lim (3 โˆ’ ๏ธ) = 3 (ii) lim ๏ฆ (๏ธ) = lim (iii) Because of (i) and (ii), lim ๏ฆ (๏ธ) does not exist. (iv) lim ๏ฆ (๏ธ) = lim (3 โˆ’ ๏ธ) = 0 ๏ธโ†’0+ ๏ธโ†’0โˆ’ ๏ธโ†’0+ ๏ธโ†’0 ๏ธโ†’3โˆ’ 2 (v) lim ๏ฆ (๏ธ) = lim (๏ธ โˆ’ 3) = 0 ๏ธโ†’3+ ๏ธโ†’0โˆ’ ๏ธโ†’3โˆ’ (vi) Because of (iv) and (v), lim ๏ฆ (๏ธ) = 0. ๏ธโ†’3 ๏ธโ†’3+ (b) ๏ฆ is discontinuous at 0 since lim ๏ฆ (๏ธ) does not exist. ๏ธโ†’0 (c) ๏ฆ is discontinuous at 3 since ๏ฆ (3) does not exist. 30. (a) ๏ง(๏ธ) = 2๏ธ โˆ’ ๏ธ2 if 0 โ‰ค ๏ธ โ‰ค 2, ๏ง(๏ธ) = 2 โˆ’ ๏ธ if 2 ๏€ผ ๏ธ โ‰ค 3, ๏ง(๏ธ) = ๏ธ โˆ’ 4 if 3 ๏€ผ ๏ธ ๏€ผ 4, ๏ง(๏ธ) = ๏‚ผ if ๏ธ โ‰ฅ 4. Therefore, lim ๏ง(๏ธ) = lim ๏ธโ†’2โˆ’ ๏ธโ†’2โˆ’ ๏‚ก ๏‚ข 2๏ธ โˆ’ ๏ธ2 = 0 and lim ๏ง(๏ธ) = lim (2 โˆ’ ๏ธ) = 0. Thus, lim ๏ง(๏ธ) = 0 = ๏ง (2), ๏ธโ†’2+ ๏ธโ†’2 ๏ธโ†’2+ so ๏ง is continuous at 2. lim ๏ง(๏ธ) = lim (2 โˆ’ ๏ธ) = โˆ’1 and lim ๏ง(๏ธ) = lim (๏ธ โˆ’ 4) = โˆ’1. Thus, ๏ธโ†’3โˆ’ ๏ธโ†’3โˆ’ ๏ธโ†’3+ ๏ธโ†’3+ c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ CHAPTER 2 REVIEW ยค 157 (b) lim ๏ง(๏ธ) = โˆ’1 = ๏ง(3), so ๏ง is continuous at 3. ๏ธโ†’3 lim ๏ง(๏ธ) = lim (๏ธ โˆ’ 4) = 0 and lim ๏ง(๏ธ) = lim ๏‚ผ = ๏‚ผ. ๏ธโ†’4โˆ’ ๏ธโ†’4โˆ’ ๏ธโ†’4+ ๏ธโ†’4+ Thus, lim ๏ง(๏ธ) does not exist, so ๏ง is discontinuous at 4. But ๏ธโ†’4 lim ๏ง(๏ธ) = ๏‚ผ = ๏ง(4), so ๏ง is continuous from the right at 4. ๏ธโ†’4+ 31. sin ๏ธ and ๏ฅ๏ธ are continuous on R by Theorem 2.5.7. Since ๏ฅ๏ธ is continuous on R, ๏ฅsin ๏ธ is continuous on R by Theorem 2.5.9. Lastly, ๏ธ is continuous on R since itโ€™s a polynomial and the product ๏ธ๏ฅsin ๏ธ is continuous on its domain R by Theorem 2.5.4. 32. ๏ธ2 โˆ’ 9 is continuous on R since it is a polynomial and โˆš ๏ธ is continuous on [0๏€ป โˆž) by Theorem 2.5.7, so the composition โˆš ๏‚ฉ ๏‚ช ๏ธ2 โˆ’ 9 is continuous on ๏ธ | ๏ธ2 โˆ’ 9 โ‰ฅ 0 = (โˆ’โˆž๏€ป โˆ’3] โˆช [3๏€ป โˆž) by Theorem 2.5.9. Note that ๏ธ2 โˆ’ 2 6= 0 on this set and โˆš ๏ธ2 โˆ’ 9 so the quotient function ๏ง(๏ธ) = 2 is continuous on its domain, (โˆ’โˆž๏€ป โˆ’3] โˆช [3๏€ป โˆž) by Theorem 2.5.4. ๏ธ โˆ’2 33. ๏ฆ (๏ธ) = ๏ธ5 โˆ’ ๏ธ3 + 3๏ธ โˆ’ 5 is continuous on the interval [1๏€ป 2], ๏ฆ (1) = โˆ’2, and ๏ฆ(2) = 25. Since โˆ’2 ๏€ผ 0 ๏€ผ 25, there is a number ๏ฃ in (1๏€ป 2) such that ๏ฆ (๏ฃ) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation ๏ธ5 โˆ’ ๏ธ3 + 3๏ธ โˆ’ 5 = 0 in the interval (1๏€ป 2). 34. ๏ฆ (๏ธ) = cos โˆš ๏ธ โˆ’ ๏ฅ๏ธ + 2 is continuous on the interval [0๏€ป 1], ๏ฆ(0) = 2, and ๏ฆ (1) โ‰ˆ โˆ’0๏€บ2. Since โˆ’0๏€บ2 ๏€ผ 0 ๏€ผ 2, there is a number ๏ฃ in (0๏€ป 1) such that ๏ฆ (๏ฃ) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation โˆš โˆš cos ๏ธ โˆ’ ๏ฅ๏ธ + 2 = 0, or cos ๏ธ = ๏ฅ๏ธ โˆ’ 2, in the interval (0๏€ป 1). 35. (a) The slope of the tangent line at (2๏€ป 1) is lim ๏ธโ†’2 ๏ฆ (๏ธ) โˆ’ ๏ฆ (2) 9 โˆ’ 2๏ธ2 โˆ’ 1 8 โˆ’ 2๏ธ2 โˆ’2(๏ธ2 โˆ’ 4) โˆ’2(๏ธ โˆ’ 2)(๏ธ + 2) = lim = lim = lim = lim ๏ธโ†’2 ๏ธโ†’2 ๏ธโ†’2 ๏ธโ†’2 ๏ธโˆ’2 ๏ธโˆ’2 ๏ธโˆ’2 ๏ธโˆ’2 ๏ธโˆ’2 = lim [โˆ’2(๏ธ + 2)] = โˆ’2 ยท 4 = โˆ’8 ๏ธโ†’2 (b) An equation of this tangent line is ๏น โˆ’ 1 = โˆ’8(๏ธ โˆ’ 2) or ๏น = โˆ’8๏ธ + 17. 36. For a general point with ๏ธ-coordinate ๏ก, we have ๏ญ = lim ๏ธโ†’๏ก 2๏€ฝ(1 โˆ’ 3๏ธ) โˆ’ 2๏€ฝ(1 โˆ’ 3๏ก) 2(1 โˆ’ 3๏ก) โˆ’ 2(1 โˆ’ 3๏ธ) 6(๏ธ โˆ’ ๏ก) = lim = lim ๏ธโ†’๏ก (1 โˆ’ 3๏ก)(1 โˆ’ 3๏ธ)(๏ธ โˆ’ ๏ก) ๏ธโ†’๏ก (1 โˆ’ 3๏ก)(1 โˆ’ 3๏ธ)(๏ธ โˆ’ ๏ก) ๏ธโˆ’๏ก 6 = lim ๏ธโ†’๏ก (1 โˆ’ 3๏ก)(1 โˆ’ 3๏ธ) = 6 (1 โˆ’ 3๏ก)2 For ๏ก = 0, ๏ญ = 6 and ๏ฆ (0) = 2, so an equation of the tangent line is ๏น โˆ’ 2 = 6(๏ธ โˆ’ 0) or ๏น = 6๏ธ + 2๏€บ For ๏ก = โˆ’1, ๏ญ = 38 and ๏ฆ (โˆ’1) = 12 , so an equation of the tangent line is ๏น โˆ’ 12 = 38 (๏ธ + 1) or ๏น = 38 ๏ธ + 78 . 37. (a) ๏ณ = ๏ณ(๏ด) = 1 + 2๏ด + ๏ด2 ๏€ฝ4. The average velocity over the time interval [1๏€ป 1 + ๏จ] is ๏ถave = ๏‚ฑ 1 + 2(1 + ๏จ) + (1 + ๏จ)2 4 โˆ’ 13๏€ฝ4 10๏จ + ๏จ2 10 + ๏จ ๏ณ(1 + ๏จ) โˆ’ ๏ณ(1) = = = (1 + ๏จ) โˆ’ 1 ๏จ 4๏จ 4 c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ [continued] 158 ยค CHAPTER 2 LIMITS AND DERIVATIVES So for the following intervals the average velocities are: (i) [1๏€ป 3]: ๏จ = 2, ๏ถave = (10 + 2)๏€ฝ4 = 3 m๏€ฝs (ii) [1๏€ป 2]: ๏จ = 1, ๏ถave = (10 + 1)๏€ฝ4 = 2๏€บ75 m๏€ฝs (iii) [1๏€ป 1๏€บ5]: ๏จ = 0๏€บ5, ๏ถave = (10 + 0๏€บ5)๏€ฝ4 = 2๏€บ625 m๏€ฝs (iv) [1๏€ป 1๏€บ1]: ๏จ = 0๏€บ1, ๏ถave = (10 + 0๏€บ1)๏€ฝ4 = 2๏€บ525 m๏€ฝs (b) When ๏ด = 1, the instantaneous velocity is lim ๏จโ†’0 10 ๏ณ(1 + ๏จ) โˆ’ ๏ณ(1) 10 + ๏จ = lim = = 2๏€บ5 m๏€ฝs. ๏จโ†’0 ๏จ 4 4 38. (a) When ๏– increases from 200 in3 to 250 in3 , we have โˆ†๏– = 250 โˆ’ 200 = 50 in3 , and since ๏ = 800๏€ฝ๏– , โˆ†๏ = ๏ (250) โˆ’ ๏ (200) = is 800 800 โˆ’ = 3๏€บ2 โˆ’ 4 = โˆ’0๏€บ8 lb๏€ฝin2 . So the average rate of change 250 200 lb๏€ฝin2 โˆ†๏ โˆ’0๏€บ8 = = โˆ’0๏€บ016 . โˆ†๏– 50 in3 (b) Since ๏– = 800๏€ฝ๏ , the instantaneous rate of change of ๏– with respect to ๏ is lim โˆ†๏– ๏จโ†’0 โˆ†๏ = lim ๏จโ†’0 ๏– (๏ + ๏จ) โˆ’ ๏– (๏ ) 800๏€ฝ(๏ + ๏จ) โˆ’ 800๏€ฝ๏ 800 [๏ โˆ’ (๏ + ๏จ)] = lim = lim ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ(๏ + ๏จ)๏ = lim โˆ’800 ๏จโ†’0 (๏ + ๏จ)๏ =โˆ’ 800 ๏2 which is inversely proportional to the square of ๏ . ๏ฆ(๏ธ) โˆ’ ๏ฆ (2) ๏ธ3 โˆ’ 2๏ธ โˆ’ 4 = lim ๏ธโ†’2 ๏ธโ†’2 ๏ธโˆ’2 ๏ธโˆ’2 39. (a) ๏ฆ 0 (2) = lim (c) (๏ธ โˆ’ 2)(๏ธ2 + 2๏ธ + 2) = lim (๏ธ2 + 2๏ธ + 2) = 10 ๏ธโ†’2 ๏ธโ†’2 ๏ธโˆ’2 = lim (b) ๏น โˆ’ 4 = 10(๏ธ โˆ’ 2) or ๏น = 10๏ธ โˆ’ 16 40. 26 = 64, so ๏ฆ (๏ธ) = ๏ธ6 and ๏ก = 2. 41. (a) ๏ฆ 0 (๏ฒ) is the rate at which the total cost changes with respect to the interest rate. Its units are dollars๏€ฝ(percent per year). (b) The total cost of paying off the loan is increasing by $1200๏€ฝ(percent per year) as the interest rate reaches 10%. So if the interest rate goes up from 10% to 11%, the cost goes up approximately $1200. (c) As ๏ฒ increases, ๏ƒ increases. So ๏ฆ 0 (๏ฒ) will always be positive. 42. 43. 44. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ CHAPTER 2 REVIEW ยค 159 ๏ฐ ๏ฐ โˆš โˆš 3 โˆ’ 5(๏ธ + ๏จ) โˆ’ 3 โˆ’ 5๏ธ 3 โˆ’ 5(๏ธ + ๏จ) + 3 โˆ’ 5๏ธ ๏ฆ(๏ธ + ๏จ) โˆ’ ๏ฆ (๏ธ) ๏ฐ = lim 45. (a) ๏ฆ 0 (๏ธ) = lim โˆš ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ 3 โˆ’ 5(๏ธ + ๏จ) + 3 โˆ’ 5๏ธ = lim ๏จโ†’0 โˆ’5 [3 โˆ’ 5(๏ธ + ๏จ)] โˆ’ (3 โˆ’ 5๏ธ) โˆ’5 ๏‚ณ๏ฐ ๏‚ด = lim ๏ฐ = โˆš โˆš โˆš ๏จโ†’0 2 3 โˆ’ 5๏ธ 3 โˆ’ 5(๏ธ + ๏จ) + 3 โˆ’ 5๏ธ ๏จ 3 โˆ’ 5(๏ธ + ๏จ) + 3 โˆ’ 5๏ธ (b) Domain of ๏ฆ : (the radicand must be nonnegative) 3 โˆ’ 5๏ธ โ‰ฅ 0 โ‡’ ๏‚ค ๏‚ก 5๏ธ โ‰ค 3 โ‡’ ๏ธ โˆˆ โˆ’โˆž๏€ป 35 Domain of ๏ฆ 0 : exclude 35 because it makes the denominator zero; ๏‚ข ๏‚ก ๏ธ โˆˆ โˆ’โˆž๏€ป 35 (c) Our answer to part (a) is reasonable because ๏ฆ 0 (๏ธ) is always negative and ๏ฆ is always decreasing. 46. (a) As ๏ธ โ†’ ยฑโˆž, ๏ฆ (๏ธ) = (4 โˆ’ ๏ธ)๏€ฝ(3 + ๏ธ) โ†’ โˆ’1, so there is a horizontal asymptote at ๏น = โˆ’1. As ๏ธ โ†’ โˆ’3+ , ๏ฆ (๏ธ) โ†’ โˆž, and as ๏ธ โ†’ โˆ’3โˆ’ , ๏ฆ (๏ธ) โ†’ โˆ’โˆž. Thus, there is a vertical asymptote at ๏ธ = โˆ’3. (b) Note that ๏ฆ is decreasing on (โˆ’โˆž๏€ป โˆ’3) and (โˆ’3๏€ป โˆž), so ๏ฆ 0 is negative on those intervals. As ๏ธ โ†’ ยฑโˆž, ๏ฆ 0 โ†’ 0. As ๏ธ โ†’ โˆ’3โˆ’ and as ๏ธ โ†’ โˆ’3+ , ๏ฆ 0 โ†’ โˆ’โˆž. 4โˆ’๏ธ 4 โˆ’ (๏ธ + ๏จ) โˆ’ ๏ฆ(๏ธ + ๏จ) โˆ’ ๏ฆ (๏ธ) 3 + (๏ธ + ๏จ) 3+๏ธ (3 + ๏ธ) [4 โˆ’ (๏ธ + ๏จ)] โˆ’ (4 โˆ’ ๏ธ) [3 + (๏ธ + ๏จ)] = lim = lim (c) ๏ฆ 0 (๏ธ) = lim ๏จโ†’0 ๏จโ†’0 ๏จโ†’0 ๏จ ๏จ ๏จ [3 + (๏ธ + ๏จ)] (3 + ๏ธ) (12 โˆ’ 3๏ธ โˆ’ 3๏จ + 4๏ธ โˆ’ ๏ธ2 โˆ’ ๏จ๏ธ) โˆ’ (12 + 4๏ธ + 4๏จ โˆ’ 3๏ธ โˆ’ ๏ธ2 โˆ’ ๏จ๏ธ) ๏จโ†’0 ๏จ[3 + (๏ธ + ๏จ)](3 + ๏ธ) = lim = lim โˆ’7๏จ ๏จโ†’0 ๏จ [3 + (๏ธ + ๏จ)] (3 + ๏ธ) = lim โˆ’7 ๏จโ†’0 [3 + (๏ธ + ๏จ)] (3 + ๏ธ) =โˆ’ 7 (3 + ๏ธ)2 (d) The graphing device con๏ฌrms our graph in part (b). 47. ๏ฆ is not differentiable: at ๏ธ = โˆ’4 because ๏ฆ is not continuous, at ๏ธ = โˆ’1 because ๏ฆ has a corner, at ๏ธ = 2 because ๏ฆ is not continuous, and at ๏ธ = 5 because ๏ฆ has a vertical tangent. 48. The graph of ๏ก has tangent lines with positive slope for ๏ธ ๏€ผ 0 and negative slope for ๏ธ ๏€พ 0, and the values of ๏ฃ ๏ฌt this pattern, so ๏ฃ must be the graph of the derivative of the function for ๏ก. The graph of ๏ฃ has horizontal tangent lines to the left and right of the ๏ธ-axis and ๏ข has zeros at these points. Hence, ๏ข is the graph of the derivative of the function for ๏ฃ. Therefore, ๏ก is the graph of ๏ฆ , ๏ฃ is the graph of ๏ฆ 0 , and ๏ข is the graph of ๏ฆ 00 . c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 160 ยค CHAPTER 2 LIMITS AND DERIVATIVES 49. Domain: (โˆ’โˆž๏€ป 0) โˆช (0๏€ป โˆž); lim ๏ฆ(๏ธ) = 1; lim ๏ฆ (๏ธ) = 0; ๏ธโ†’0โˆ’ ๏ธโ†’0+ ๏ฆ 0 (๏ธ) ๏€พ 0 for all ๏ธ in the domain; lim ๏ฆ 0 (๏ธ) = 0; lim ๏ฆ 0 (๏ธ) = 1 ๏ธโ†’โˆ’โˆž ๏ธโ†’โˆž 50. (a) ๏ 0 (๏ด) is the rate at which the percentage of Americans under the age of 18 is changing with respect to time. Its units are percent per year (%๏€ฝyr). (b) To ๏ฌnd ๏ 0 (๏ด), we use lim ๏จโ†’0 For 1950: ๏ 0 (1950) โ‰ˆ ๏ (๏ด + ๏จ) โˆ’ ๏ (๏ด) ๏ (๏ด + ๏จ) โˆ’ ๏ (๏ด) โ‰ˆ for small values of ๏จ. ๏จ ๏จ 35๏€บ7 โˆ’ 31๏€บ1 ๏ (1960) โˆ’ ๏ (1950) = = 0๏€บ46 1960 โˆ’ 1950 10 For 1960: We estimate ๏ 0 (1960) by using ๏จ = โˆ’10 and ๏จ = 10, and then average the two results to obtain a ๏ฌnal estimate. ๏จ = โˆ’10 โ‡’ ๏ 0 (1960) โ‰ˆ ๏จ = 10 โ‡’ ๏ 0 (1960) โ‰ˆ 31๏€บ1 โˆ’ 35๏€บ7 ๏ (1950) โˆ’ ๏ (1960) = = 0๏€บ46 1950 โˆ’ 1960 โˆ’10 34๏€บ0 โˆ’ 35๏€บ7 ๏ (1970) โˆ’ ๏ (1960) = = โˆ’0๏€บ17 1970 โˆ’ 1960 10 So we estimate that ๏ 0 (1960) โ‰ˆ 12 [0๏€บ46 + (โˆ’0๏€บ17)] = 0๏€บ145. ๏ด 1950 1960 1970 1980 1990 2000 2010 0 0๏€บ460 0๏€บ145 โˆ’0๏€บ385 โˆ’0๏€บ415 โˆ’0๏€บ115 โˆ’0๏€บ085 โˆ’0๏€บ170 ๏ (๏ด) (c) (d) We could get more accurate values for ๏ 0 (๏ด) by obtaining data for the mid-decade years 1955, 1965, 1975, 1985, 1995, and 2005. 51. ๏‚ 0 (๏ด) is the rate at which the number of US $20 bills in circulation is changing with respect to time. Its units are billions of bills per year. We use a symmetric difference quotient to estimate ๏‚ 0 (2000). ๏‚ 0 (2000) โ‰ˆ 5๏€บ77 โˆ’ 4๏€บ21 ๏‚(2005) โˆ’ ๏‚(1995) = = 0๏€บ156 billions of bills per year (or 156 million bills per year). 2005 โˆ’ 1995 10 c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ CHAPTER 2 REVIEW ยค 0 โˆ’1๏€บ6 52. (a) Drawing slope triangles, we obtain the following estimates: ๏† 0 (1950) โ‰ˆ 1๏€บ1 10 = 0๏€บ11, ๏† (1965) โ‰ˆ 10 = โˆ’0๏€บ16, and ๏† 0 (1987) โ‰ˆ 0๏€บ2 = 0๏€บ02. 10 (b) The rate of change of the average number of children born to each woman was increasing by 0๏€บ11 in 1950, decreasing by 0๏€บ16 in 1965, and increasing by 0๏€บ02 in 1987. (c) There are many possible reasons: โ€ข In the baby-boom era (post-WWII), there was optimism about the economy and family size was rising. โ€ข In the baby-bust era, there was less economic optimism, and it was considered less socially responsible to have a large family. โ€ข In the baby-boomlet era, there was increased economic optimism and a return to more conservative attitudes. 53. |๏ฆ (๏ธ)| โ‰ค ๏ง(๏ธ) โ‡” โˆ’๏ง(๏ธ) โ‰ค ๏ฆ (๏ธ) โ‰ค ๏ง(๏ธ) and lim ๏ง(๏ธ) = 0 = lim โˆ’๏ง(๏ธ). ๏ธโ†’๏ก ๏ธโ†’๏ก Thus, by the Squeeze Theorem, lim ๏ฆ (๏ธ) = 0. ๏ธโ†’๏ก 54. (a) Note that ๏ฆ is an even function since ๏ฆ(๏ธ) = ๏ฆ (โˆ’๏ธ). Now for any integer ๏ฎ, [[๏ฎ]] + [[โˆ’๏ฎ]] = ๏ฎ โˆ’ ๏ฎ = 0, and for any real number ๏ซ which is not an integer, [[๏ซ]] + [[โˆ’๏ซ]] = [[๏ซ]] + (โˆ’ [[๏ซ]] โˆ’ 1) = โˆ’1. So lim ๏ฆ (๏ธ) exists (and is equal to โˆ’1) ๏ธโ†’๏ก for all values of ๏ก. (b) ๏ฆ is discontinuous at all integers. c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ 161 162 ยค CHAPTER 2 LIMITS AND DERIVATIVES c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. ยฐ

Document Preview (96 of 1118 Pages)

User generated content is uploaded by users for the purposes of learning and should be used following SchloarOn's honor code & terms of service.
You are viewing preview pages of the document. Purchase to get full access instantly.

Shop by Category See All


Shopping Cart (0)

Your bag is empty

Don't miss out on great deals! Start shopping or Sign in to view products added.

Shop What's New Sign in